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Abstract
It is widely appreciated that many studies in psychological science suffer from low statistical power. One of the
consequences of analyzing underpowered studies with thresholds of statistical significance is a high risk of finding
exaggerated effect size estimates, in the right or the wrong direction. These inferential risks can be directly quan-
tified in terms of Type M (magnitude) error and Type S (sign) error, which directly communicate the consequences
of design choices on effect size estimation. Given a study design, Type M error is the factor by which a statistically
significant effect is on average exaggerated. Type S error is the probability to find a statistically significant result
in the opposite direction to the plausible one. Ideally, these errors should be considered during a prospective design
analysis in the design phase of a study to determine the appropriate sample size. However, they can also be con-
sidered when evaluating studies’ results in a retrospective design analysis. In the present contribution, we aim to
facilitate the considerations of these errors in the research practice in psychology. For this reason, we illustrate how
to consider Type M and Type S errors in a design analysis using one of the most common effect size measures in
psychology: Pearson correlation coefficient. We provide various examples and make the R functions freely available
to enable researchers to perform design analysis for their research projects.
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Introduction

Psychological science is increasingly committed to
scrutinizing its published findings by promoting large-
scale replication efforts, where the protocol of a previ-
ous study is repeated as closely as possible with a new
sample (Camerer et al., 2016; Camerer et al., 2018;
Ebersole et al., 2016; Klein et al., 2014; Klein et al.,
2018; Open Science Collaboration, 2015). Interestingly,
many replication studies found smaller effects than orig-
inals (Camerer et al., 2018; Open Science Collabora-
tion, 2015) and among many possible explanations, one
relates to a feature of study design: statistical power.
In particular, it is plausible for original studies to have
lower statistical power than their replications. In the
case of underpowered studies, we are usually aware of
the lower probability of detecting an effect if this ex-
ists, but the less obvious consequences on effect size
estimation are often neglected. When underpowered
studies are analyzed using thresholds, such as statisti-
cal significance levels, effects passing such thresholds
have to exaggerate the true effect size (Button et al.,
2013; Gelman et al., 2017; Ioannidis, 2008; Ioannidis
et al., 2013; Lane & Dunlap, 1978). Indeed, as will
be extensively shown below, in underpowered studies
only large effects correspond to values that can reject
the null hypothesis and be statistically significant. As
a consequence, if the original study was underpowered
and found an exaggerated estimate of the effect, the
replication effect will likely be smaller.

The concept of statistical power finds its natural de-
velopment in the Neyman-Pearson framework of statis-
tical inference and this is the framework that we adopt
in this contribution. Contrary to the Null Hypothesis
Significance Testing (NHST), the Neyman-Pearson ap-
proach requires to define both the Null Hypothesis (i.e.,
usually, but not necessarily, the absence of an effect)
and the Alternative Hypothesis (i.e., the magnitude of
the expected effect). Further discussion on the Ney-
man and Pearson approach and a comparison with the
NHST is available in Altoè et al. (2020) and Gigerenzer
et al. (2004). When conducting hypothesis testing, we
usually consider two inferential risks: the Type I error
(i.e., the probability α of rejecting the Null Hypothe-
sis if this is true) and the Type II error (i.e., the prob-
ability β of not rejecting the Null Hypothesis if this is
false). Then, statistical power is defined as the proba-
bility 1-β of finding a statistically significant result if the
Alternative Hypothesis is true. All this leads to a nar-
row focus on statistical significance in hypothesis test-
ing, overlooking another important aspect of statistical
inference, namely, the effect size estimation.

When effect size estimation is conditioned on the sta-
tistical significance (i.e., effect estimates are evaluated

only if their p-values are lower than α), effect size ex-
aggeration is a corollary consequence of low statistical
power that might not be evident at first. This point can
be highlighted considering the Type M (magnitude) and
Type S (sign) errors characterizing a study design (Gel-
man & Carlin, 2014). Given a study design (i.e., sample
size, statistical test directionality, α level and plausible
effect size formalization), Type M error, also known as
Exaggeration Ratio, indicates the factor by which a sta-
tistically significant effect would be, on average, exag-
gerated. Type S error indicates the probability to find
a statistically significant effect in the opposite direction
to the one considered plausible. The analysis that re-
searchers perform to evaluate the Type M and Type S
errors in their research practice is called design analy-
sis, given the special focus posed into considering the
design of a study (Altoè et al., 2020; Gelman & Carlin,
2014).

Both errors are defined starting from a reasoned
guess on the plausible magnitude and direction of the
effect under study, which is called plausible effect size
(Gelman & Carlin, 2014). A plausible effect size is an
assumption the researchers make about which is the
expected effect in the population. This should not be
based on some noisy results from a pilot study but,
rather, it could derive from an extensive evaluation of
the literature (e.g., theoretical or literature reviews and
meta-analyses). When considering the published liter-
ature to define the plausible effect size, however, it is
important to take into account the presence of publica-
tion bias (Franco et al., 2014) and consider techniques
for adjusting for the possible inflation of effect size esti-
mates (Anderson et al., 2017). For example if, after tak-
ing into account possible inflations, all the main results
in a given topic, considering a specific experimental de-
sign indicate that the correlation ranges between r = .15
and r = .25, we could reasonably choose as plausible ef-
fect size a value within this range. Or even better, we
could consider multiple values to evaluate the results in
different scenarios. Note that the definition of the plau-
sible effect size is inevitably highly context-dependent
so any attempt to provide reference values would not be
useful, instead, it would prevent researchers from rea-
soning about the phenomenon of interest. Even in ex-
treme cases where no previous information is available,
which would question the exploratory/confirmatory na-
ture of the study, researchers could still evaluate which
effect would be considered relevant (e.g., from a clinical
or economic perspective) and define the plausible effect
size according to it.

