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Abstract
Computer simulations have become one of the most prominent tools for methodologists in the social sciences to
evaluate the properties of their statistical techniques and to offer best practice recommendations. Amongst the
many uses of computer simulations, evaluating the robustness of methods to their assumptions, particularly uni-
variate or multivariate normality, is crucial to ensure the appropriateness of data analysis. In order to accomplish
this, quantitative researchers need to be able to generate data where they have a degree of control over its non-
normal properties. Even though great advances have been achieved in statistical theory and computational power,
the task of simulating multivariate, non-normal data is not straightforward. There are inherent conceptual and
mathematical complexities implied by the phrase “non-normality” which are not always reflected in the simulations
studies conduced by social scientists. The present article attempts to offer a summary of some of the issues con-
cerning the simulation of multivariate, non-normal data in the social sciences. An overview of common algorithms
is presented as well as some of the characteristics and idiosyncrasies that implied in them which may exert undue
influence in the results of simulation studies. A call is made to encourage the meta-scientific study of computer
simulations in the social sciences in order to understand how simulation designs frame the teaching, usage and
practice of statistical techniques within the social sciences.
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Introduction

The method of Monte Carlo simulation has become
the workhorse of the modern quantitative methodolo-
gist, enabling researchers to overcome a wide range of
issues, from handling intractable estimation problems
to helping guide and evaluate the development of new
mathematical and statistical theory (Beisbart & Norton,
2012). From its inception in Los Alamos National labo-
ratory, Monte Carlo simulations have provided insights
to mathematicians, physicists, statisticians and almost
any researcher who relies on quantitative analyses to
further their field.

I posit that computer simulations can address three
broad classes of issues depending on the ultimate goal
of the simulation itself: issues of estimation and math-
ematical tractability, issues of data modelling and is-
sues of robustness evaluation. The first issue is perhaps
best exemplified in the development of Markov Chain
Monte Carlo (MCMC) techniques to estimate parame-
ters for Bayesian analysis or to approximate the solu-
tion of complex integrals. The second is more often
seen within areas such as mathematical biology or fi-
nancial mathematics, where the behaviour of chaotic
systems can be approximated as if they were random
procsses (e.g. Hoover & Hoover, 2015). In this case,
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computer simulations are designed to answer “what if”
type questions where slight alterations to the initial con-
ditions of the system may yield widely divergent re-
sults. The final issue (and the one that will concern
the rest of this article) is a hybrid of the previous two
and particularly popular within psychology and the so-
cial sciences: the evaluation of robustness in statistical
methods (Carsey & Harden, 2013). Whether it is test-
ing for violations of distributional assumptions, pres-
ence of outliers, model misspecifications or finite sam-
ple studies where the asymptotic properties of estima-
tors are evaluated under realistic sample sizes, the vast
majority of quantitative research published within the
social sciences is either exclusively based on computer
simulations or presents a new theoretical development
which is also evaluated or justified through simulations.
Just by looking at the table of contents of three leading
journals in quantitative psychology for the present year,
Multivariate Behavioural Research, the British Journal of
Mathematical and Statistical Psychology and Psychome-
trika, one can see that every article present makes use
of computer simulations in one way or another.This type
of simulation studies can be described in four general
steps:

(1) Decide the models and conditions from which the
data will be generated (i.e. what “holds” in the
population).

(2) Generate the data.

(3) Estimate the quantities of interest for the models
being studied in Step (1).

(4) Save the parameter estimates, standard errors,
goodness-of-fit indices, etc. for later analyses and
go back to Step (2).

Steps (2)-(4) would be considered a replication
within the framework of a Monte Carlo simulation and
repeating them a large number of times shows the pat-
terns of behaviour of the statistical methods under in-
vestigation that will result in further recommendations
for users of these methods.

Robustness simulation studies emphasize the deci-
sions made in Step (1) because the selection of statisti-
cal methods to test and data conditions will guide the
recommendations that will subsequently inform data
practice. For the case of non-normality, the level of
skewness or kurtosis, presence/absence of outliers, etc.
would be encoded here. Most of the time, Steps (2)
through (4) are assumed to operate seamlessly either
because the researcher has the sufficient technical ex-
pertise to program them in a computer or because it is

just assumed that the subroutines and algorithms em-
ployed satisfy the requests of the researcher. A crucial
aspect of the implementation of these algorithms and
of the performance of the simulation in general is the
ability of the researcher to ensure that the simulation
design and the actual computer implementation of it
are consistent with one another. If this consistency is
not there then Step (2) is brought into question and
one, either as a producer or consumer of simulation re-
search, needs to wonder whether or not the conclusions
obtained from the Monte Carlo studies are reliable. This
issue constitutes the central message of this article as it
pertains to how one would simulate multivariate, non-
normal data, the types of approaches that exist to do
this and what researchers should be on the lookout for..

Non-normal data simulation in the social sciences

Investigating possible violations of distributional as-
sumptions is one of the most prevalent types of ro-
bustness studies within the quantitative social sciences.
Monte Carlo simulations have been used for such inves-
tigations on the general linear model (e.g., Beasley &
Zumbo, 2003; Finch, 2005), multilevel modelling (e.g.,
Shieh, 2000), logistic regression (e.g., Hess, Olejnik,
& Huberty, 2001), structural equation modelling (e.g.,
Curran, West & Finch, 1996) and many more. When
univariate properties are of interest (such as, for ex-
ample, the impact that non-normality has on the t-test
or ANOVA) researchers have a plethora of distribution
types to choose from. Distributions such as the expo-
nential, log-normal and uniform are usually employed
to test for non-zero skewness or excess kurtosis (e.g.,
Oshima & Algina (1992); Wiedermann & Alexandrow-
icz (2007); Zimmerman & Zumbo (1990). However,
when the violation of assumptions implies a multivari-
ate, non-normal structure, the data-generating process
becomes considerably more complex because, for the
continuous case, many candidate densities can be called
the “multivariate” generalization of a well-known uni-
variate distribution. (Kotz, Balakrishnan & Johnson,
2004). Consider, for instance, the case of a closely-
related multivariate distribution to the normal: the mul-
tivariate t distribution. Kotz and Nadarajah (2004) list
fourteen different representations of distributions that
could be considered as “multivariate t”, with the most
popular representation being used primarily out of con-
venience, due to its connection with elliptical distribu-
tions. In general, there can be many mathematical ob-
jects which could be consider the multivariate gener-
alization or “version” of well-known univariate proba-
bility distributions, and choosing among the potential
candidates is not always a straightforward task.
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From multivariate normal to multivariate non-
normal distributions: What works and what does
not work

