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This paper presents a side-by-side consideration of multiplicity control procedures and 
replication as solutions to the problem of multiplicity. Several independent theoretical 
arguments are presented which demonstrate that replication serves several important 
functions, and that multiplicity control procedures have a number of serious flaws. Sub-
sequently, the results of a simulation study are provided, showing that under typical con-
ditions, replication provides similar familywise error control and power as multiplicity 
control procedures. Taken together, these theoretical and statistical arguments lead to 
the conclusion that researchers who are concerned about the problem of multiplicity 
should shift their attention away from multiplicity control procedures and towards in-
creased use of replication.  
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It is easier than ever to collect and analyze vast 
amounts of data. Plentiful research participants, ac-
cessible statistical software, and the popularity of 
the social sciences have led to a golden age of quan-
titative research. Much of this research is still being 
conducted using the lens of Null Hypothesis Signif-
icance Testing (NHST). In NHST, tests of “statistical 
significance” compare the probability of obtaining a 
test statistic as extreme (or more extreme) than that 
found under the null hypothesis to a pre-selected 
nominal Type I error rate. Situations in which find-
ings produced by sampling error are erroneously 
deemed to be “significant” are referred to as “Type I 
Errors” or “false positives”. As the number of statis-
tical tests being conducted has risen, social science 
stakeholders have become increasingly concerned 
with Type I errors (false positives), that is, finding a 

“significant” effect simply as a result of sampling er-
ror. This is because as more and more tests are con-
ducted, the probability of a Type I error occurring 
increases. Understandably, there have been re-
peated calls for the adoption of methods (termed 
“multiplicity control”) to reduce the number of false 
positive results in research (Alibrandi, 2017). At the 
same time, the value of replication is being touted 
across many disciplines as a way of ensuring that the 
results of scientific studies are legitimate (Cumming, 
2014; Shrout & Rodgers, 2018).  

To date, multiplicity control and replication have 
rarely been discussed within the same context. This 
is surprising since they both purport to reduce the 
likelihood of Type I errors in the results of research 
studies. Specifically, replications provide more in-
sight over time on the existence (and magnitude) of 
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effects, while multiplicity control procedures con-
trol the rate of decision-making about the existence 
of given effects within a single framework. In this 
paper, we discuss the tenets and principles of mul-
tiplicity control and replication, and then we move 
into a comparison of the methods both theoretically 
and methodologically. We show that one of the 
many advantages of increased replications is the 
minimized need for Type I error control via multi-
plicity control procedures. 

Multiplicity Control 

Multiplicity refers to testing multiple hypotheses 
with the goal of isolating those that are statistically 
significant. The problem is that as the number of 
tests conducted increases, the probability of obtain-
ing a Type I error also increases. To illustrate this 
principle, let us say we are comparing the speed at 
which participants walk. Participants are separated 
into four groups and each group is primed with a dif-
ferent list of words. If we hypothesize that priming 
will affect subsequent walking speeds, then we may 
wish to compare each group to every other group 
individually (i.e., test all six pairwise comparisons). 
Though each test carries a specific probability of 
making a Type I error (α), the overall probability of a 
Type I error (α’) across all six tests will be higher than 
α. In this way we can see how researchers are often 
put in the agonizing position of having interesting 
results that likely contain one or more false posi-
tives. 

Multiplicity Control Procedures 

Researchers have traditionally attempted to con-
trol for the increased likelihood of a Type I error 
when multiple tests are conducted by using multi-
plicity control procedures (MCPs). There are many 
different MCPs, but all accomplish essentially the 
same goal—they make the cut-off demarcating sta-
tistically significant from statistically non-signifi-
cant results more conservative as the number of sta-
tistical tests conducted increases (Olejnik, Li, Su-
pattathum, & Huberty, 1997; Sakai, 2018). MCPs can 
be applied to many kinds of tests, such as pairwise 
mean comparisons, multiple tests of correlation or 
regression coefficients, multiple parameters in 
structural equation modeling, tests repeated over 
multiple outcome variables, multiple voxel-level 
tests in fMRI, and more. 

Some of the most popular MCPs provide fami-
lywise error control (αFW), which controls the prob-
ability of at least one Type I error at α across all com-
parisons (i.e., α’ = α). The most popular approach for 
αFW control is the Bonferroni method (Dunn, 1961), 
which controls for multiplicity by dividing the over-
all probability of a Type I error (αFW) by the number 
of tests conducted (T). The resulting per-test alpha 
level is αT = α / T. Numerous alternatives to the Bon-
ferroni procedure for controlling α’ at α have been 
proposed, such as the Holm (1979) procedure; a flex-
ible and popular alternative. The Holm procedure 
makes inferences regarding statistical significance 
in a stepwise manner. The term stepwise implies 
that the significance tests take place in a prespeci-
fied order and αT can depend on the specific stage of 
testing. 

