
Meta-Psychology, 2022, vol 6, MP.2020.2577
https://doi.org/10.15626/MP.2020.2577
Article type: Original Article
Published under the CC-BY4.0 license

Open data: Not Applicable
Open materials: Yes

Open and reproducible analysis: Yes
Open reviews and editorial process: Yes

Preregistration: No

Edited by: Danielsson, H., Carlsson, R.
Reviewed by: Schönbrodt, F., Schmukle, S., Hedge, C.

Analysis reproduced by: Batinović, L., Fust, J.
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Abstract
Analytic flexibility is known to influence the results of statistical tests, e.g. effect sizes and p-values. Yet, the degree
to which flexibility in data processing decisions influences measurement reliability is unknown. In this paper I
attempt to address this question using a series of 36 reliability multiverse analyses, each with 288 data processing
specifications, including accuracy and response time cut-offs. I used data from a Stroop task and Flanker task at two
time points, as well as a Dot Probe task across three stimuli conditions and three timepoints. This allowed for broad
overview of internal consistency reliability and test-retest estimates across a multiverse of data processing specifi-
cations. Largely arbitrary decisions in data processing led to differences between the highest and lowest reliability
estimate of at least 0.2, but potentially exceeding 0.7. Importantly, there was no consistent pattern in reliability
estimates resulting from the data processing specifications, across time as well as tasks. Together, data processing
decisions are highly influential, and largely unpredictable, on measure reliability. I discuss actions researchers
could take to mitigate some of the influence of reliability heterogeneity, including adopting hierarchical modelling
approaches. Yet, there are no approaches that can completely save us from measurement error. Measurement
matters and I call on readers to help us move from what could be a measurement crisis towards a measurement
revolution.
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In this paper I was concerned with the influence an-
alytic flexibility on measurement reliability, specifically
in data processing or data cleaning. I took inspiration
from numerous papers reporting the unsettlingly low re-
liability of Dot Probe attention bias indices (e.g. Jones
et al., 2018; Schmukle, 2005; Staugaard, 2009) and
other work investigating alternative analyses and data
processing strategies, with the intention of yielding a
more reliable measurement (e.g. Jones et al., 2018;
Price et al., 2015). When considering the impact of re-

searcher degrees of freedom, focus is drawn to decisions
made in the beginning (task design) or at the end (data
analysis) of the research process. I was interested in the
middle step: data processing and measure reliability. In
this paper, I explore and visualise the influence of data
processing steps on reliability using a series of reliability
multiverse analyses.
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Getting up to speed with reliability

The accuracy of our conclusions rests on the quality,
and the strength, of our evidence. Our evidence rests
on the bedrock of our measurements. The quality of
our measures defines the quality of our results. Without
adequate focus on the validity of our measures, how
can we be assured that we are capturing the concept
or process that we are interested in? Without any at-
tention to the reliability of our measures, how can we
be sure that we are capturing a phenomenon with any
precision? Psychological science has a guilty habit of ne-
glecting these foundations, though of course some areas
fair better than others.

In a recent paper, my colleagues and I argued for a
widespread appreciation for the reliability of our cogni-
tive measures (Parsons et al., 2019). Briefly, low reli-
ability places doubt on the veracity of statistical anal-
yses using that measure; measurement reliability re-
stricts the observable range of effect sizes in simple cor-
relational analyses, and unpredictably in more compli-
cated models; and failing to correct for measurement er-
ror makes comparing effect sizes between, and within,
studies difficult. These issues are compounded by the
sad observation that the reporting of reliability (and va-
lidity) evidence is woefully poor. Scale validity and re-
liability is not routinely examined, and many scales are
adapted on an ad hoc basis with little or no validation
(Flake et al., 2017). In other cases scales fail to pass
deeper psychometric evaluation, including tests of mea-
surement invariance (Hussey and Hughes, 2018). This
likely reflects issues with more superficial approaches to
establishing validity evidence - i.e. reporting Cronbach’s
alpha, stating it is adequate, and moving on. Pockets
of psychological science take a more enlightened ap-
proach. However, I feel it is reasonable to argue that
the field at large is not doing well in our measurement
practices. Most relevant to this paper; it is the excep-
tion rather than the norm to evaluate the psychometric
properties of cognitive measurements (Gawronski et al.,
2011).