Why do these errors matter? The concepts of Type M
and Type S errors allow enhancing researchers’ aware-
ness of a complex process such as statistical inference.
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Strictly speaking, Design Analysis used in the design
phase of a study provides similar information as the
classical power analysis, indeed, to a given level of
power there is a corresponding Type M and Type S
errors. However, it is a valuable conceptual frame-
work that can help researchers to understand the im-
portant role of statistical power both when designing
a new study or when evaluating previous results from
the literature. In particular, it highlights the unwanted
(and often overlooked) consequences on effect estima-
tion when filtering for statistical significance in under-
powered studies. In these scenarios, there is not only
a lower probability of rejecting the null when it is ac-
tually false but, even more importantly, any significant
result would most likely lead to a misleading overes-
timation of the actual effect. The exaggeration of ef-
fect sizes, in the right or the wrong direction, has im-
portant implications on a theoretical and applied level.
On a theoretical level, studies’ designs with high Type
M and Type S errors can foster distorted expectations
on the effect under study, triggering a vicious cycle for
the planning of future studies. This point is relevant
also for the design of replication studies, which could
turn out to be underpowered if they do not take into
account possible inflations of the original effect (Button
et al., 2013). When studies are used to inform policy-
making and real-world interventions, implications can
go beyond the academic research community and can
impact society at large. In these settings, we could assist
to a “hype and disappointment cycle” (Gelman, 2019b),
where true effects turn out to be much less impressive
than expected. This can produce undesirable conse-
quences on people’s lives, a consideration that invites
researchers to assume responsibility in effectively com-
municating the risks related to effects quantification.

To our knowledge, Type M (magnitude) and Type S
(sign) errors are not widely known in the psychologi-
cal research community but their consideration during
the research process has the potential to improve cur-
rent research practices, for example, by increasing the
awareness that design choices have on possible studies’
results. In a previous work, we illustrated Type M and
Type S errors using Cohen’s’d as a measure of effect size
(Altoè et al., 2020). The purpose of the present con-
tribution is to further increase the familiarity with Type
M and Type S errors, considering another common ef-
fect size measures in psychology: Pearson correlation
coefficient, ρ. We aim to provide an accessible intro-
duction to the Design Analysis framework and enhance
the understanding of Type M and Type S errors using
several educational examples. The rest of this article
is organized as follows: introduction to Type M and
Type S errors; description of what is a design analysis

and how to conduct one; analysis of Type S and Type
M errors when varying alpha levels and hypothesis di-
rectionality. Moreover, the two appendices present fur-
ther implications of design analysis for Pearson correla-
tion (Appendix A) and an extensive illustration of the
R functions for design analysis for Pearson correlation
(Appendix B).

Type M and Type S errors

Pearson correlation coefficient is a standardized ef-
fect size measure indicating the strength and the direc-
tion of the relationship between two continuous vari-
ables (Cohen, 1988; Ellis, 2010). Even though the cor-
relation coefficient is widely known, we briefly go over
its main features using an example. Imagine that we
were interested to measure the relationship between
anxiety and depression in a population and we plan a
study with n participants, where, for each participant,
we measure the level of anxiety (i.e., variable X) and
the level of depression (i.e., variable Y). At the end of
the study, we will have n pairs of values X and Y. The
correlation coefficient helps us answer the questions:
how strong is the linear relationship between anxiety
and depression in this population? Is the relationship
positive or negative? Correlation ranges from -1 to +1,
indicating respectively two extreme scenarios of perfect
negative relationship and perfect positive relationship1

Since the correlation coefficient is a dimensionless num-
ber, it is a signal to noise ratio where the signal is given
by the covariance between the two variables (cov(x, y))
and the noise is expressed by the product between the
standard deviations of the two variables (S xS y; see For-
mula1). In this contribution, following the conventional
standards, we will use the symbol ρ to indicate the cor-
relation in the population and the symbol r to indicate
the value measured in a sample.

r =
cov(x, y)

S x S y
. (1)

Magnitude and sign are two important features char-
acterizing Pearson correlation coefficient and effect size
measures in general. And, when estimating effect sizes,
errors could be committed exactly regarding these two
aspects. Gelman and Carlin (2014) introduced two in-
dexes to quantify these risks:

• Type M error, where M stands for magnitude,
is also called Exaggeration Ratio - the factor by
which a statistically significant effect is on average
exaggerated.

1Correlation indicates a relationship between variables but
does not imply causation. We do not discuss this relevant as-
pect here but we refer the interested reader to (Rohrer, 2018).
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• Type S error, sign - the probability to find a statis-
tically significant result in the opposite direction
to the plausible one.

Note that, differently from the other inferential errors,
Type M error is not a probability but rather a ratio indi-
cating the average percentage of inflation.

How are these errors computed? In the next para-
graphs, we approach this question preferring an intu-
itive perspective. For a formal definition of these errors,
we refer the reader to Altoè et al. (2020), Gelman and
Carlin (2014), and Lu et al. (2018). Take as an example
the previous fictitious study on the relationship between
anxiety and depression and imagine we decide to sam-
ple 50 individuals (sample size, n = 50) and to set the
α level to 5% and to perform a two-tailed test. Based
on theoretical considerations, we expect the plausibly
true correlation in the population to be quite strong and
positive which we formalize as ρ = .50. To evaluate
the Type M and Type S errors in this research design,
imagine repeating the same study many times with new
samples drawn from the same population and, for each
study, register the observed correlation (r) and the cor-
responding p-value.

The first step to compute Type M error is to select
only the observed correlation coefficients that are sta-
tistically significant in absolute value (for the moment,
we do not care about the sign) and to calculate their
mean. Type M error is given by the ratio between this
mean (i.e., mean of statistically significant correlation
coefficients in absolute value) and the plausible effect
hypothesized at the beginning, which in this example is
ρ = .50. Thus, given a study design, Type M error tells
us what is the average overestimation of an effect that
is statistically significant.

Type S error is computed as the proportion of statisti-
cally significant results that have the opposite sign com-
pared to the plausible effect size. In the present example
we hypothesized a positive relationship, specifically ρ=
.50. Then, Type S error is the ratio between the number
of times we observed a negative statistically significant
result and the total number of statistically significant
results. In other words, Type S error indicates the prob-
ability to obtain a statistically significant result in the
opposite direction to the one hypothesized.