Replication 

Replication lends validity and generalizability to 
empirical results, and as such, has been heralded as 
a cornerstone of the so-called “New Statistics” 
(Cumming, 2014). It also happens that some forms of 
replication address the multiplicity problem by lev-
eraging the simple principle that it is highly unlikely 
that sampling error would yield the same false posi-
tive result across several studies. These are some of 
the reasons why replications are gaining traction. 
Indeed, many academic journals have stated that 
they are now open to accepting replication studies 
(e.g., Lucas & Donnellan, 2013; Vazire, 2016). It is our 
position that replication, an indispensable tool in its 
own right, naturally and effectively deals with the 
multiplicity problem.  

It is important to note that there are many forms 
of replication (some have even suggested as many as 
12 different types; Radder, 1992). Scholars generally 
distinguish between direct replications and concep-
tual replications. Direct replications involve repeat-
ing the precise methodology of a previously con-
ducted study, and conceptual replications involve 
testing the same hypothesis using different methods 
(Schmidt, 2009). The purpose of a direct replication 
is to determine the reliability of an effect, whereas a 
conceptual replication provides a new test of a the-
ory (Simons, 2014).  

In the context of the multiplicity problem, direct 
replications are most relevant, because we are con-
cerned with unreliable effects arising from sampling 
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error (i.e. Type I errors). If we were concerned with 
the validity of a claim based on study results (that is, 
if we wanted to further test whether a given result 
actually supports a theoretical claim), conceptual 
replications would be our focus. Therefore, in this 
paper, when we use the word “replication” we are 
referring to direct replications. 

Multiplicity Control Procedures vs Replication 

Although MCPs and replication are theoretically 
very different, they share a common goal in reduc-
ing the probability of Type I errors; hence we find a 
comparison of these strategies informative. Below 
we outline the reasons why we find replication to be 
a more logical and natural way to control for Type I 
errors than adopting MCPs. 

To begin, there are important theoretical issues 
with the general practice of multiplicity control, 
highlighted by the fact that there is no basis for the 
decision to link the alpha (α) level (or maximum ac-
ceptable Type I error rate) used for a particular test 
to the number of other tests conducted within a 
study (Carmer & Walker, 1985; Cribbie, 2017; Roth-
man, 1990; Saville, 1990, 2003, 2015). Although many 
have highlighted that α’ can increase drastically 
when researchers ignore the effects of multiplicity 
(e.g., Bland & Altma, 1995; Hancock & Klockars, 1996; 
Holland, Basu & Sun, 2010; Ryan, 1959; Tyler, Nor-
mand, & Horton, 2011), there is still no logical theo-
retical basis for linking the number of tests con-
ducted to the per-test Type I error rate. For exam-
ple, conducting all T = 6 pairwise comparisons in one 
study is strategically no different than conducting 
six studies each with T = 1 pairwise comparison, so 
why should there be a penalty for conducting all the 
tests together? If you believe that these situations 
are equivalent, and that MCPs should be applied in 
both of these cases, why not control for all tests 
conducted by the researcher over their scholarly ca-
reer? Or even further, all statistical tests ever con-
ducted? The ridiculousness of this suggestion 
speaks to the way that the logic, or lack thereof, un-
derlying MCPs does not scale well. In addition, link-
ing the number of tests conducted to the per-test 
Type I error rate leads to strange recommendations 
such as limiting the number of variables studied in 
order to reduce the potential for Type I errors 
(Schochet, 2007).  

Second, replication involves the repetition of a 
methodology under slightly different conditions 
(e.g., different cities, lab settings, research assis-
tants, samples). MCPs only address the likelihood of 
erroneous results within the study at hand. In con-
trast, replication reduces error by increasing the 
scope of an initial study, which directly contributes 
to the generalizability of the findings (Fisher, 1935; 
Lindsay & Ehrenberg, 1993). Repeated findings and 
generalizability—rather than a low chance of error 
in a single study—have widely been regarded as the 
hallmark of legitimate results (Carver, 1993; Fisher, 
1935; Lykken, 1968; Nuzzo, 2014; Popper, 1934; Stei-
ger, 1990). Methodologists have long stressed the 
importance of replication for establishing generali-
zability; for example, Cohen (1994) writes, “For gen-
eralization, psychologists must finally rely, as has 
been done in all the older sciences, on replication.” 
(p. 997). 