The normal distribution possesses a property that
eases the generalization process from univariate to mul-
tivariate spaces in a relatively straightforward fash-
ion: it is closed under convolutions (i.e., closed un-
der linear combinations) such that adding normal ran-
dom variables and multiplying them times constants
results in a random variable which is itself normally-
distributed. Let A1, A2, A3, . . . , An be independent, nor-
mally distributed random variables such that Ai ∼

N(µi, σ
2
i ) for i = 1, 2, . . . , n. If k1, k2, k3, . . . , kn are real-

valued constants then it follows that:

n∑
i=1

kiAi ∼ N

 n∑
i=1

kiµi,

n∑
i=1

k2
i σ

2
i

 (1)

Consider Z = (Z1,Z2,Z3, . . . ,Zn)′ where each Zi ∼ N(0, 1).
For any real-valued matrix B of proper dimensions (be-
sides the null matrix), define Y = BZ. Then, by us-
ing the property presented in Equation (1), the matrix-
valued random variable Y + µµµ follows a multivariate
normal distribution with mean vector µµµ and covariance
matrix Σ = BB′, which is known as the Cholesky de-
composition or Cholesky factorization. For this partic-
ular calculation, a matrix (in this case the covariance
matrix Σ) can be “decomposed” or “factorized” into
a lower-triangular matrix (B in the example) and its
transpose. It is important to point out that other matrix-
decomposition approaches (such as Principal Compo-
nent Analysis or Factor Analysis) could serve a similar
role.

Although it would be tempting to follow the same
general approach to construct a multivariate, non-
normal distribution (i.e., select a covariance/correlation
matrix, decompose it in its factors, BB′ and multiply
them times the matrix with uncorrelated, non-normal
distributions of choice) and it has been done in the past
(see, for instance, Hittner, May & Silver, 2003; Silver,
Hittner & May, 2004; Wilcox & Tian Tian, 2008), it
is of utmost importance to highlight that this proce-
dure would only guarantee that the population corre-
lation or covariance matrix is the one intended by the
researcher. This property holds irrespective of whether
the distributions to correlate are normal or non-normal.
The univariate marginal distributions would lose their
unique structures and, by the Central Limit Theorem,
would become more and more normally distributed the
more one-dimensional marginals are added. Figure 1
highlights this fact by reproducing the simulation condi-
tions described in Silver, Hittner and May (2004) for the
uniform case. Consider four independent, identically-

distributed random variables (X1, X2, X3, X4) which fol-
low a standard, uniform distribution,U(0, 1) and a pop-
ulation correlation matrix R4×4 with equal correlations
of 0.5 in the off-diagonals. The process of multiply-
ing the matrix with standard-uniform random variables
times the Cholesky-decomposed R4×4 to induce the cor-
relational structure (matrix B in the paragraph above)
ends up altering the univariate distributions such that
they no longer follow the non-normal distributions in-
tended by the researchers (Vale & Maurelli, 1983). The
R code below exemplifies this process. In order to
truly generate multivariate non-normal structures with
a degree of control over the marginal distributions and
the correlation structure simultaneously, more complex
simulation techniques are needed.

# Block 1
set.seed(124)

## Creates the correlation matrix and
factors it

R <- matrix(rep(.5,16),4,4)
diag(R) <- 1
C <- chol(R)

## Simulates independent Uniform random
variables

x_1 <- runif(n = 10000, min = 0, max = 1)
x_2 <- runif(n = 10000, min = 0, max = 1)
x_3 <- runif(n = 10000, min = 0, max = 1)
x_4 <- runif(n = 10000, min = 0, max = 1)

X <- cbind(x_1, x_2, x_3, x_4)

## Post-multiplies the correlation -matrix
factor to

## induce the correlation.
D <- X %*% C ##this is the 4-dimensional

distribution

The NORTA family of methods

The NORmal To Anything (NORTA) family of meth-
ods is a popular approach to generate multivariate, non-
normal data within the social sciences. Although the
ideas underlying this method can be traced back to Mar-
dia (1970), Cario and Nelson (2007) were among the
first ones to present this method in full generality and
derive some of its fundamental theoretical properties.
In essence, the NORTA method consists of three steps:

(1) Generate Z ∼ N(0d×1,Rd×d).

(2) Apply the probability integral transformation by
using the multivariate normal cumulative den-
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Figure 1. Four-dimensional distribution implied by the
simulation design of Silver, Hittner & May (2004) with
assumed U(0, 1) marginal distributions

sity function (CDF) such that (Ui) = Φ(Zi) for
i = 1, 2, . . . , n.

(3) Choose a suitable inverse CDF, F−1(·), to ap-
ply to each marginal density of U so the the
new multivariate random variable is defined as
X = (F−1

1 (u1), F−1
2 (u2), ..., F−1

d (ud))′. Notice that the
F−1

i (·) need not be the same for each i.

The NORTA algorithm encompasses a variety of
methods where transformations of the one dimensional
marginal distributions are applied to a multivariate nor-
mal structure in an attempt to induce non-normality
from the univariate to multivariate marginals.