The central and possibly most difficult point in this
process is reasoning on what could be the plausible
magnitude and direction of the effect of interest. This
critical process, which is central also in traditional
power analysis, is an opportunity for researchers to ag-
gregate, formalize and incorporate prior information on
the phenomenon under investigation (Gelman & Car-
lin, 2014). What is plausible can be determined on
theoretical grounds, using expert knowledge elicitation

techniques (see for example O’Hagan, 2019) and con-
sulting literature reviews and meta-analysis, always tak-
ing into account the presence of effect sizes inflation in
the published literature (Anderson, 2019). Given these
premises, it is important to stress that a plausible effect
size should not be determined by considering the results
of a single study, given the high-level of uncertainty as-
sociated with this effect size estimate. The idea is that
the plausible effect size should approximate the true ef-
fect, which - although never known - can be thought
of as “that which would be observed in a hypotheti-
cal infinitely large sample” (Gelman & Carlin, 2014, p.
642). For a more exhaustive description of plausible
effect size, we refer the interested reader to Altoè et al.
(2020) and Gelman and Carlin (2014).

Before we proceed, it is worth noting that there are
other recent valuable tools that start from different
premises for designing and evaluating studies. Among
others, we refer the interested reader to methods which
start from the definition of the smallest effect size of
interest (SESOI; for a tutorial, see Lakens, Scheel, et al.,
2018).

Design Analysis

Researchers can consider Type M and Type S errors
in their practice by performing a design analysis (Altoè
et al., 2020; Gelman & Carlin, 2014). Ideally, a design
analysis should be performed when designing a study.
In this phase, it is specifically called prospective design
analysis and it can be used as a sample size planning
strategy where statistical power is considered together
with Type M and Type S errors. However, design analy-
sis can also be beneficial to evaluate the inferential risks
in studies that have already been conducted and where
the study design is known. In these cases, Type M and
Type S errors can support results interpretation by com-
municating the inferential risks in that research design.
When design analysis happens at this later stage, it takes
the name of retrospective design analysis. Note that ret-
rospective design analysis should not be confused with
post-hoc power analysis. A retrospective design analy-
sis defines the plausible effect size according to previous
results in the literature or other information external to
the study, whereas the post-hoc power analysis defines
the plausible effect size based on the observed results
in the study and it is a widely-deprecated practice (Gel-
man, 2019a; Goodman & Berlin, 1994).

In the following sections, we illustrate how to per-
form prospective and retrospective design analysis us-
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ing some examples. We developed two R functions2 to
perform design analysis for Pearson correlation, which
are available at the page https://osf.io/9q5fr/. The
function to perform a prospective design analysis is
pro_r(). It requires as input the plausible effect size
(rho), the statistical power (power), the directional-
ity of the test (alternative) which can be set as:
“two.sided”, “less” or “greater”. Type I error rate
(sig_level) is set as default at 5% and can be changed
by the user. The pro_r() function returns the necessary
sample size to achieve the desired statistical power, Type
M error rate, the Type S error probability, and the criti-
cal value(s) above which a statistically significant result
can be found. The function to perform retrospective de-
sign analysis is retro_r(). It requires as input the plau-
sible effect size, the sample size used in the study, and
the directionality of the test that was performed. Also
in this case, Type I error rate is set as default at 5% and
can be changed by the user. The function retro_r()
returns the Type M error rate, the Type S error probabil-
ity, and the critical value(s)3. For further details regard-
ing the R functions refer to Appendix B. All code and
materials are also available in a CodeOcean Capsule at
https://codeocean.com/capsule/7935517.

Case Study

To familiarize the reader with Type M and Type S er-
rors, we start our discussion with a retrospective de-
sign analysis of a published study. However, the ideal
temporal sequence in the research process would be to
perform a prospective design analysis in the planning
stage of a research project. This is the time when the
design is being laid out and useful improvements can
be made to obtain more robust results. In this contri-
bution, the order of presentation aims first, to provide
an understanding of how to interpret Type M and Type
S errors, and then discuss how they could be taken into
account. The following case study was chosen for illus-
trative purposes only and, by no means our objective is
to judge the study beyond illustrating an application of
how to calculate Type M and Type S errors on a pub-
lished study.

We consider the study published in Science by Eisen-
berger et al. (2003) entitled: “Does Rejection Hurt? An
fMRI Study of Social Exclusion”. The research question
originated from the observation that the Anterior Cin-
gulate Cortex (ACC) is a region of the brain known to
be involved in the experience of physical pain. Could
pain from social stimuli, such as social exclusion, share
similar neural underpinnings? To test this hypothesis,
13 participants were recruited and each one had to play
a virtual game with other two players while undergo-
ing functional Magnetic Resonance Imaging (fMRI). The

other two players were fictitious, and participants were
actually playing against a computer program. Players
had to toss a virtual ball among each other in three con-
ditions: social inclusion, explicit social exclusion and
implicit social exclusion. In the social inclusion condi-
tion, the participant regularly received the ball. In the
explicit social exclusion condition the participant was
told that, due to technical problems, he was not going
to play that round. In the implicit social exclusion con-
dition, the participant experienced being intentionally
left out from the game by the other two players. At
the end of the experiment, each participant completed
a self-report measure regarding their perceived distress
when they were intentionally left out by the other play-
ers. Considering only the implicit social exclusion con-
dition, a correlation coefficient was estimated between
the measure of distress and neural activity in the Ante-
rior Cingulate Cortex. As suggested by the large and sta-
tistically significant correlation coefficient between per-
ceived distress and activity in the ACC, r = .88, p < .005
(Eisenberger et al., 2003, p. 291), authors concluded
that social and physical pain seem to share similar neu-
ral underpinnings.

Before proceeding to the retrospective design analy-
sis, we refer the interested reader to some background
history regarding this study. This was one of the many
studies included in the famous paper “Puzzlingly High
Correlations in fMRI Studies of Emotion, Personality,
and Social Cognition” (Vul et al., 2009) which raised im-
portant issues regarding the analysis of neuroscientific
data. In particular, this paper noted that the magnitude
of correlation coefficients between fMRI measures and
behavioural measures were beyond what could be con-
sidered plausible. We refer the interested reader also to
the commentary by Yarkoni (2009), who noted that the
implausibly high correlations in fMRI studies could be
largely explained by the low statistical power of experi-
ments.