Strictly speaking, we cannot state that a task is unre-
liable; although we might observe a consistent pattern
of unreliability in measurements obtained that causes
us to question further use of the task. An important
reminder: estimates of reliability refer to the measure-
ment obtained - in a specific sample and under particu-
lar circumstances, including the task parameters. Relia-
bility is therefore not fixed; it may differ between pop-
ulations, samples, and testing conditions. Variations of
a task may lead to the generation of more or less reli-
able measurements. For example, the stimulus presen-
tation duration will likely influence the cognitive pro-
cesses involved in completing the task, perhaps leading

participants to perform more consistently in one ver-
sion, relative to another. Reliability is a property of the
measurement, not of the task used to obtain it. In this
study, we are concerned with the data processing steps
researchers take and how these influence our measure-
ment, and the resulting reliability estimates. To explore
this, I invite you to join me, dear reader, on a walk
through the garden of forking paths.

Analytic flexibility and the garden of forking paths

Every result presented in every research article is the
culmination of many decisions made by one or more
researchers; the sheer number of combinations of valid
decisions is likely uncalculatable. The “garden of fork-
ing paths” (Gelman and Loken, 2013) is a useful anal-
ogy to illustrate this. With each decision that must be
made, however arbitrary, the researcher comes to a fork
in their research path and selects one. To add a little
suspense, there will be many cases when the researcher
does not notice a fork in the road. Perhaps the re-
searcher unconsciously makes the same turn as always,
their feet working of their own accord. These forks in
the path, the decisions researchers make (whether they
are aware or not), may be reasonably combined to make
a near uncountable number of paths. Each path also
leads to a location; some paths end close to one an-
other, and other times the paths diverge wildly. We can
think of the end of the path as the statistical result our
researcher arrives at.

The researcher has to decide their path, based on the
soundest justifications they can make at each fork [e.g.
(Lakens et al., 2018). Of course, psychological science
has become fully aware of the detrimental effects of se-
lecting one’s path retrospectively, based on where the
path ends or the results most exciting to the researcher
(read as: p < .05; e.g. (Simmons et al., 2011). Ana-
lytic flexibility is not inherently bad. However, we must
acknowledge the ramifications. The effects we observe,
or do not, are potentially influenced by all of the deci-
sions made to arrive at them. Thus, a range of possible
effects may have been observed that could be more or
less equally valid or justifiable based on the analytical
decisions made.

In discussions of analytical flexibility, focus is usu-
ally given primarily to decisions made during statisti-
cal analysis. For example, should I control for age and
gender? Do I reason that this is model more appropri-
ate over that one? Or where should I set my alpha and
how should I justify the decision? Discussions of ana-
lytical flexibility often concern issues around p-hacking
and other QRPs (intended or unintended). However,
as Leek and Peng (Leek and Peng, 2015) note, p-values
are the tip of the iceberg; not enough scrutiny is given
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to the impact of the many steps in the research pipeline
that precede inference testing. I agree. In my estima-
tion, flexibility in measurement and data handling do
not receive the scrutiny they deserve. If the garden
of forking paths concerns analytic flexibility, then mea-
surement flexibility decides which gateway one enters
the garden through in the first place. As an example, a
recent review highlighted the lack of consensus around
the processing of task data from tasks in the attention
control literature, including but not limited to the data
pre-processing used in this paper (von Bastian et al.,
2020, p. 47-48).