Specific applications of the NORTA framework to sim-
ulate non-normal data have different types of compu-
tational limitations, depending on how the method is
implemented. The first one can be found in Cario and
Nelson (2007) Equation (1) which pertains to the way
in which the correlation matrix of the distribution is as-
sembled. Applying the transformations in Step 2 above
will almost always end up changing the final value of
the Pearson correlation between the marginal distribu-
tions. Nevertheless, if Equation (1) in Cario and Nelson
(2007) is solved for the correlation values intended for
the researcher, then this correlation can be used in Step
1 above so that the final joint distribution has the popu-
lation value originally desired. This approach, however,
requires the correlation matrix to be created entry-by-
entry. The estimation may result in a final correlation

matrix of the non-normal density which is not positive
definite 1. Care needs to be taken when implement-
ing the NORTA approach to ensure both the non-normal
and correlational structures are feasible.

The 3rd order polynomial transformation

The 3rd order polynomial transformation, or the
Fleishman method, deserves a special mention because
of the influence it has exerted on evaluating the robust-
ness of statistical methods within psychology and the
social sciences. Its original univariate characterization
proposed by Fleishman (1978) and the multivariate ex-
tension developed by Vale and Maurelli (1983) are, by
far, the most widely used algorithms to evaluate viola-
tions to the normality assumption in the social sciences.
With upwards of 1100 citations combined between both
articles, no other method to simulate non-normal data
within these fields has been as extensively used as this
approach.

The Fleishman method begins by defining a non-
normal random variable as follows:

E = a + bZ + cZ2 + dZ3 (3)

where Z ∼ N(0, 1) and {a, b, c, d} are real-valued con-
stants that act as polynomial coefficients to define the
non-normally distributed variable E. The coefficients
are obtained by finding the solution to the following
system of equations:

a + c = 0

b2 + 6bd + 2c2 + 15d2 = 1 (4)

2c(b2 + 24bd + 105d2 + 2) = γ1

24(bd + c2[1 + b2 + 28bd]+

d2[12 + 48bd + 141c2 + 225d2]) = γ2

where γ1 is the population skewness and γ2 is the popu-
lation excess kurtosis defined by the user. Fleishman-
generated random variables are assumed to be stan-
dardized (at least initially), so the mean is fixed at 0
and the variance is fixed at 1. By solving this system of
equations, given the input of the user for (γ1, γ2), the
resulting polynomial coefficients can be plugged into
Equation (3) so that the non-normal random variable
E has its first four moments determined by the user.

As an example, pretend a user is interested in obtain-
ing a distribution with a population skewness of 1 and a

1An n × n symmetric matrix A is said to be positive defi-
nite if for any real-valued vector vn×1, v>Av > 0. Equivalently,
all the eigenvalues of said matrix should be greater than 0.
All covariance (and correlation) matrices are defined to be
positive-definite. If they are not, they are not a true correla-
tion/covariance matrix.
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population excess kurtosis of 15. The following R code
would generate the non-normal distribution E with the
user-specified non-normality:

# Block 2
set.seed(124)

## Eqn4 (the Fleishman system) to be solved
fleishman <- function(sk, krt) {

fl_syst <- function(skew, kurt, dd)
{
b=dd[1L]; c=dd[2L]; d=dd[3L];

eqn1 = b^2 + 6*b*d + 2*c^2 +
15*d^2 - 1

eqn2 = 2*c*(b^2 + 24*b*d +
105*d^2 + 2) - sk

eqn3 = 24*(b*d + c^2*(1 + b^2 +
28*b*d) +
d^2*(12 + 48*b*d +

141*c^2 + 225*d^2)) -
krt

eqn <- c(eqn1, eqn2, eqn3)

sum(eqn * eqn)
}

sol <- nlminb(start = c(0,0,1),
objective = fl_syst, skew =
sk, kurt = krt)

}

## Solves the Fleishman system for
skewness=1, kurtosis=15

fleishman(1,15)$par
[1] 1.534711 0.170095 -0.306848

Although the original system contains four equations,
notice that knowing c fully determines a (it simply
switches sign). Once the polynomial coefficients are
obtained, one simply needs to substitute them back in
Equation (3): E = −0.170095 + 1.534711Z + 0.170095Z2−

0.306848Z3 Notice that, by construction, E is standard-
ized, which can be seen in the system described in Equa-
tion (4). Notice how the moments of E are the solutions
of the system, and the system has the first equation set
to 0 (the mean of E) and the second equation set to 1
(the variance of E). The same values become negative
in the R code to solve for the system.

Vale and Maurelli (1983) extended the Fleishman
method by acknowledging the same limitation that was
described in Section 2.2: If one Fleishman-transforms
standard normal random variables and induces a cor-
relation structure through a covariance matrix decom-

position approach (as described in Section 2.1), the
resulting marginal distributions would no longer have
the (γ1, γ2) values intended by the researcher. If, on
the other hand, one begins with multivariate normal
data and then applies the Fleishman transformation to
each marginal distribution, then the resulting correla-
tion structure would not be the same as the one origi-
nally intended by the researcher. Their solution, which
is very much in line to the procedure described in Sec-
tion 2.1, consisted of proposing a step between the final
correlation structure and the 3rd order polynomial trans-
formation called the “intermediate correlation matrix”.
With this added step, one would simulate multivariate
normal data where the intermediate correlation matrix
holds in the population. Then one proceeds to apply the
3rd order polynomial transformation to each marginal
and, as they are transformed, the population correla-
tions are altered to result in the final correlation matrix
originally intended by the researcher. The intermediate
correlation matrix is calculated as follows:

ρE1E2 = ρZ1Z2 (b1b2 + 3b1d2 + 3b2d1 + 9d1d2)+

ρ2
Z1Z2

(2c1c2) + ρ3
Z1Z2

(6d1d2) (5)

where ρE1E2 is the intended correlation between the
non-normal variables, {ai, bi, ci, di} are the polynomial
coefficients needed to implement the Fleishman trans-
formation as described above and ρZ1Z2 is the interme-
diate correlation coefficient. Solving for this correla-
tion coefficient would give the user control over uni-
variate skewness, excess kurtosis and the correlation/-
covariance matrix.