Third, it has been noted that most (if not all) var-
iables investigated in meaningful studies are related, 
although the magnitude of the association might not 
be large (Cohen, 1990, 1994; Gelman, Hill, & Yajima, 
2012; Rothman, 2014; Tukey, 1991). This claim sug-
gests that one of the core assumptions of NHST—
that the null hypothesis corresponds to a complete 
non-effect or lack of association—does not map well 
onto reality. Thus, statistical procedures aimed at 
reducing Type I errors (like MCPs), which are 
grounded in NHST, are at best over-conservative, 
and at worst, unnecessary and irrelevant since Type 
I errors of this nature are virtually nonexistent. As 
Tukey (1991) notes, “[it is] foolish…to ask… ‘Are the 
effects [of A and B] different?’…A and B are always 
different—in some decimal place.” (p. 100). And Co-
hen (1990) states that the null hypothesis can only 
be true in the “bowels of a computer processor run-
ning a Monte Carlo study” (p. 1308). To word this dif-
ferently, MCPs have the single goal of reducing the 
likelihood of Type I errors, while replication has the 
broader goal of exploring the reliability/generaliza-
bility of research findings (including the direction 
and magnitude of effects). If Type I errors do not ex-
ist, then MCPs are unnecessary. In contrast, because 
replication was not specifically designed to address 
multiplicity (i.e., it is not rooted in NHST, even 
though some researchers might define replication in 
terms of NHST results), it remains a valuable pursuit. 

Fourth, since replication, unlike MCPs, is not a 
procedure founded within NHST, there are many 
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extensions that are available such as focusing on the 
magnitude of effect sizes and meta-analyzing the ef-
fects across the multiple replication studies. In con-
trast, MCPs are tools which are directly embedded 
within the NHST framework. Accordingly, MCPs are 
also subject to the same dichotomous decision-
making as the rest of NHST, which has been strongly 
criticized (e.g., Gigerenzer, Krauss, & Vitouch, 2004). 

Lastly, across popular testing situations, multi-
plicity control is not superior to replication in terms 
of reducing the likelihood of Type I errors. This 
novel finding is the primary focus of this paper. If 
replication is theoretically superior to multiplicity 
control while providing the statistical benefits of 
MCPs then there would appear to be a clear winner. 

Methodology 

We conducted a Monte Carlo simulation to eval-
uate whether replication provides a similar level of 
Type I error control to multiplicity control. We sim-
ulated pairwise comparisons within a one-way inde-
pendent groups framework, comparing familywise 
error control and statistical power of the Bonferroni 
and Holm MCPs to that of replication (for a list of 
terms and definitions used in this section, see Table 
1).  

Several factors were manipulated in this study, 
including sample size, number of replications, num-
ber of populations, population mean configuration, 
and the method of error control. Sample sizes per 
group were set at n = 25 and n = 100 to reflect com-
mon sample sizes in psychological research. The 
number of groups was set at either J = 4 (six pairwise 
comparisons) or J = 7 (21 pairwise comparisons).  

To test both familywise error control and statis-
tical power, we manipulated population means so 
that three types of configurations were adopted: all 
population means equal (complete null), some of the 
population means equal (partial null), and none of 
the population means equal (complete non-null). In 
the complete null case, we investigated familywise 
error rates. In the partial null case, we evaluated 
both familywise error rates and power. In the com-
plete non-null case, we investigated power. Power 
was recorded in terms of all-pairs power (the pro-
portion of simulations in which all null hypotheses 
associated with non-null pairwise comparisons 
were correctly rejected) and average per-pair power 

(the proportion of truly significant differences that 
were correctly identified as statistically significant, 
averaged across all simulations). The population 
mean configurations used in the study can be found 
in Table 2. The within-group standard deviation was 
fixed at 20, and thus every one-unit increase in dif-
ferences between means increased the effect size 
(Cohen’s d) by .05.  For example, the population value 
for Cohen’s d for the μ1 = 0 and μ2 = 16 comparison is 
-.8 [(0-16)/20]. In the non-null condition, popula-
tion means were equally spaced (e.g., 0, 8, 16, 24). 

Familywise error control and power were evalu-
ated under situations in which the study was not 
replicated, replicated once, or replicated twice. 
With no replication, the familywise error rate was 
calculated as the proportion of simulations in which 
at least one pairwise comparison was falsely de-
clared statistically significant (i.e., there was at least 
one false positive). With one or two replications, the 
familywise error rate was calculated as the propor-
tion of simulations in which at least one pairwise 
comparison was falsely declared statistically signifi-
cant in the original study and in each replication (i.e., 
the false positive persisted across replications). 
Note that the order in which the errors are evalu-
ated (study first, replication second; or replication 
first, study second) is irrelevant since a false effect 
would need to be present in both to be counted to-
wards the familywise error rate.  