Mapping the garden of forking paths with multiverse
analyses

Multiverse analyses (Steegen et al., 2016) offers us
a "GPS in the garden of forking paths" (Quintana and
Heathers, 2019). The process is simpler than one might
expect. First, we define a set of reasonable data pro-
cessing and analysis decisions. Second, we run the en-
tire set of analyses. We can then examine results across
the entire range of results. Specification curve analysis
(Simonsohn et al., 2015) adds third step allowing for in-
ference tests across the distribution of results generated
in the multiverse (for insightful applications of specifi-
cation curve analyses, see Orben and Przybylski, 2019;
Rohrer et al., 2017). In this paper I use ‘specification’ to
refer to each combination of data processing decisions
in the multiverse analysis.

Multiverse analyses enable us to explore how a re-
searcher’s – sometimes arbitrary – choices in data pro-
cessing (e.g. outlier removal) and analysis decisions
(e.g. including covariates, splitting samples) influence
statistical results, and the conclusions drawn from the
analysis. From this we can examine which choices are
more or less influential than others, as well as how ro-
bust the result is across the full set of specifications.

A reliability multiverse from many data processing
decisions

In this paper I report multiverse analyses exploring
the influence of data processing specifications on the
reliability of a calculated measurement. I used openly
accessible Stroop task and Flanker task data generously
shared by Hedge and colleagues (Hedge et al., 2018)
and Dot Probe task data from the CogBIAS project
(Booth et al., 2017; Booth et al., 2019). Following
our previous work in this area (Parsons et al., 2019),
I was interested in the stability and range of reliability
estimates on cognitive-behavioural measures. Broadly,
I was interested in the impact of data processing deci-
sions on reliability. It is possible that certain analytic de-
cisions tend to yield higher reliability estimates; it may

be that particular combinations of decisions are also bet-
ter, or worse, than others. Beyond that, I was inter-
ested in the range of estimates. A small range would
suggest that measure reliability is relatively stable as
we make potentially arbitrary data processing decisions
while walking the garden of forking paths. A large
range suggests hidden measurement reliability hetero-
geneity. This is potentially an important, and underap-
preciated, contributor to the replicability crisis (Loken
and Gelman, 2017). Alternatively, this could be a herald
for a crisis of measurement.

Methods

Data

Stroop and Flanker task data were obtained from
the online repository for Hedge, Sumner, and Powell
(Hedge et al., 2018, https://osf.io/cwzds/). Full de-
tails of the data collection, study design, and procedure
can be found in Hedge et al. (Hedge et al., 2018).
These data are ideal for our purposes as they a) contain
many trials, helping us obtain more precise estimates
of reliability, and b) include two assessment time-points
approximately 3-4 weeks apart, allowing us to explore
both: internal consistency and test-retest reliability. The
data were collected from different studies; for simplicity
in this paper, the data across studies were pooled (n =
107 before any data processing – note that this may be
different from the sample size presented by Hedge et al.
due to differences in data processing).

Dot Probe data were obtained from the CogBIAS
project (Booth et al., 2017; Booth et al., 2019). Full
details of the full study and data collection can be found
in Booth et al. (2017; 2019). These data complement
the Stroop and Flanker data as they provide a longer
test-retest duration (approximately 1.5 years between
repeated measures) across three timepoints. In addi-
tion, the task incorporated three stimuli conditions, al-
lowing us cross-sectional comparisons of reliability sta-
bility within the same task. The Dot Probe data were
pooled such that only a subset of participants complet-
ing the task at all three timepoints were retained (n =
285).

Interested readers can find the data and code used
to perform the multiverse analyses and generate this
manuscript in the Open Science Framework repository
for this project (https://osf.io/haz6u/). 1

1I used the following R packages for all analyses and fig-
ures, and to generate this document: R (Version 4.1.0; R
Core Team, 2018) and the R-packages Cairo (Version 1.5.12.2;
Urbanek and Horner, 2019), dplyr (Version 1.0.9; Wick-
ham, François, et al., 2019), forcats (Version 0.5.1; Wick-
ham, 2019a, ggplot2 (Version 3.3.6; Wickham, 2016), gridEx-

https://osf.io/cwzds/
https://osf.io/haz6u/
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Stroop task

Participants made keyed responses to the colour of a
word presented in the centre of the screen. In congru-
ent conditions the word was the same as the font colour,
whereas, in incongruent trials, the word was a different
colour from the font colour. In a neutral condition, the
word was not a colour word. Participants completed
240 of each trial type. The outcome index we explore
here is the RT cost, calculated as the average RT for
incongruent trials minus the average RT for congruent
trials.