The 3rd order polynomial transformation proposed by
Fleishman (1978) (and extended by Vale and Maurelli
(1983)) has several limitations. Tadikamalla (1980)
and Headrick (2010) have commented on the fact that
the combinations of skewness and excess kurtosis that
can be simulated by this approach are limited when
compared to other methods, such as the 5th order poly-
nomial transformation. The correlation matrix implied
by Equation (5) is defined bivariately so that the inter-
mediate correlation matrix has to be assembled one co-
efficient at a time, increasing the probability that it may
not be positive definite. The range of correlations that
can be simulated is also restricted and contingent on
the values of the intermediate correlation coefficients
(Headrick, 2002). For instance, if one were to correlate
a standard normal variable and a Fleishman-defined
variable with (γ1 = 1, γ2 = 15), the researcher can only
choose correlations in the approximate [-0.614, 0.614]
range. Correlations outside that range would make
Equation (4) yield either non-real solutions or solutions
outside [-1, 1] so that the correlation matrix becomes
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unviable. If one were to continue with the example
above, for the normal case it would imply that b1 = 1
and a1 = c1 = d1 = 0 such that E1 = 0+(1)Z+(0)Z2 +(0)Z3

and for E2 = −0.170095 + 1.534711Z + 0.170095Z2 −

0.306848Z3. Substituting these coefficients in Equation
(5) would yield:

ρE1E2 = ρZ1Z2 [(1)(1.534711) + 3(1)(−0.306848) + 0 + 0]+

ρ2
Z1Z2

(0) + ρ3
Z1Z2

(0)

ρE1E2 = ρZ1Z2 (0.614167)

by setting ρZ1Z2 = ±1 one can see that the maximum
possible correlation between the normal E1 and non-
normal E2 is 0.614167. For ρE1E2 to be greater than
that, ρZ1Z2 would have to be greater than 1, which would
make the intermediate correlation matrix non-positive
definite.

Although the previous limitations can be somewhat
attenuated depending on the choice of γ1, γ2 and ρE1E2 ,
there is one aspect of the Fleishman-Vale-Maurelli
method that cannot be avoided because it is implicit
within the theoretical framework in which it was de-
veloped. The system described in Equation (4) and the
intermediate correlation in Equation (5) are all poly-
nomials of high degree. As such, they have multiple
solutions and there is little indication as far as which
solution should be preferred over others. Astivia and
Zumbo (2018, 2019) have studied this issue before and
documented the fact that the idiosyncrasies of the data
generated by each solution can be as disparate as to al-
ter the conclusions from previously published simula-
tion studies. Although the 3rd order polynomial method
has been used extensively to investigate the properties
of statistical methods, more research is needed to un-
derstand the properties and uses of the method itself to
clarify to what extent the results from published sim-
ulation studies are contingent on the type of data that
can be generated through this particular method. For
instance, would the results from previously-published
simulation studies generalize if other data-generating
algorithms were implemented? Can the data that ap-
plied researchers collect be modelled through the 3rd

order polynomial method? Or does it follow other dis-
tribution types? The 3rd order polynomial method of-
fers control over the first four moments of a distribution
(mean, variance, skewness and kurtosis). Is this suffi-
cient to characterize the data? Or would methods that
allow control over even higher moments needed?

Copula distributions

Recently, copula distribution theory has begun to
make an incursion into psychometric modelling and
the behavioural sciences (e.g., Jones, Mair, Kuppens &

Weisz, 2019). Although the methods and techniques as-
sociated with it are known within the fields of financial
mathematics and actuarial science, the flexibility and
power of this framework is becoming popularized in
other areas to enhance the modelling of multivariate,
non-normal data.

In its simplest conceptualization, a copula is a type
of multivariate density where the marginal distributions
are uniform and the dependence structure is specified
through a copula function (Joe, 2014). Two important
mathematical results power the flexibility of this the-
oretical framework: the probability integral transform
and Sklar’s theorem. The probability integral transform
allows one to convert any random variable with a well-
defined CDF into a uniformly distributed random vari-
able (or vice-versa if there is an inverse CDF). Sklar’s
theorem proves that any multivariate cumulative distri-
bution function can be broken down into two indepen-
dent parts: its unidimensional marginals and the copula
function that relates them. Because of the generality
of Sklar’s theorem, one can be guaranteed that, given
some mild regularity conditions, (interested reader can
consult Durante, Fernández-Sánchez & Sempi, 2013)
for any multivariate distribution a copula function that
parameterizes its joint CDF exists.

Introduction to Gaussian copulas

Gaussian copulas comprise perhaps the most com-
monly used copula family for the analysis and simu-
lation of data. They inherit many of the properties of
the multivariate normal distribution that make them
both analytically tractable and easy to interpret for re-
searchers. In particular, Gaussian copulas rely on the
covariance/correlation matrix to model the dependen-
cies among its one-dimensional marginal distributions,
so that the same covariance modelling that social scien-
tists are familiar with generally translates into this type
of copula modelling.

The Gaussian copula can be defined as follows:

C(u1, u2, . . . , ud; Rd×d) = ΦRd×d (Φ−1(u1),Φ−1(u2), ...,Φ−1(ud))
(6)

where ui, i = 1, 2, . . . , d are realizations of standard,
uniformly distributed random variables, Φ−1 is the in-
verse CDF of the univariate normal distribution, and
ΦRd×d is the CDF for the d-variate Gaussian distribution
with correlation matrix Rd×d. Similar to the NORTA ap-
proach, the process of building a Gaussian copula can
be schematized in the following series of steps:

(1) Simulate from a multivariate normal distribution
with desired correlation matrix.

(2) Apply the normal CDF to the newly-generated
multivariate normal vector so that the columns
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are now standard uniform bounded between 0
and 1.