 With no replication, the per-pair power rate was 
calculated as the proportion of non-null pairwise 
comparisons that were correctly declared statisti-
cally significant, averaged across all simulations. The 
all-pairs power rate was the proportion of simula-
tions in which all non-null pairwise comparisons 
were correctly declared statistically significant. 
With replication, the per-pair power rate was calcu-
lated as the proportion of non-null pairwise com-
parisons that were correctly declared statistically 
significant in the original study and in each replica-
tion, averaged across all simulations. With replica-
tion, the all-pairs power rate was the proportion of 
simulations in which all non-null pairwise compari-
sons were correctly declared statistically significant 
in the original study and in each replication.  

To examine familywise error rates across simula-
tions, we adopted three methods of multiplicity 
control. The first method evaluated each pairwise 
comparison at α (i.e., no multiplicity control), the 
second was the Bonferroni MCP method, and the 
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third was the stepwise Holm MCP method. In addi-
tion to computing the test statistics separately for 
the original study and each replication, to model the 
accumulation of research over time, Type I error 
and power rates were also investigated when the 
combined (meta-analytic) effect across replications 
was analyzed. Meta-analysis is a useful tool for com-
bining research that examines the same effect, and 
here, we use it to model how replication effects may 
be combined. 

Lastly, beyond traditional NHST-based ap-
proaches, rates were also calculated for instances in 
which the effect size (Cohen’s d) meets the minimum 
meaningful value (ε) in both non-replicated and rep-
licated situations. Since our simulated populations 
did not violate the assumptions of ANOVA or Co-
hen’s d, we did not need to measure amount of bias 
or use a robust measure of effect size. The effect size 
equivalent of a Type I error occurs when the ob-
served d value mistakenly exceeds ε (i.e., the popu-
lation value of d < ε, but the observed value of d > ε), 
whereas the equivalent of power occurs when the 
observed d value correctly exceeds ε (i.e., the popu-
lation value of d > ε, and the observed value of d > ε). 
When the population value of d > ε, we can calculate 
the average proportion of correct statements re-
garding d or the proportion of all correct statements 
regarding d (i.e., all pairwise d values that are greater 
than ε when population d > ε).  

For this study, the nominal Type I error rate was 
set at α = .05, ε was set at d = .3, and 5000 simulations 
were conducted for each condition. It should be 
noted though that the choice of an appropriate value 
for α and ε is affected not only by general recom-
mendations but also by the context of the study. 
Given the lack of context in this study, our choices 
can be considered somewhat arbitrary. 

Finally, it is worth noting that we are simulating 
perfect, direct replications. As stated earlier, direct 
replications are useful for 1) testing the reliability of 
an effect, and 2) establishing the generalizability of 
an effect. The imperfect nature of replications (i.e., 
they are conducted in different laboratories, with 
different kinds of participants, under slightly differ-
ent conditions) is what makes them useful for estab-
lishing generalizability. However, this is not the fo-
cus of the present paper. Because this paper is 
purely interested in the ability of replications to 
control for multiplicity, we are solely concerned 
with the way that direct replications can establish 

the reliability of an effect. Thus, while our simulated 
replications are artificial and unrealistic, they are all 
that is needed to compare replication and MCPs in 
the control of multiplicity. 

Results 

Familywise Error Control 

Tables 3 and 4 show that when studies are not 
replicated, the Bonferroni and Holm MCPs are, un-
surprisingly, vastly preferable to no control. For ex-
ample, Table 3 shows that in a non-replicated study 
with 100 participants and 21 comparisons (μ = 0, 0, 
0, 0, 0, 0, 8), the Bonferroni and Holm procedures 
keep the error rate below the nominal α = .05. When 
no control is applied, the familywise error rate 
greatly exceeds α = .05 (.374). In the more extreme 
situation where no true differences exist (μ = 
0,0,0,0,0,0,0), error rates are even worse when no 
control is used (.440). 

When replications are conducted, error rates 
shift dramatically. Familywise error rates associated 
with the Bonferroni and Holm MCPs drop to .000, 
regardless of sample size and number of compari-
sons. Those associated with no control also drop no-
ticeably. Tables 3 and 4 show that when a single rep-
lication is conducted, familywise error rates without 
multiplicity control are maintained at or below α = 
.05. When two replications are conducted, empirical 
familywise error rates are maintained below .01. 

Although we included results when both multi-
plicity control and replication are utilized, this paper 
specifically contrasts the use of multiplicity control 
in a single (non-replicated) study against a repli-
cated study with no multiplicity control. Thus, the 
important contrast is between the Bonferroni and 
Holm results without replication, and that of the no 
control condition with replication. Tables 3 and 4 
show that in this configuration, MCPs and no con-
trol with replication both keep empirical familywise 
error rates at or below α = .05. It is important to re-
mind readers that replication was not designed, like 
MCPs, to maintain familywise error rates at specific 
levels. In fact, if the number of tests was very large 
it might take more than one or two replications to 
control the familywise error rate at α. The statistical 
properties of replication are nonetheless attrac-
tive—the probability of repeating an error over and 
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over is very slim when the probability of an error in 
each instance (e.g., study) is small (i.e., α). 