Flanker task

Participants made keyed responses to the colour of a
word presented in the centre of the screen. In congru-
ent conditions the word was the same as the font colour,
whereas, in incongruent trials, the word was a different
colour from the font colour. In a neutral condition, the
word was not a colour word. Participants completed
240 of each trial type. The outcome index we explore
here is the RT cost, calculated as the average RT for
incongruent trials minus the average RT for congruent
trials.

Dot probe task task

Participants made keyed responses to the identity of a
probe presented on screen. The probe was presented in
the same location as one of the paired faces presented
on screen for 500ms prior. The paired faces were an
emotional face (angry, pained, and happy) paired with
a neutral face (taken from the STOIC faces database,
Roy et al., 2009). In congruent trials, the probe was
presented in the same location as the emotional face.
In incongruent trials, the probe was presented in the
same location as the neutral face. Participants com-
pleted three blocks of 56 trials corresponding to the
emotion presented. The ‘attention bias’ outcome index
(MacLeod et al., 1986) was calculated as calculated as
the average RT for incongruent trials minus the average
RT for congruent trials.

Multiverse analysis

In a personal effort to make my research repro-
ducible, and also help others perform similar pro-
cesses I have developed simple functions to per-
form the multiverse analyses reported in this paper.
Readers interested in performing similar analyses can
find these functions within the splithalf package (Par-
sons, 2021) and tutorials on the related GitHub page
(https://github.com/sdparsons/splithalf). The key
functions are: splithalf.multiverse, testretest.multiverse,
and multiverse.plot. Intraclass Correlation Coefficients

(ICC2) were estimated using the psych R package
(Revelle, 2019). Interested readers can also inspect
the code used to perform the analyses in this paper
(https://osf.io/haz6u/).

Step 1. Creating a list of all specifications. No
data were removed before the multiverse analysis. To
my knowledge, there are no fixed standards in the lit-
erature for processing data from any of the tasks. I
identified six decisions common to processing RT data,
though there are many more. For simplicity I stuck to
RT difference scores as the outcome measure of interest.
However, there are very different analytical techniques
that might be applied to RT tasks such as this (for exam-
ple, multilevel modelling and drift-diffusion modelling
approaches). The decisions were as follows:

• Total accuracy. Researchers may opt to re-
move participants with accuracy lower than a pre-
specified cut-off; for example 80 of 90 per cent. I
used three options; 80

• Absolute response time removals. Researchers
will often remove trials faster than a minimum RT
threshold and trials that exceed a maximum RT
threshold. I use minimum RT cut-offs at 100ms,
200ms, as well as no cut-off. And, I use two max-
imum RT cutoffs; 3000ms, and 2000ms.

• Relative RT cut offs. After absolute RT cut-
offs, researchers can decide to remove trials with
RTs greater than a number of standard deviations
from the mean (sometimes called relative cut-offs
or trimmed means). Three SDs from the mean
would remove very extreme outliers; two SDs
from the mean is common. I have not seen re-
searchers use one SD from the mean as a cut off,
as it is likely a too conservative threshold. As I
was interested in a wide range of possible specifi-
cations, I included one standard deviation. I use
no relative cut off, and one, two, and three SDs
from the mean cutoffs in the multiverse.