(3) If the inverse CDF (the quantile function) of the
desired non-normal distribution exist, apply said
inverse CDF to each column of data. The resulting
distribution would be a Gaussian copula with its
one-dimensional marginal distributions selected
by the researcher.

Let us assume a researcher wishes to simulate a bi-
variate distribution (d = 2) where one marginal is
y1 ∼ G(1, 1) and the other is y2 ∼ U(0, 1) with a pop-
ulation correlation ρ = 0.5. In the R programming lan-
guage one could implement the following code so that
the resulting Y is a simulated sample (n = 100, 000) from
the Gaussian copula depicted in Figure 2 below.

# Block 3

set.seed(124)
library(mvtnorm)

## Simulates multivariate normal data
rho <- .5
Z <- rmvnorm(n = 100000, mean = c(0,0),

sigma =matrix(c(1, rho, rho, 1), 2, 2))

## Applies th normal CDF
U <- pnorm(Z)

## Quantile functions/inverse CDF for gamma
(y1) and uniform (y2) marginals

y1 <- qgamma(U[, 1], shape = 1, rate = 1)
y2 <- qunif(U[, 2], min = 0, max = 1)

Y <- cbind(y1, y2)

##Correlation matrix of bivariate normal
> cor(X)

[,1] [,2]
[1,] 1.0000 0.5002
[2,] 0.5002 1.0000

##Correlation matrix of Gaussian copula
> cor(Y)

y1 y2
y1 1.0000 0.4405
y2 0.4405 1.0000

Correlation shrinkage

Although the Gaussian copula induces a relation-
ship between the Gamma and Uniform marginals, it is
important to highlight that the original correlation of

Figure 2. Four-dimensional distribution implied by the
simulation design of Silver, Hittner & May (2004) with
assumed U(0, 1) marginal distributions

ρ = 0.5 has now changed. When calculating the Pear-
son correlation of the original sample from the bivari-
ate normal distribution against the one from the Gaus-
sian copula, the difference becomes apparent. There is
a shrinkage of about 0.05-0.06 units in the correlation
metric, with the shrinkage contingent on the the size
of the initial correlation. Figure 32 further clarifies this
issue by relating the initial correlation of the bivariate
normal distribution to the final correlation of the Gaus-
sian copula. In other words, there is a downward bias
of approximately 0.15 units in the correlation metric for
the theoretically maximum correlation of this copula.
There are two important reasons for why this happens,
even though it is not always acknowledged within the
simulation literature in the social sciences.

First, both the probability integral transform
(U<-pnorm(Z)) and the quantile function (or inverse
CDF) needed to obtain the non-normal marginal distri-
butions (qgamma and qunif) are not linear transforma-
tions. The Pearson correlation is only invariant under
linear transformations so it stands to reason that if non-
linear transformations are applied, there is no expec-
tation that the correlation will remain the same. Sec-
ond, there exists a result from copula distribution the-
ory that places further restrictions on the range of the
Pearson correlation referred to as the Fréchet–Hoeffding
bounds. Hoeffding (1940) showed that the covariance

2Notice that Figure 3 is not directly related to the code in
Block 2
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Figure 3. Relationship between the original correlation
for the bivariate normal distribution and the final corre-
lation for the Gaussian copula with G(1, 1) and U(0, 1)
univariate marginals. The horizontal axis includes val-
ues for the correlation for the bivariate normal distri-
bution and the vertical axis presents the transformed
correlation after the copula is constructed.The identity
function (straight line) is included as reference.

between two random variables (S ,T ) can be expressed
as:

Cov(S ,T ) =

∫ ∞
−∞

∫ ∞
−∞

H(s, t) − F(s)G(t)dsdt (7)

where H(s, t) is their joint cumulative distribution func-
tion and F(s),G(t) are the marginal distribution func-
tions of the random variables S and T respectively. De-
fine H(s, t)min = max[F(s) + G(t) − 1, 0] and H(s, t)max =

min[F(s),G(t)]. Fréchet (1951) and Hoeffding (1940)
independently proved that:

H(s, t)min ≤ H(s, t) ≤ H(s, t)max (8)

and, by using these bounds in Equation (7) above, it
can be shown that ρmin ≤ ρ ≤ ρmax, where ρ is the
linear correlation between the marginal distributions.
The implication of this inequality is that, given the dis-
tributional shape defined by F(s) and G(t), the corre-
lation coefficient may not fully span the [-1, 1] theo-
retical range. For instance, Astivia and Zumbo (2017)
have shown that for the case of standard, lognormal
variables the theoretical correlation range is restricted
to [−1/e, 1] (approximately [−0.368, 1]), where e is the
base of the natural logarithm. For the Gaussian cop-
ula above, the theoretical upper bound is approximately

0.85 on the positive side of the correlation range. When
the inverse CDFs are implemented to generate the non-
normal marginals, the Fréchet–Hoeffding bounds are
induced, restricting the types of correlational structures
that multivariate, non-normal distributions can gener-
ate when compared to multivariate normal ones. More-
over, the Fréchet–Hoeffding bounds are the greatest
lower and least upper bounds. That is, the Fréchet–
Hoeffding bounds cannot be improved upon in general
(Joe, 2014; Nelsen, 2010). Although there is nothing
that can expand the Fréchet–Hoeffding bounds to the
full [-1, 1] range if the marginals are fixed, the interme-
diate correlation matrix approach described in Section
2.2 can be used to find the proper value for the corre-
lation coefficient needed to initialize the Gaussian cop-
ula, if a specific population value is desired. As long as
the value on this intermediate correlation is within the
bounds specified by the non-normal marginals, the final
correlation after the marginal transformation is com-
pleted will match the population parameter intended by
the researcher.