Power 

A strategy that controls for familywise error by 
squandering statistical power has little utility. 
Therefore, we also compared the power provided by 
MCPs and replication. As expected, overall power 
(i.e., the probability of finding a significant effect in 
the original study and each replication) decreases as 
the number of replications increases, since the 
probability of finding a statistically significant effect 
across multiple replications is (1 – β)R, where 1 - β is 
the power per replication, β is the Type II error rate, 
and R is the number of replications. Thus, when a 
partial mean structure is used (μ = 0, 0, 0, 8 or μ = 0, 
0, 0, 0, 0, 0, 8), no control with one replication pro-
vided similar or higher per-pair power rates than 
multiplicity control without replication. Per-pair 
power rates for no control with two replications, 
and MCPs with no replications, are highly similar. 
When a complete non-null mean structure was used 
(μ = 0, 8, 16, 24 or μ = 0, 8, 16, 24, 32, 40, 48) differ-
ences in per-pair power between replication and 
MCPs become slight (often inconsequential). 

When all-pairs power was the outcome of inter-
est, results were highly comparable, except when 
sample sizes were large (e.g., n = 100) and the mean 
structure contained several true differences (e.g., μ 
= 0, 8, 16, 24 or μ = 0, 8, 16, 24, 32, 40, 48). In these 
cases, the Holm procedure often demonstrated su-
perior all-pairs power (see Tables 5 and 6). For ex-
ample, with population means of 0, 8, 16,24 and n = 
100, the Holm procedure had an all-pairs power rate 
of .450 whereas the all-pairs power rate with no 
multiplicity control and one replication was .224 and 
with two replications was .104. The all-pairs power 
rate for the Bonferroni method was .089. 

Meta-Analysis 

As meta-analyses are a natural extension of how 
replications may give more evidence regarding an 
effect, we also explored the familywise Type I error 
and power rates when the results of the original 
study and the replication studies are combined into 
a single result. As expected, since no multiplicity 
control is imposed, familywise Type I error rates 
mirror what would be found in a single study with 

no multiplicity control. However, since meta-analy-
sis combines the effects of multiple studies, the 
sample size—and hence the power—rises dramati-
cally. Thus, both the per-pair and all-pairs power 
rates, especially with larger sample sizes, were much 
larger than any of the procedures where statistical 
significance is required in each of the studies con-
ducted. Given recent support for the contention 
that Type I errors are theoretically implausible in 
most behavioral science research (e.g., Cribbie, 
2017), focusing on power via meta-analytic solutions 
is very appealing. 

Cohen’s d 

Effect sizes have become increasingly popular 
and are commonly used alongside traditional NHST. 
Effect size measures allow us to move from the di-
chotomous determination of the presence or ab-
sence of an effect in NHST to an evaluation of mag-
nitudes of effects observed. Unlike statistical signif-
icance, measures of effect size do not have statisti-
cal cut-offs. Effect size interpretations vary due to 
both context and magnitude (Beribisky, Davidson, & 
Cribbie, 2019), However, when there is little theoret-
ical precedence for what constitutes a “meaningful” 
effect size, unofficial rules of thumb are often used 
to determine what constitutes a “minimal meaning-
ful value”. Here, we have chosen to use an effect size 
of Cohen’s d = .3, which has been conventionally re-
garded to be within the “small” range of Cohen’s d. 

Ideally, the choice of an effect may correspond to 
the smallest meaningful difference (as opposed to 
how often null comparisons resulted in Cohen’s d = 
0) since research in many fields (e.g., clinical, health) 
is often aimed at determining whether observed ef-
fects are meaningful or not. Because MCPs are em-
bedded in NHST, which is sample size dependent, 
MCPs cannot be discussed in relation to observed 
effect sizes in studies. However, effect sizes can be 
evaluated across replication studies, and thus we 
compare our NHST-based results with the ability of 
replications to prevent a conclusion that the data 
provides evidence for a meaningful effect size when 
in fact the population effect size is null. Table 7 sum-
marizes the ability of replication to prevent the ef-
fect size equivalent of a Type I error. That is, we pre-
sent rates at which replication results in a conclu-
sion of a “meaningful” difference between samples 
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when the population effect size is null. Table 8 sum-
marizes the ability of replication to prevent the ef-
fect size equivalent of a Type II error (obtaining a 
sample effect size that is not meaningful when the 
population effect size is non-null). Recall that in our 
simulations we used d = .3 as the “minimal meaning-
ful value”.  