A retrospective design analysis should start with thor-
ough reasoning on the plausible size and direction of the
effect under study. To produce valid inferences, a lot of
attention should be devoted to this point by integrat-
ing external information. For the sake of this example,
we turn to the considerations made by Vul and Pashler

2An R-package was subsequently developed and now is
available on CRAN, PRDA: Conduct a Prospective or Ret-
rospective Design Analysis https://cran.r-project.org/web/
packages/PRDA/index.html. PRDA contains other features on
Design Analysis, that are beyond the aim of the present paper.

3Critical value is the name usually employed in hypothe-
ses testing within the Neyman-Pearson framework. In the re-
search practice, this is also known as the Minimal Statistically
Detectable Effect (Cook et al., 2014; Phillips et al., 2001)

https://osf.io/9q5fr/
https://codeocean.com/capsule/7935517
https://cran.r-project.org/web/packages/PRDA/index.html
https://cran.r-project.org/web/packages/PRDA/index.html
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(2017) who suggested correlations between personality
measures and neural activity to be likely around ρ = .25.
A correlation of ρ = .50 was deemed plausible but opti-
mistic and a correlation of ρ = .75 was considered theo-
retically plausible but unrealistic.

Retrospective Design Analysis

To perform a retrospective design analysis on the case
study, we need information on the research design and
the plausible effect size. Based on the previous consid-
erations, we set the plausible effect size to be ρ = .25.
Information on the sample size was not available in the
original study (Eisenberger et al., 2003) and was re-
trieved from Vul et al. (2009) to be n = 13. The α level
and the directionality of the test were not reported in
the original study, so for the purpose of this example,
we will consider α = .05 and a two-tailed test. Given
this study design, what are the inferential risks in terms
of effect size estimation?

We can use the R function retro_r(), whose inputs
and outputs are displayed in Figure 1. In this study, the
statistical power is .13, that is to say, there is a 13%
probability to reject the null hypothesis, if an effect of
at least ρ = |.25| exists. Consider this point together
with the results obtained in the experiment: r = .88,
p < .005 (Eisenberger et al., 2003, p. 291). It is clear
that, even though the probability to reject the null hy-
pothesis is low (power of 13%), this event could hap-
pen. And when it does happen, it is tempting to believe
that results are even more remarkable (Gelman & Lo-
ken, 2014). However, this design comes with serious
inferential risks for the estimation of effect sizes, which
could be grasped by presenting Type M and Type S er-
rors. A glance at their value communicates that it is not
impossible to find a statistically significant result, but
when it does happen, the effect sizes could be largely
overestimated - Type M = 2.58 - and maybe even in
the wrong direction - Type S = .03. The Type M error
rate of 2.58 indicates that a statistically significant cor-
relation is on average about two and a half times the
plausible value. In other words, statistically significant
results emerging in such a research design will on av-
erage overestimate the plausible correlation coefficient
by 160%. The Type S error of .03 suggests that there is
a three percent probability to find a statistically signifi-
cant result in the opposite direction, in this example, a
negative relationship.

In this research design, the critical values above
which a statistically significant result is declared corre-
spond to r = ±.55 (Figure 1). These values are high-
lighted in Figure 2 as the vertical lines in the sampling
distribution of correlation coefficients under the null hy-
pothesis. Notice that the plausible effect size lies in the

region of acceptance of the null hypothesis. Therefore,
it is impossible to simultaneously find a statistically sig-
nificant result and estimate an effect close to the plau-
sible one (ρ = .25). The figure represents the so-called
Winner’s curse: “the ‘lucky’ scientist who makes a dis-
covery is cursed by finding an inflated estimate of that
effect” (Button et al., 2013).

Figure 1. Input and Output of the function retro_r()
for retrospective design analysis. Case study: Eisen-
berger et al. (2003). The plausible correlation coeffi-
cient is ρ = .25, the sample size is 13, and the statis-
tical test is two-tailed. The option seed allows setting
the random number generator to obtain reproducible
results.

Prospective Design Analysis

Ideally, Type M and Type S errors should be consid-
ered in the design phase of a study during the decision-
making process regarding the experimental protocol. At
this stage, prospective design analysis can be used as a
sample size planning strategy which aims to minimize
Type M and Type S errors in the upcoming study.

Imagine that we were part of the research team in the
previous case study exploring the relationship between
activity in the Anterior Cerebral Cortex and perceived
distress. When drafting the research protocol, we face
the inevitable discussion on how many participants we
are going to recruit. This choice depends on available
resources, type of study design, constraints of various
nature and, importantly, the plausible magnitude and
direction of the phenomenon that we are going to study.
As previously mentioned, deciding on a plausible effect
size is a fundamental step which requires great effort
and should not be done by trying different values only
to obtain a more desirable sample size. Instead, propos-
ing a plausible effect size is where the expert knowledge
of the researcher can be formalized and can greatly con-
tribute to the informativeness of the study that is being
planned. For the sake of these examples, we adopt the
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Figure 2. Winner’s course. H0 = Null Hypothesis, H1 = Alternative Hypothesis. When sample size, directionality of
the test and Type I error probability are set, also the smallest effect size above which is possible to find a statistically
significant result is set. In this case, the plausible effect size, ρ = .25, lies in the region where it is not possible to
reject H0 (the region delimited by the two vertical lines). Thus, it is impossible to simultaneously find a statistically
significant result and an effect close to the plausible one. In other words, a statistically significant effect must
exaggerate the plausible effect size.

previous consideration and we suppose that common
agreement is reached on a plausible correlation coeffi-
cient to be around ρ = .25. Finally, we would like to
leave open the possibility to explore whether the rela-
tionship goes in the opposite direction to the one hy-
pothesized, so we decide to perform a two-tailed test.

We can implement the prospective design analysis us-
ing the function pro_r() which inputs and outputs are
displayed in Figure 3. About 125 participants are nec-
essary to have 80% probability to detect an effect of at
least ρ = ±.25 if it actually exists. With this sample size,
the Type S error is minimized and approximates zero.
In this study design, the Type M error is 1.11 indicating
that statistically significant results are on average exag-
gerated by 11%. It is possible to notice that the critical
values are r = ±.18, further highlighting that our plau-
sible effect size is actually included among those values
that lead to the acceptance of the alternative hypothesis.