Relationship of the NORTA method, the Vale–
Maurelli algorithm and Gaussian copulas. Gaussian
copulas have other important connections to the sim-
ulation work done within the social sciences, notably,
the fact that the NORTA method can be parameterized
as a Gaussian copula (Qing, 2017). By extension, the
Vale–Maurelli algorithm has also been proved to be a
special case of Gaussian copulas so that the majority of
simulation work conducted in the social sciences has re-
ally only considered the Gaussian copula as its test case
(Foldnes & Grønneberg, 2015; Grønneberg & Foldnes,
2019). The same issues and limitations presented in
Sections 2.2 and 2.3 are, in fact, exchangeable given
that the data-generating methods considered in both
cases share the same essential properties.

Distributions closed under linear transformation
and their connection to simulating multivariate,
non-normality

As presented in Section 2.1, one of the many attrac-
tive properties of the normal distribution is that the
sum of independent, normal random variables is itself
normally distributed. This property is known as being
“closed under convolutions” (i.e., when one combines
in a certain way or “convolves” random variables, the
resulting random variable belongs to the same family as
its original components. Through the use of this prop-
erty, one can define the multivariate normal distribu-
tion by finding linear combinations (i.e., convolutions)
of the one-dimensional normal marginals that will re-
sult in Xn×d ∼ N(µµµd×1,ΣΣΣd×d). Although not very com-
mon, this property is shared by some other probabil-
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ity distributions, making it the preferred starting point
to defining multivariate generalizations of them. Con-
tinuous distributions such as the Cauchy and Gamma
share this property and their multivariate extensions de-
pend on it. The Gamma distribution is a particularly
relevant case given its connection to other well-known
probability distributions such as the exponential and the
chi-square. If X1 ∼ G(α1, β) and X2 ∼ G(α2, β) then
X1 + X2 ∼ G(α1 + α2, β). Notice how the property of
closeness is only true the rate parameter β is the same.
The sum of two generic gamma distributions is not nec-
essarily gamma-distributed (see Moschopoulos, 1985).
For the interested reader, an introduction to the theory
of gamma distributions can be found in Chapter 15 of
Krishnamoorthy (2016).

As a motivating example to showcase a multivari-
ate distribution that is not Gaussian, yet closed un-
der convolutions, consider P and Q to be indepen-
dently distributed Poisson random variables with pa-
rameters (λP, λQ) respectively. If W = P + Q then
W ∼ Poisson(λW = λP + λQ). By using this property,
one can generalize the univariate Poisson distribution
to multivariate spaces. Consider P,Q and V to be in-
dependent, Poisson distributed random variables with
respective parameters λP, λQ and λV . Define two new
random variables P∗ and Q∗ as follows:

P∗ = P + V

Q∗ = Q + V (9)

Because P∗ and Q∗ share V in common, (P∗,Q∗)′ ex-
hibits Poisson-distributed, univariate marginal distribu-
tions with a covariance equal to λV . Notice that this
construction only allows for the case where the covari-
ance between P∗ and Q∗ is positive because, by defini-
tion, the parameter λ of a Poisson distribution must be
positive. Figure 4 shows the bivariate histogram of a
simulated example with P ∼ Poisson(1), Q ∼ Poisson(2)
and V ∼ Poisson(3). In R code:

#Block 4

set.seed(124)
## Simulates independent Poisson random

variables
P <- rpois(100000, lambda = 1)
Q <- rpois(100000, lambda = 1)
V <- rpois(100000, lambda = 3)

## Creates joint distribution with marginal
Poisson random variables

Pstar <- P + V
Qstar <- Q + V
cov(Pstar, Qstar)
[1] 2.969006

Figure 4. Bivariate Poisson distribution with
Cov(P∗,Q∗) = λV = 3.

With the exception of the multivariate normal distri-
bution, relying on the property of being closed under
convolutions is not a widely used method to simulate
non-normal data for the social sciences. Very few distri-
butions have this property and, even among those that
do, there may be further restrictions in place that limit
either the type of distributions that can be generated or
the dependency structures that can be modelled (Flo-
rescu, 2014). As shown in the example above, although
one could use this method recursively to generate a mul-
tivariate Poisson distribution with a pre-specified covari-
ance matrix, one is restricted to only positive covari-
ances, given the limitation that all λ parameters must
be positive. In spite of the lack of attention given to this
simulation approach, the present section is intended to
remind the reader that the properties of univariate dis-
tributions rarely generalize to multivariate spaces un-
altered. If approaches similar to this are used without
showing closedness under convolutions first, there will
be a discrepancy between the simulation design and the
actual implementation of the simulation method so that
one can no longer be sure which exact distributions are
being generated.

Alternative Approaches

There exist a variety of alternative approaches that
were not considered in this overview but which are
quickly gaining use and prominence within the simula-
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tion literature in the social sciences. Although not all
of these methods share a common theoretical frame-
work and the details of many of them are beyond the
scope of the present manuscript, there is relevance in
mentioning them for the interested reader. Particularly
because they can be used to explore simulation condi-
tions beyond the skewness and kurtosis of the univariate
distributions, which is the general approach that per-
meate the simulation literature in the social sciences.
Grønneberg and Foldnes (2017) and Mair, Satorra and
Bentler (2012) have extended the copula distribution
approaches beyond the Gaussian copula to help cre-
ate more flexible, non-normal structures that induce
different types of non-normalities, such as tail depen-
dence or multivariate skew. Qu, Liu and Zhang (2019)
have recently extended the Fleishman approach to mul-
tivariate higher moments and, to this day, it is one of
the few methods available that allow researchers to
set population values of Mardia’s multivariate skew-
ness and kurtosis, which allows researchers a certain
degree of control over both univariate and multivari-
ate non-normality. Ruscio and Kaczetow (2008) de-
veloped a sampling-and-iterate algorithm that allows
one to simulate from any arbitrary number of distribu-
tions while keeping control of the correlational struc-
ture. Although not much is known about the theo-
retical properties of this method, it offers the advan-
tage of allowing users to induce any level of correla-
tion to an empirical datasets that they may have col-
lected. Therefore, the user is given a choice to either
simulate from theoretical distributions or from a par-
ticular dataset of interest. Auerswald and Moshagen
(2015) as well as Mattson (1997) have considered the
problem by restating it under a latent variable frame-
work and inducing the non-normality through the la-
tent variables. Methods like this would allow the users
to more accurately control the distributional assump-
tions of latent variables, which could be of interest to
researchers in Structural Equation Modelling or Item
Response Theory. The work of Kowalchuk and Headrick
(2010), Pant and Headrick (2013) and Koran, Headrick
and Kuo (2015) has extended the properties of univari-
ate, non-normal distributions such as the g-and-h fam-
ily of distributions or the Burr family of distributions to
multivariate spaces, in an attempt to allow researchers
the flexibility to select from a wider collection of non-
normal structures. These methods share some similari-
ties with the NORTA approaches in terms of generating
multivariate non-normal data by manipulating the uni-
dimensional marginals of the joint distribution. Never-
theless, most of this work uses L−moments as the coeffi-
cients that control the non-normality of the data, not the
conventional 3rd and 4th order moments (i.e., skewness