Table 7 shows that when sample sizes are suffi-
ciently large (n = 100), replication effectively reduces 
the frequency of false conclusions about the mean-
ingfulness of Cohen’s d. For example, when a partial-
null mean structure was used (0, 0, 0, 8 or 0, 0, 0, 0, 
0, 0, 0, 8), the probability that a Cohen’s d value was 
erroneously equal to or greater than d = .3 across all 
replications was less than 3% with a single replica-
tion, and approximately 0% with two. In other 
words, the values in Table 7 relate to the proportion 
of comparisons greater than .3 when the true popu-
lation difference was 0 (not for conditions when the 
population Cohen’s d is greater in magnitude than 
zero).  

Table 8 reports two different measures. The first 
is “Average Proportion of Correct” (APC) statements 
regarding the magnitude of Cohen’s d. This is the 
proportion of Cohen’s d values that were accurately 
at or above d = .3 across all simulations. This shows 
how likely it is that truly meaningful effect sizes will 
persist across replications. The second is “Propor-
tion of All Correct” (PAC) statements regarding the 
magnitude of Cohen’s d. This is the proportion of 
simulations in which all truly meaningful effect sizes 
were sufficiently large (d ≥ .3) to be labelled as such. 
This shows how likely it is that every truly meaning-
ful effect size in a study will persist across replica-
tions. These two measures are analogous to per-pair 
power and all-pairs power. Like Table 7, Table 8 re-
ports the proportion of correct statements related 
to conditions where the effect size in the population 
is greater than d = .3. Table 8 shows that APC and 
PAC “power rates” for Cohen’s d are highly compa-
rable to our previously obtained NHST per-pair and 
all-pair power rates. Namely, rates decrease as the 
number of tests increase and the sample sizes de-
crease. This again highlights the importance of uti-
lizing large sample sizes when possible. 

 

Conclusion 

Our simulation study yielded two important con-
clusions regarding the comparison of multiplicity 
control and replication on a statistical level. First, 
both the MCPs and replication maintained Type I er-
ror rates at acceptable levels. Second, replication 
and MCPs provide roughly equivalent power. We 
also extended the comparison by demonstrating 
that obvious extensions of replication, such as fo-
cusing on effect sizes and meta-analyzing the re-
sults of replications, provide valuable research 
strategies. For example, meta-analysis, as expected, 
generally provides an advantage in power, although 
of course at the cost of higher Type I errors without 
any MCPs. Further, replication is a valuable strategy 
for minimizing the possibility that a researcher 
could incorrectly conclude that a meaningful effect 
size has been detected.  

While there were some situations where replica-
tion performed better than multiplicity control and 
vice versa, the overall pattern suggested that MCPs 
and replication were very similar. Furthermore, our 
simulations show that when parameters most 
closely resembled those found in typical social sci-
ence research studies (i.e., healthy sample size and a 
moderate number of comparisons where some but 
not all are truly different), replication provides sat-
isfactory familywise error control and demonstrates 
equivalent or superior power. Thus, in most situa-
tions replication is either as good, or better, than 
multiplicity control.  

Given these results, how should the everyday sci-
entist address the multiplicity problem? It is our po-
sition that replication is the best answer. Some may 
believe this position fails to appreciate practical 
constraints. Two prominent constraints are limited 
time and money, and institutional pressure to pro-
duce novel (rather than rigorous) results. We recog-
nize the legitimacy and severity of these concerns. 
However, because of the problematic assumptions 
underlying MCPs (e.g., null relationships are com-
mon), and the subjective nature of many decisions 
involved in MCPs (e.g., how to define an appropriate 
“family”), we recommend that they should not be 
used.  

An analogous situation is the use of advanced 
data analysis techniques (e.g. structural equation 
modeling, multi-level modeling) by researchers with 
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limited sample sizes. There may be very good rea-
sons why they cannot access more participants (e.g. 
lack of access to participants, low funding, time-lim-
ited data collection, etc.), and equally valid reasons 
why their analysis technique would make sense. 
However, those two truths do not change the fact 
that their results will be challenging to obtain and 
interpret with a low sample size. In the same way, 
the fact that many researchers face barriers to rep-
lication does not mean that MCPs are an acceptable 
answer. 

In sum, the results of the present simulation 
study make the choice to conduct replications, and 
abandon the use of MCPs, even more obvious by 
demonstrating that, in addition to being theoreti-
cally superior, replication provides natural multi-
plicity control. Replications also indirectly enable 
other beneficial research practices such as a com-
parison of effect sizes and a combining of effect 
sizes (i.e., meta-analysis). We hope this will encour-
age members of the social science community to 
take Wilkinson et al.’s shrewd advice to heart and 
“let replications promote reputations” (Wilkinson, 
1990, p. 600). 
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Appendix

Table 1 
 
Terminology, definitions and more information regarding concepts used in simulation study. 
Term Definition Idea 
n Sample size per group (25 or 

100). 
Used to demonstrate commonly found sample sizes 
within Psychology. 