In a design analysis, it is advisable to investigate how
the inferential risks would change according to differ-
ent scenarios in terms of statistical power and plausible
effect size. Changes in both these factors impact Type M
and Type S errors. For example, maintaining the plau-
sible correlation of ρ = .25, if we decrease statistical
power from .80 to .60 only 76 participants are required
(see Table 1). However, this is associated with an in-
creased Type M error rate from 1.11 to 1.28. That is
to say, with 76 subjects the plausible effect size will be
on average overestimated by 28%. Alternatively, imag-
ine that we would like to maintain a statistical power
of 80%, what happens if the plausible effect size is
slightly larger or smaller? The necessary sample size
would spike to 344 for a ρ = .15 and decrease to 60 for

ρ = .35. In both scenarios, the Type M error remains
about 1.12, which reflects the more general point that
for 80% power, Type M error is around 1.10. In all these
scenarios, Type S error is close to zero, hence not wor-
risome.

Figure 3. Input and Output of the function pro_r() for
prospective design analysis. Plausible correlation coef-
ficient is ρ = .25, statistical power is 80% and the statis-
tical test is two-tailed. The option seed allows setting
the random number generator to obtain reproducible
results.

Table 1
Prospective design analysis in different scenarios of plau-
sible effect size and statistical power.
ρ Power Sample Size Type M Type S Critical r value

0.25 0.6 76 1.280 0 ±0.226
0.15 0.8 344 1.116 0 ±0.106
0.35 0.8 60 1.115 0 ±0.254
Note: In all cases, alternative = "two.sided" and sig_level = .05.
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Figure 4. How Type M, Type S and Statistical power vary as a function of sample size in three different scenarios of
plausible effect size (ρ = .25, ρ = .50, ρ = .75). Note that, for the sake of interpretability, we decided to use different
scales for both the x-axis and y-axis in the three scenarios of plausible effect size.

For completeness, Figure 4 summarizes the relation-
ship between statistical power, Type M and Type S errors
as a function of sample size in three scenarios of plausi-
ble correlation coefficients. We display the three values
that Vul and Pashler (2017) considered for correlations
between fMRI measures and behavioural measures with
different degrees of plausibility. An effect of ρ = .75 was
deemed theoretically plausible but unrealistic, ρ = .50
was more plausible but optimistic, and ρ = .25 was more
likely. The curves illustrate a general point: Type M and
Type S error increase with smaller sample sizes, smaller
plausible effect sizes and lower statistical power. Also,
the figure shows that statistical power, Type M and Type
S errors are related to each other: as power increases,
Type M and Type S errors decrease.

At first, it might seem that Type M and Type S errors
are redundant with the information provided by statis-
tical power. Even though they are related, we believe

that Type M and Type S errors bring added value during
the design phase of a research protocol because they
facilitate a connection between how a study is planned
and how results will actually be evaluated. That is to
say, final results will comprise of a test statistics with
an associated p-value and effect size measure. If the
interest is maximizing the accuracy with which effects
will be estimated, then Type M and Type S errors di-
rectly communicate the consequences of design choices
on effect size estimation.

Varying α levels and Hypotheses Directionality

So far, we did not discuss two other important de-
cisions that researchers have to take when designing
a study: statistical significance threshold or α level,
and directionality of the statistical test, one-tailed or
two-tailed. In this section, we illustrate how different
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choices regarding these aspects impact Type M and Type
S errors.

A lot has been written regarding the automatic adop-
tion of a conventional α level of 5% (e.g., Gigerenzer et
al., 2004; Lakens, Adolfi, et al., 2018). This practice is
increasingly discouraged, and researchers are invited to
think about the best trade-off between α level and statis-
tical power, considering the aim of the study and avail-
able resources. The α level impacts Type M and Type
S errors as much as it impacts statistical power. Every-
thing else equal, Type M error increases with decreas-
ing α level (i.e., negative relationship), whereas Type
S error decreases with decreasing α level (i.e., positive
relationship). To further illustrate the relation between
Type M error and α level, let us take as an example the
previous case study with a sample of 13 participants,
plausible effect size ρ = .25 and two-tailed test. Table 2
shows that by lowering the α level from 10% to .10%,
the critical values move from r = ±.48 to r = ±.80. This
suggests that, with these new higher thresholds, the ex-
aggeration of effects will be even more pronounced be-
cause effects have to be even larger to pass such higher
critical values. Instead, the relationship between Type S
error and α level can be clarified thinking that by low-
ering the statistical significance threshold, we are being
more conservative to falsely reject the null hypothesis
in general which implies that we are also being more
conservative to falsely reject the null hypothesis in the
wrong direction.

Table 2
How changes in α level impact Power, Type M error, Type
S error and critical values.
α-level Power Type M Type S Critical r value

0.100 0.212 2.369 0.040 ±0.476
0.050 0.127 2.583 0.028 ±0.553
0.010 0.035 2.977 0.011 ±0.684
0.005 0.021 3.088 0.014 ±0.726
0.001 0.005 3.340 0.000 ±0.801

Note: In all cases, ρ = .25, n = 13, and alternative = "two.sided".

Another important choice in study design is the di-
rectionality of the test (i.e., one-tailed or two-tailed).
Design analysis invites reasoning on the plausible ef-
fect size and hypothesizing the direction of the effect,
not only its magnitude. So why should a researcher
perform non-directional statistical tests when there is
a hypothesized direction? Performing a two-tailed test
leaves open the possibility to find an unexpected re-
sult in the opposite direction (Cohen, 1988), a possi-
bility which may be of special interest for preliminary
exploratory studies. However, in more advanced stages
of a research program (i.e., confirmatory study), direc-
tional hypotheses benefit from higher statistical power

and lower Type M error rates (Figure 5). As an example,
let us consider the differences between a two-tailed test
and a one-tailed test in the previous case study. We can
perform a new prospective design analysis (Figure 6)
with a plausible correlation of ρ = .25, 80% statistical
power, but this time setting the argument alternative
in the R function to “greater”. A comparison of the
two prospective design analyses, Figure 3 and Figure 6,
suggests that the same Type M error rate of about 10%
is guaranteed with 94 participants, instead of the 125
subjects necessary with a two-tailed test. Note that Type
S error is not possible in directional statistical tests. In-
deed, all the statistically significant results are obtain-
able only in the hypothesized direction, not the opposite
one.