and kurtosis) familiar to most researchers. The creators
of these methods offer readily-available software imple-
mentations of them, although not all are available in the
same programming languages.

In spite of these modern advances, the NORTA ap-
proaches in general (and the 3rd order polynomial trans-
formation in particular) have dominated the robustness
literature in simulation studies within psychology and
the social sciences. As such, I present three recommen-
dations that I believe would aid in the design, planning
and reporting of simulation studies:

Recommendations for the use of the 3rd order
polynomial method

If the Fleishman (1978) method (for the univariate
case) or the Vale and Maurelli (1983) multivariate ex-
tension are used in simulations, it would be beneficial
to report both the transformation coefficients, {a, b, c, d}
in Equation (4), and the intermediate correlation ma-
trix assembled from Equation (5). For instance, Astivia
and Zumbo (2015) conjectured and Foldnes and Grøn-
neberg (2017) proved that the asymptotic covariance
matrix used in the robust corrections to non-normality
within SEM depends on these polynomial coefficients
and the intermediate correlation matrix. Different sets
of solutions create different asymptotic covariance ma-
trices so that small-sample recommendations that use
this simulation technique may be highly contingent on
the type of data that could be generated through this ap-
proach. By reporting which coefficients were used, one
can at least provide a clearer, more reproducible simu-
lation for other researchers to interpret. For a concrete
example, please see Sheng and Sheng (2012)’s “Study
Design” section where the polynomial coefficients for
each type of non-normality are listed.

General Recommendations

Accounting for different types of multivariate non-
normality

Since there is an infinite way for multivariate distri-
butions to deviate from the normality assumption (yet
there is only one way for data to be multivariate nor-
mal), attempting different simulation methods may of-
fer a more comprehensive view of what type of ro-
bustness properties the methods under investigation are
sensitive to. Consider, for instance, Falk’s (2018) sim-
ulation study investigating the performance of robust
corrections to constructing confidence intervals within
SEM. Three data-generating mechanisms were used for
non-normal data: the Vale–Maurelli approach, contam-
inated normal and a Gumbel copula distribution. The
contaminated normal and the Gumbel copula case had
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univariate distributions which were very close to the
normal, yet the coverage for the confidence intervals
was very poor, bringing into question recommendations
(such as those in Finney & DeStefano, 2006) who argue
that robust corrections for SEM models should be used
based on the distributions of the indicators. Although
the previous recommendations make sense in light of
previous simulation work (which relied almost entirely
on the 3rd order polynomial approach) the results found
in Falk (2018) help highlight that non-normalities in
higher dimensions can still impact data analysis, even
if researchers are unaware of these properties.

Justify and tailor your type of non-normality

It is crucial for methodologists and quantitative social
scientists to be able to tailor their simulation results to
the kind of scientific audience and research field they
wish to inform. One of the main objections to any simu-
lation study is its generalizability and how the findings
presented and recommendations offered would fare if
the simulation conditions were altered. As it stands
today, whenever a simulation study exploring the is-
sue of non-normality is conducted, the simulation de-
sign is usually informed by previous simulations and,
for lack of a better term, “tradition”. Take, for instance,
the population values of skewness and excess kurtosis
γ1 = 2, γ2 = 7 to denote “moderate” non-normality and
γ1 = 3, γ2 = 21 for “extreme” non-normality. These val-
ues were originally used in Curran, West and Finch’s
(1996) simulation study on the influence that non-
normality exerts on the chi-squared test of fit for SEM.
Since then, these (γ1, γ2) (absolute) values, have ap-
peared in Berkovits, Hancock and Nevitt (2000); Lodder
et al., (2019); Nevitt and Hancock, (2000); Shin, No
and Hong, (2019); Tofighi and Kelley, (2019) Vallejo,
Gras and Garcia, (2007) and more. The fact of the mat-
ter is, however, that we do not know if these values (or
the Gaussian copula implied by the Vale–Maurelli ap-
proach) are representative of the type of data encoun-
tered in psychology and other social sciences. And with
the exception of Cain, Zhang & Yuan (2017), there has
not been much interest within the published literature
in documenting both the type of univariate and mul-
tivariate distributions that are commonly found in our
areas of research. At this point in time, I would argue
that we, as methodologists, do not have a good sense
of whether the type of data we simulate in our studies
is reflective of the type of data that exists in the real
world. An important solution to address this problem is
the movement towards open science, reproduciblity and
open data. Having access to raw data grants methodolo-
gists and quantitative researchers the ability to actually
mimic the idiosyncrasies that applied researchers face

every day and offer recommendations that address them
directly. Becoming familiar with alternative modes of
data-simulation would also help improve the general-
izability of simulation results. As commented on Sec-
tion 2.2.1, the 3rd order polynomial approach to non-
normal simulation enjoys a considerable predilection
amongst quantitative researchers, to the detriment of
other approaches. Considering even just one other al-
gorithm when conducting simulations would help al-
leviate this limitation and encompass a wider class of
non-normalities than what one can find the the 3rd or-
der polynomial method. Finally, quantitative method-
ologists may benefit from using population parameters
found in the literature. Relying on previously-published
simulations to choose effect sizes is the current, “stan-
dard” which may limit recommendations that do not
necessarily match different areas of research. If one sim-
ulates something it should at least attempt to emulate
real life, not other simulations.