J Number of groups. The number of groups directly corresponded to the 
number of pairwise comparisons such that: 
Pairwise comparisons = J(J-1)

2
 

Complete Null 
Condition 

All population means are 
equal. 

One of three configurations used for simulation study. 
Possible to investigate familywise error rates. 

Partial Null 
Condition 

Some population means are 
equal. 

One of three configurations used for simulation study. 
Possible to investigate both familywise error rates and 
power. 

Complete 
Non-Null 
Condition 

None of the population 
means are equal. 

One of three configurations used for simulation study. 
Possible to investigate power. 

All Pairs 
Power (AP) 

For the true, non-null differ-
ences between the groups, 
all pairwise comparison null 
hypotheses are correctly re-
jected. 

For: 
No replication condition: Proportion of simulations in 
which all the real pairwise differences are statistically 
significant (the null hypothesis is correctly rejected). 
One or two replication conditions: Proportion of sim-
ulations in which all non-null pairwise comparisons 
are statistically significant in the original study and in 
each replication (the null hypothesis is correctly re-
jected). 

Average Per 
Pair Power 
(PP) 

For the true, non-null differ-
ences between the groups, 
the corresponding pairwise 
comparison null hypotheses 
are correctly rejected (aver-
aged across all simulations). 

For: 
No replication condition: Proportion of real pairwise 
differences that are statistically significant, averaged 
across all simulations. 
One or two replication conditions: Proportion of real 
pairwise differences that are statistically significant in 
the original study and each replication, averaged 
across all simulations. 

Familywise 
error control 

Controls the likelihood of at 
least one Type I error at α 
across all comparisons. 

For: 
No replication condition: Proportion of simulations 
where there is at least one pairwise comparison that is 
incorrectly deemed significant. 
One or two replication conditions: Proportion of sim-
ulations where the false positive exists in the original 
study and the replicated one(s). 

Bonferroni 
method 

Type of multiple comparison 
procedure. 

α' = . α/(number of comparisons). P-value is compared 
to α'. 

Holm method Type of multiple comparison 
procedure. 

A sequential modified-Bonferroni procedure that pro-
vides greater power while still maintaining strict fami-
lywise error control (see Cribbie, 2017 for more de-
tails).  
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d Cohen’s d or standardized 
mean difference.  

Type I error: Population d is truly less than ε yet d in-
correctly exceeds ε. 
Power: population d is truly greater than ε and d is 
greater than ε in situation. 

ε Minimally meaningful value. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 
 
Simulation Mean Structure 
 Familywise Er-

ror Control 
Familywise Error Control/ 

Power 
Power 

6 comparisons μ = 0,0,0,0 μ = 0,0,0,8 μ = 0,8,16,24 

 |dp| = 0  |dp| = 0 or .4a  |dp| = .4, .8, 1.2  

21 comparisons μ = 0,0,0,0,0,0,0 μ = 0,0,0,0,0,0,8 μ = 0,8,16,24,32,40,48 

 |dp|= 0 |dp| = 0 or .40  |dp| = .4,.8,1.2,1.6,2.0 or 
2.4 

Note. dp represents the population value for the pairwise Cohen’s d; when multiple dp values are 
provided, e.g., for μ = 0,0,0,8, |dp| can be 0 or .40, this implies that for some pairwise compari-
sons |dp| = 0, e.g., for μ1 vs μ2, dp = |(μ1 - μ2)/sp| = |(0-0)/20| = 0, and for other pairwise compari-
sons |dp| = .40, e.g., for μ1 vs μ4, dp = |(μ1 – μ4)/sp| = |(0-8)/20| = |-.40| = .40 

 
Table 3 
Familywise Error Rates for 4 groups (T = 6) 
 n = 25 n = 100 
 μ = 0,0,0,0 μ = 0,0,0,8 μ = 0,0,0,0 μ = 0,0,0,8 

No Replication      
Bonferroni .041 .023 .038 .022 
Holm .041 .026 .038 .032 
No Control .202 .120 .205 .125 

One Replication     
Bonferroni .001 .000 .000 .000 
Holm .001 .000 .000 .000 
No Control .013 .007 .013 .007 
Meta-analysis .208 .120 .209 .121 
Two Replications     

Bonferroni .000 .000 .000 .000 
Holm .000 .000 .000 .000 
No Control .001 .000 .001 .000 
Meta-analysis .200 .117 .206 .122 
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Table 4 
 
Familywise Error Rates for 7 groups (T = 21) 
 n = 25 n = 100 
 μ = 0,0,0,0,0,0,0 μ = 0,0,0,0,0,0,8 μ = 0,0,0,0,0,0,0 μ = 0,0,0,0,0,0,8 

No Replication      
Bonferroni .039 .028 .043 .028 
Holm .039 .028 .043 .032 
No Control .442 .380 .440 .374 