Valid conclusions require decisions on test direction-
ality and α level to be taken a priori, not while data
are being analyzed (Cohen, 1988). These decisions
can take place during a prospective design analysis,
which aligns with the increasing interest in psycho-
logical science to transparently communicate and jus-
tify design choices through studies’ preregistration in
public repositories (e.g., Open Science Framework; As-
predicted.com). Preregistration of studies’ protocol is
particularly valuable for researchers endorsing an er-
ror statistics philosophy of science, where the evalu-
ation of research results takes into account the sever-
ity with which claims are tested (Lakens, 2019; Mayo,
2018). Severity depends on the degree to which a re-
search protocol tries to falsify a claim. For example, a
one-tailed statistical test provides greater severity than
a two-tailed statistical test. As noted by Lakens (2019),
preregistration is important to openly share a priori de-
cisions, such as test-directionality, providing valuable
information for researchers interested in evaluating the
severity of research claims.

Publication Bias and Significance Filter

On a concluding note, we would like to clarify the re-
lationship of Design Analysis with publication bias and
the statistical significance filter.

While publication bias and Type M and Type S errors
are related, they operate at two different levels. Pub-
lication bias refers to a publication system that favours
statistically significant results over non-statistically sig-
nificant findings. This phenomenon alone cannot ex-
plain the presence of exaggerated effects. Imagine if all
studies in the literature were conducted with high statis-
tical power, then statistically significant findings would
probably not be so extreme. The problem of exagger-
ated effect sizes in the literature can be explained only
by a combination of publication bias with studies that
have low statistical power. As previously shown, statis-
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Figure 5. Comparison of Type M error rate and Power level between one-tailed and two-tailed test with ρ = .25,
α = .05. n = sample size.

Figure 6. Input and Output of the function pro_r() for
prospective design analysis. Plausible correlation coef-
ficient is ρ = .25, statistical power is 80% and the statis-
tical test is one-tailed.

tical power and Type M and Type S errors are related to
each other: low statistical power corresponds to higher
Type M and Type S errors.

The critical element is the application of the statisti-
cal significance filter without taking into account statis-
tical power. Design Analysis per se does not solve this
issue but, instead, it allows us to recognize its problem-
atic consequences. In the same way as statistical power
is a characteristic of a study design, so are Type M and
Type S errors, however, the two are qualitatively differ-
ent in terms of the kind of reasoning they favour. Statis-
tical power is defined in terms of probability of rejecting
the Null hypothesis and, even though this is based on an
effect size of interest, the relationship “low power - high
possibility of exaggeration” may not be straightforward
for everyone. Instead, Type M and Type S errors directly

quantify the possible exaggeration. Furthermore, their
consideration protects against another possible pitfall.
When in a study a statistically significant result is found
and the associated effect size estimate is large, the find-
ing could be interpreted as robust and impressive. How-
ever, this interpretation is not always appropriate. Here,
the missing piece of information is statistical power. If
power is considered, researchers would realize that a
large effect was found in a context where there was a
low probability to find it. But this interpretation is not
explicitly stating an important aspect: in these condi-
tions, the only way to find a statistically significant re-
sult is by overestimating the true effect. On the con-
trary, this consequence becomes immediately clear once
Type M and Type S errors are considered retrospectively.
Similarly, considering Type M and Type S prospectively
favours reasoning in terms of effect size rather than the
probability of rejecting the null hypothesis when setting
the sample size in a design analysis.

Discussion and Conclusion

In the scientific community, it is quite widespread the
idea that the literature is affected by a problem with
effect size exaggeration. This issue is usually explained
in terms of studies’ low statistical power combined with
the use of thresholds of statistical significance (Button et
al., 2013; Ioannidis, 2008; Ioannidis et al., 2013; Lane
& Dunlap, 1978; Yarkoni, 2009; Young et al., 2008).
Statistically significant results can be obtained even in
underpowered studies and it is precisely in these cases
that we should worry the most about issues of overes-
timation. Type M and Type S errors quantify and high-
light the inferential risks directly in terms of effect size
estimation, which are implied by the concept of statis-
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tical power but might not be recognizable outright. So
far, only a handful of papers explicitly mentioned Type
M and Type S errors (Altoè et al., 2020; Gelman, 2018;
Gelman & Carlin, 2013, 2014; Gelman et al., 2017; Gel-
man & Tuerlinckx, 2000; Lu et al., 2018; Vasishth et
al., 2018). With the broader goal of facilitating their
consideration in psychological science, in the present
contribution we illustrated how Type M and Type S er-
rors are considered in a design analysis using one of
the most common effect size measures in psychology,
Pearson correlation coefficient.

Peculiar to design analysis is the focus on the im-
plications of design choices on effect sizes estimation
rather than statistical significance only. We illustrated
how Type M and Type S errors can be taken into ac-
count with a prospective design analysis. In the planning
stage of a research project, design analysis has the po-
tential to increase researchers’ awareness of the conse-
quences that their sample size choices have on uncer-
tainty about final estimates of the effects. This favours
reasoning in similar terms to those in which results will
be evaluated, that is to say, effect size estimation. But
understanding the inferential risks in a study design is
also beneficial once results are obtained. We presented
retrospective design analysis on a published study, and
the same process can be useful for studies in general,
especially those ending without the necessary sample
size to maximize statistical power and minimize Type M
and Type S errors. In all cases, presenting their values
effectively communicates the uncertainty of the results.
In particular, Type M and Type S errors put a red flag
when results are statistically significant, but the effect
size could be largely overestimated and in the wrong
direction. Finally, both prospective and retrospective
design analysis favours cumulative science encouraging
the incorporation of expert knowledge in the definition
of the plausible effect sizes.