The meta-scientific investigation of simulation stud-
ies

The goal of a considerable amount of simulation re-
search in the social sciences is to provide guidelines and
best practice recommendations for data analysis under
violation of distributional assumptions. Because of this,
it is of utmost importance that applied researchers also
become familiar (to a certain degree) with how quanti-
tative methodologists conduct their research to be able
to understand whether or not their recommendations
are relevant to the analyses they may conduct. Ideally,
if an applied researcher is unfamiliar with the method-
ological literature yet looks for a better understanding
of how simulation results may aid in their analyses, they
should consider consulting with a quantitative expert.
Much like in the case of applied research, every simula-
tion study can have their own idiosyncrasies and design
peculiarities that require a more nuanced understand-
ing of what the original authors presented, and spot-
ting potential gaps on a simulation design usually re-
quires a certain degree of mathematical sophistication
that, although desirable, is not usually a required skill
amongst applied researchers. Perhaps the easiest way
in which these issues can be conceptualized for applied
researchers is by considering simulation studies as the
analog of empirical, experimental work as opposed to
formal mathematical argumentation.

Although simulation studies would ideally go hand-
in-hand with the statistical and mathematical theory
that lends legitimacy to their results, enough examples
and case studies have been provided in the previous
sections of this article to highlight the fact that this is
not often the case. Just as “methods effects” can intro-
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duce unnecessary noise and uncertainty when conduct-
ing experiments, operating from a “black box” perspec-
tive when conducting simulation studies can also create
a disconnection between the theory and the design of
a simulation study. The fact of the matter is that al-
most no research exists that attempts to analyze and
validate the current practices of computer simulation
studies. Whereas the movement towards open, repro-
ducible science has yielded important insights into ques-
tionable research practices like p-hacking or researcher
degrees of freedom, quantitative fields have remained
virtually unexplored, due perhaps to their technical na-
ture and the fact that a more solid theoretical founda-
tion in statistics is needed in order to recognize the is-
sues presented. A meta-scientific study of the theory
and practice of simulation studies is desperately needed
in order to begin to understand the types of questions
and answers that are presented within the quantitative
fields of the social sciences. It is my sincere hope that
by offering this overview, researchers can begin to famil-
iarize themselves with some of the methodological and
epistemological issues that computer simulations pose
and open a dialogue between methodological and ap-
plied researchers in an area that is usually restricted to
the most technically-minded amongst us.
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Appendix

###### FIGURE 1 ###################
library(psych)

pairs.panels(D, hist.col = "grey", rug = F, col.smooth = "white")
#####################################################

###### FIGURE 2 ###################
library(rgl)
library(MASS)

bivn <- cbind(y2, y1)

X <- kde2d(bivn[, 1], bivn[, 2], n = 50)

persp(X, phi = 10, theta = 120, shade = 1, border = NA, xlab = c("y2, Uniform"), ylab =
c("y1, Gamma"), zlab = c(""))

#####################################################

###### FIGURE 3 ###################
library(mvtnorm)
library(ggplot2)

r <- seq(from = 0, to = .99, by = .01)

rr <- double(100)

for (i in 1:100) {

X <- rmvnorm(n = 100000, mean = c(0,0), sigma = matrix(c(1, r[i], r[i], 1), 2, 2))
U <- pnorm(X)
y1 <- qgamma(U[, 1], shape = 1, rate = 1)
y2 <- qunif(U[, 2], min = 0, max = 1)
rr[i] <- cor(y1, y2)

}

dat<- data.frame(cbind(r, rr))

fun.1 <- function(x)x

p1 <- ggplot(dat, aes(r, rr)) + geom_point(colour = "black") + stat_function(fun = fun.1)

p1 + theme_bw() + scale_x_continuous(breaks = seq(0, 1, by = .1)) +
scale_y_continuous(breaks = seq(0, 1, by = .1)) + xlab("Bivariate normal correlation") +
ylab("Gaussian copula correlation") + ggtitle("Gaussian copula correlation against
bivariate normal correlation") + theme(plot.title = element_text(hjust = 0.5))

#####################################################

###### FIGURE 4 ###################
set.seed(124)
library(plot3D)

X <- rpois(100000, lambda=1)
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Y <- rpois(100000, lambda=1)
Z <- rpois(100000, lambda=3)

Xstar <- X + Z
Ystar <- Y + Z

z <- table(Xstar, Ystar)

## Plot as a 3D histogram:
hist3D(z=z, phi=10, xlab=c("P"), ylab=("Q"), zlab=c(""), theta=-120,col =

ramp.col(c("white", "black")), border = "black", colkey=FALSE)
tiff("test.tiff", units="in", width=5, height=5, res=300)


	Introduction
	Non-normal data simulation in the social sciences
	From multivariate normal to multivariate non-normal distributions: What works and what does not work
	The NORTA family of methods
	The 3rd order polynomial transformation
	Copula distributions
	Introduction to Gaussian copulas
	Correlation shrinkage
	Relationship of the NORTA method, the Vale–Maurelli algorithm and Gaussian copulas

	Distributions closed under linear transformation and their connection to simulating multivariate, non-normality

	Alternative Approaches
	Recommendations for the use of the 3rd order polynomial method
	General Recommendations
	Accounting for different types of multivariate non-normality
	Justify and tailor your type of non-normality
	The meta-scientific investigation of simulation studies
	Author Contact
	Conflict of Interest and Funding
	Author Contributions
	Acknowledgements
	Open Science Practices

	References
	Appendix