One Replication     
Bonferroni .000 .000 .000 .000 
Holm .000 .000 .000 .000 
No Control .046 .036 .050 .031 
Meta-analysis .440 .363 .438 .362 
Two Replications     

Bonferroni .000 .000 .000 .000 
Holm .000 .000 .000 .000 
No Control .002 .002 .004 .002 
Meta-analysis .447 .371 .440 .364 

 
Table 5 
 
Average Per-Pair and All Pairs Power Rates for 4 Groups (6 Comparisons) 
 n = 25 n = 100 
 μ = 0,0,0,8 μ = 0,8,16,24 μ = 0,0,0,8 μ = 0,8,16,24 

 PP AP PP AP PP AP PP AP 
No Replication          

Bonferroni .103 .016 .380 .000 .566 .307 .782 .089 
Holm .110 .025 .419 .000 .596 .370 .885 .450 
No Control .288 .092 .567 .002 .802 .610 .903 .470 

One Replication         
Bonferroni .010 .000 .239 .000 .319 .096 .658 .009 
Holm .011 .001 .266 .000 .354 .139 .795 .203 
No Control .080 .008 .410 .000 .647 .374 .825 .224 
Meta-analysis .491 .241 .737 .042 .979 .948 .990 .941 
Two Replications         

Bonferroni .001 .000 .180 .000 .180 .032 .590 .001 
Holm .001 .000 .201 .000 .211 .053 .727 .090 
No Control .024 .000 .332 .000 .524 .233 .762 .104 
Meta-analysis .671 .433 .838 .215 .998 .995 .999 .996 
Note. PP = Per Pair power rates, AP = All Pairs power rates 
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Table 6 
 
Average Per-Pair and All Pairs Power Rates for 7 Groups (21 Comparisons) 
 n = 25 n = 100 
 μ = 0,0,0,0,0,0,8 μ = 0,8,16,24,32,40,48 μ = 0,0,0,0,0,0,8 μ = 0,8,16,24,32,40,48 

 PP AP PP AP PP AP PP AP 
No Replication          

Bonferroni .048 .001 .545 .000 .405 .083 .829 .000 
Holm .050 .002 .594 .000 .420 .100 .913 .150 
No Control .287 .039 .742 .000 .810 .487 .944 .202 
One Replication         

Bonferroni .002 .000 .450 .000 .160 .005 .758 .000 
Holm .002 .000 .494 .000 .172 .008 .851 .021 
No Control .080 .001 .642 .000 .645 .227 .898 .042 
Meta-analysis .501 .147 .907 .000 .977 .903 .994 .874 
Two Replications         
Bonferroni .000   .000 .407 .000 .064 .000 .729 .000 
Holm .000 .000 .448 .000 .071 .001 .809 .002 
No Control .022 .000 .592 .000 .515 .106 .862 .007 
Meta-analysis .682 .312 .890 .031 .998 .990 .999 .990 
Note. PP = per pair power rates, AP = all pairs power rates 
 

Table 7 
 
Proportion of Incorrect Statements Regarding the Magnitude of Cohen’s d for 4 and 7 Groups 

 n = 25 n = 100 
 μ = 0,0,0,0 μ = 0,0,0,8 μ = 0,0,0,0 μ = 0,0,0,8 

No Replication .722 .543 .156 .090 

One Replication .372 .221 .007 .003 
Two Replications .132 .072 .000 .000 
 μ = 

0,0,0,0,0,0,0 
μ = 

0,0,0,0,0,0,8 
μ = 

0,0,0,0,0,0,0 
μ = 0,0,0,0,0,0,8 

No Replication .938 .904 .347 .293 
One Replication .714 .612 .025 .016 
Two Replications .358 .275 .002 .000 
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Table 8 
 
Average Proportion of Correct (APC) and Proportion of All Correct (PAC) Statements Regarding Magnitude of 
Cohen’s d for 4 and 7 Groups  

 n = 25 n = 100 
 μ = 0,0,0,8 μ = 0,8,16,24 μ = 0,0,0,8      μ = 0,8,16,24 
 APC PAC APC PAC APC PAC APC PAC 

No Replication .651 .404 .810 .173 .758 .543 .880 .368 
One Replication .413 .155 .681 .032 .581 .301 .788 .137 
Two Replications .268 .063 .595 .005 .443 .168 .720 .051 
 μ = 

0,0,0,0,0,0,8 
μ = 0,8,16,24,32,40,48 μ = 0,0,0,0,0,0,8 μ = 0,8,16,24,32,40,48 

No Replication .647 .268 .890 .016 .765 .422 .931 .117 
One Replication .422 .070 .816 .000 .576 .170 .878 .016 
Two Replications .270 .015 .766 .000 .431 .065 .839 .002 
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