It is important to remark that even if Design Analysis
is based on the definition of a plausible effect size, a best
practice should be to conduct multiple Design Analyses
by considering different scenarios which include differ-
ent plausible effect sizes and levels of power to max-
imize the informativeness of both a prospective and a
retrospective analysis.

To make design analysis accessible to the research
community, we provide the R functions to perform
prospective design analysis and retrospective design
analysis for Pearson correlation coefficient https://osf.
io/9q5fr/ together with a short guide on how to use the
R functions and a summary of the examples presented
in this contribution (Appendix B).

Finally, prospective design analysis could contribute
to better research design, however many other impor-

tant factors were not considered in this contribution.
For example, the validity and reliability of measure-
ments should be at the forefront in research design, and
careful planning of the entire research protocol is of ut-
most importance. Future works could tackle some of
these shortcomings for example, including an analysis
of the quality of measurement on the estimates of Type
M and Type S errors. Also, we believe that it would
be valuable to provide extension of design analysis for
other common effect size measures with the develop-
ment of statistical software packages that could be di-
rectly used by researchers. Moreover, design analysis on
Pearson correlation can be easily extended to the multi-
variate case where multiple predictors are considered.
Lastly, design analysis is not limited to the Neyman-
Pearson framework but can be considered also within
other statistical approaches such as Bayesian approach.
Future works could implement design analysis to evalu-
ate the inferential risks related to the use of Bayes Fac-
tors and Bayesian Credibility Intervals.

Summarizing, choices regarding studies’ design im-
pact effect size estimation and Type M (magnitude) er-
ror and Type S (sign) error allow to directly quantify
these inferential risks. Their consideration in a prospec-
tive design analysis increases awareness of what are the
consequences of sample size choice reasoning in similar
terms to those used in results evaluation. Instead, ret-
rospective design analysis provides further guidance on
interpreting research results. More broadly, design anal-
ysis reminds researchers that statistical inference should
start before data collection and does not end when re-
sults are obtained.
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Appendix A: Pearson Correlation and Design
Analysis

To conduct a design analysis, it is necessary to know
the sampling distribution of the effect of interest. That
is, the distribution of effects we would observe if n ob-
servations were sampled over and over again from a
population with a given effect. This allows us, in turns,
to evaluate the sampling distribution of the test statistic
of interest not only under the Null-Hypothesis (H0), but
also under the alternative Hypothesis (H1), and thus to
compute the statistical power and inferential risks of the
study considered.

Regarding Pearson’s correlation between two nor-
mally distributed variables, the sampling distribution is
bounded between -1 and 1 and its shape depends on
the values of ρ and n, respectively the population corre-
lation value and the sample size. The sampling distribu-
tion is approximately Normal if ρ = 0. Whereas, for pos-
itive or negative values of ρ, it is negatively skewed or
positively skewed, respectively. Skewness is greater for
higher absolute values of ρ but decreases when larger
sample sizes are considered. In Figure 7, correlation
sampling distributions are presented for increasing val-
ues of ρ and fixed sample size (n = 30).

In the following paragraphs, we consider the conse-
quence of Pearson’s correlation sampling distribution on
statistical inference and the behaviour of Type M and
Type S errors as a function of statistical power.

Statistical inference

To test a hypothesis or to derive confidence inter-
vals, the sampling distribution of the test statistic of
interest must follow a known distribution. In the
case of H0 : ρ = 0, the sample correlation is ap-
proximately normally distributed with Standard Error:
SE(r) =

√
(1 − r2)/(n − 2). Thus, statistical inference is

performed considering the test statistic:

t =
r

SE(r)
= r

√
n − 2
1 − r2 , (2)

that follows a t-distribution with d f = n − 2.
However, in the case of ρ , 0, the sample corre-

lation is no longer normally distributed. As we have
previously seen, the sampling distribution is skewed for
large values of ρ and small sample sizes. Thus, the test
statistic of interest does not follow a t-distribution.4 To
overcome this issue, the Fisher transformation was in-
troduced (Fisher, 1915):

F(r) =
1
2

ln
1 + r
1 − r

= arctanh(r). (3)

Applying this transformation, the resulting sampling
distribution is approximately Normal with mean = F(ρ)

and SE = 1
√

n−3
. Thus, the test statistic follows a stan-

dard Normal distribution and statistical inference is per-
formed considering the Z-scores.

Alternatively, other methods can be used to obtain
reliable results, for example, Monte Carlo simulation.
Monte Carlo simulation is based on random sampling
to approximate the quantities of interest. In the case
of correlation, n observations are iteratively simulated
from a bivariate Normal distribution with a given ρ,
and the observed correlation is considered. As the num-
ber of iterations increases, the distribution of simulated
correlation values approximates the actual correlation
sampling distribution and it can be used to compute the
quantities of interest.

Although Monte Carlo methods are more compu-
tationally demanding than analytic solutions, this ap-
proach allows us to obtain reliable results in a wider
range of conditions even when no closed-form solutions
are available. For these reasons, the functions pro_r()
and retro_r(), presented in this paper, are based on
Monte Carlo simulation to compute power, Type M, and
Type S error values. This guarantees a more general
framework where other future applications can be eas-
ily integrated into the functions.

Type M and Type S errors

Design Analysis was first introduced by Gelman and
Carlin (2014) assuming that the sampling distribution
of the test statistic of interest follows a t-distribution.
This is the case, for example, of Cohen’s d effect size.
Cohen’s d is used to measure the mean difference be-
tween two groups on a continuous outcome. The be-
haviour of Type M and Type S errors as a function of
statistical power in the case of Cohen’s d is presented in
Figure 8.

For different values of hypothetical population effect
size (d = .2, .5, .7, .9), we can observe that, for high
levels of power, Type S and Type M errors are low. Con-
versely, the Type S and Type M errors are high for low
values of power. As expected, the relation between
power and inferential errors is not influenced by the
value of d (i.e., the four lines are overlapping). Limit
cases are obtained for power = 1 and 0.05 (note that
the lowest value of power is given by the alpha value
chosen as the statistical significance threshold). In the
former case, Type S error is 0 and Type M error is 1. In

4Note that the t-distribution is defined as the distribution
of a random variable T where T = Z√

V/d f
. With Z a standard

Normal, V a Chi-squared distribution with df the degrees of
freedom. Thus, if the sample correlation is no longer approx-
imately normally distributed the test-statistic is no longer t-
distributed.
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Figure 7. Pearson Correlation coefficient sampling distributions for increasing values of ρ and fixed sample size
(n = 30)
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Figure 8. The behaviour of Type M and Type S errors as a function of statistical power in the case of Cohen’s d. Note
that the four lines are overlapping.

the latter case, Type S error is 0.5 and the Type M error
value goes to infinity.

In the case of Pearson’s Correlation, we noted above
that the sampling distribution is skewed for large val-
ues of ρ and small sample sizes. Moreover, the support
is bounded between -1 and 1. Thus, the relations be-
tween power, Type M, and Type S error are influenced
by the value of the hypothetical population effect size
(see Figure 9).

We can observe how, for different values of correla-

tion (ρ = .2, .5, .7, .9), Type M error increases at dif-
ferent rates when the power decrease, whereas Type
S error follows a consistent pattern (note that differ-
ences are due to numerical approximation). We can
intuitively explain this behaviour considering that, for
low levels of power, the sampling distribution includes
a wider range of correlation values. However, correla-
tion values can not exceed the value 1 and therefore the
distribution becomes progressively more skewed. This
does not influence the proportion of statistically signifi-
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Figure 9. The behaviour of Type M and Type S errors as a function of statistical power in the case of Pearson’s
correlation ρ.

cant sampled correlations with the incorrect sign (Type
S error), but it affects the mean absolute value of sta-
tistically significant sampled correlations (used to com-
pute Type M error). In particular, the sampling distri-
bution for greater values of ρ becomes skewed more
rapidly and thus Type-M error increases at a lower rate.

Finally, since the correlation values are bounded,
Type-M error for a given value of ρ can hypothetically
increase only to a maximum value given by 1

ρ
. For ex-

ample, for ρ = .5 the maximum Type-M error is 2 as
.5 × 2 = 1 (i.e., the maximum correlation value).

In this appendix, we discussed for completeness the
implications of conducting a Design Analysis in the case
of Pearson’s correlation effect size. We considered ex-
treme scenarios that are unlikely to happen in real
research settings. Nevertheless, we thought this was
important for evaluating the statistical behaviour and
properties of Type M and Type S error in the case of
Pearson’s correlation as well as helping researchers to
deeply understand Design Analysis.

Appendix B: R Functions for Design Analysis with
Pearson Correlation

Here we describe the R functions defined to perform
a prospective and retrospective design analysis in the
case of Pearson correlation. First, we give instructions
on how to load and use the functions. Subsequently, we
provide the code to reproduce examples included in the
article.

These functions can be used as a base to further de-
velop design analysis in more complex scenarios that
were beyond the aim of the paper.

R functions

The code of the functions is available in the file
Design_analysis_r.R at https://osf.io/9q5fr/.

After downloading the file Design_analysis_r.R,
run the line indicating the correct path where the file
was saved:

source("<your_path>/Design_analyisis_r.R")

The script will automatically load in your
workspace the functions and two required R-
package: MASS (Venables & Ripley, 2002) and
docstring Kurkiewicz (2017). If you don’t
have them already installed, run the line
install.packages(c("MASS","docstring")).

The R functions are:

• retro_r() for retrospective design analysis.
Given the hypothetical population correlation
value and sample size, this function performs
a retrospective design analysis according to the

https://osf.io/9q5fr/
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defined alternative hypothesis and significance
level. Power level, Type-M error, and Type-S error
are computed together with the critical correla-
tion value (i.e., the minimum absolute correlation
value that would result significant).

retro_r(rho, n,
alternative = c("two.sided", "less", "greater"),
sig_level=.05, B=1e4, seed=NULL)

• pro_r() for prospective design analysis. Given
the hypothetical population correlation value and
the required power level, this function performs
a prospective design analysis according to the de-
fined alternative hypothesis and significance level.
The required sample size is computed together
with the associated Type-M error, Type-S error,
and the critical correlation value.

pro_r(rho, power = .80,
alternative = c("two.sided", "less", "greater"),
sig_level = .05, range_n = c(1,1000), B = 1e4,
tol = .01, display_message = FALSE, seed = NULL)

For further details about function arguments, run the
line docstring(retro_r) or docstring(pro_r). This
creates a documentation similar to the help page of R
functions.

Note: two other functions are defined in the
script and will be loaded in your workspace (i.e.,
compute_crit_r() and print.design_analysis).
This are internal functions that should not be used
directly by the user.

Examples code

Below we report the code to reproduce the examples
included in the article.

# Example from Figure 1
retro_r(rho = .25, n = 13,
alternative = "two.sided",
sig_level = .05, seed = 2020)

# Example from Figure 3
pro_r(rho = .25, power = .8,
alternative = "two.sided",
sig_level = .05, seed = 2020)

# Example from Figure 6
pro_r(rho = .25, power = .8,
alternative = "two.sided",
sig_level = .05, seed = 2020)

# Examples from Table 1
pro_r(rho = .25, power = .6,
alternative = "two.sided",
sig_level = .05, seed = 2020)
pro_r(rho = .15, power = .8,
alternative = "two.sided",
sig_level = .05, seed = 2020)
pro_r(rho = .35, power = .8,
alternative = "two.sided",
sig_level = .05, seed = 2020)

# Examples from Table 2
retro_r(rho = .25, n = 13,
alternative = "two.sided",
sig_level = .100, seed = 2020)
retro_r(rho = .25, n = 13,
alternative = "two.sided",
sig_level = .050, seed = 2020)
retro_r(rho = .25, n = 13,
alternative = "two.sided",
sig_level = .010, seed = 2020)
retro_r(rho = .25, n = 13,
alternative = "two.sided",
sig_level = .005, seed = 2020)
retro_r(rho = .25, n = 13,
alternative = "two.sided",
sig_level = .001, seed = 2020)