• Where to apply the relative cutoff. The deci-
sion to remove trials based on a SD cutoff comes
with its own decision. Namely, at what granular-
ity? We could remove trials with RTs greater than

tra (Version 2.3; Auguie, 2017), papaja (Version 0.1.1; Aust
and Barth, 2018), patchwork (Version 1.1.1; Pedersen, 2019),
psych (Version 2.1.6; Revelle, 2019), purrr (Version 0.3.4;
Henry and Wickham, 2019), readr (Version 1.4.0; Wick-
ham et al., 2018), splithalf (Version 0.8.1; Parsons, 2021),
stringr (Version 1.4.0; Wickham, 2019b), tibble (Version 3.1.7;
Müller and Wickham, 2019), tidyr (Version 1.2.0; Wickham
and Henry, 2019), tidyverse (Version 1.3.1; Wickham, Averick,
et al., 2019), and tinylabels (Version 0.2.3; Barth, 2022)

https://osf.io/haz6u/
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2SDs from the participant’s average RT, for exam-
ple. We could also remove trials with RTs greater
than 2SDs from the mean RT within each trial type
(congruent and incongruent, for example). I in-
cluded both options; participant level, and trial
type level.

• Averaging. Most often the mean RT within each
trial type is calculated, and may then be analysed
directly, or a difference score calculated to anal-
yse. Researchers may opt to use the median RT
instead. I included both options.

The number of possible combinations (data process-
ing specifications) quickly increases with every addi-
tional option. Here we have 3 × 2 × 3 × 4 × 2 × 2
= 288 possible specifications.

Step 2. Run all specifications and extract relia-
bility estimates. From this decision list, we have a
complete list of 288 data processing specifications. In
the multiverse analysis the data is processed following
each specification parameters, before estimating the re-
liability of the resulting outcome measure. Internal con-
sistency was estimated using 500 permutations of the
splithalf (Parsons et al., 2019) procedure for each spec-
ification (5000 is standard, but 500 was selected to re-
duce processing time). Following Hedge et al. (2018),
and because ICC relates to both the correlation and the
agreement among repeated measures, test-retest relia-
bility was estimated using ICC2k (Koo & Li, 2016).

Step 3. Visualising the multiverse. I find that one
of the joys of multiverse analyses are the visualisations,
because sometimes science is more art than science. I
explain the visualisations in the results section.

Analysis plan

For the core analysis I performed 18 multiverse anal-
yses following the steps described above. Separately for
each of the Stroop and Flanker task data, I examined
internal consistency reliability at time 1 and at time 2,
as well as test-retest reliability from time 1 to time 2.
For the Dot Probe data, I examined internal consistency
reliability at each of the three timepoints, separately
for the three task conditions, as well as test-retest re-
liability at across timepoints. For each multiverse I re-
port the median estimate and it’s 95% Confidence In-
terval, the proportion of estimates exceeding 0.7, and
the range of estimates in that multiverse. In addition
to visualising each multiverse, I also include visualisa-
tions overlapping the internal consistency multiverses
over time. These overlapped plots allow us to visually
inspect whether the pattern of reliability estimates fol-
lowing the full range of data processing specifications
are comparable across each time point.

Inferences from the multiverse

It is not my aim in this paper to make inferences from
these reliability multiverse analyses as one would in a
specification curve analysis (Simonsohn et al., 2015).
One could use this method to perform inference testing
against the curve of reliability estimates. However, it is
not clear what this would add: testing whether the re-
liability estimates significantly differ from zero is a low
bar for assessing the reliability of a measure.

Results

I include a visualisation for each multiverse analysis.
The reliability estimates are presented on the y-axis at
the top of the figure; each estimate is represented by
a black dot and the 95% confidence interval is repre-
sented by the shaded band. The x-axis indicates each
individual multiverse specification of processing deci-
sions (288 total), displayed in the ‘dashboard’ at the
bottom of the figure. The vertical dashed line running
through the top panel and the bottom dashboard rep-
resents the median reliability estimate. This line is ex-
tended through the dashboard to demonstrate that the
estimate is derived from the unique combination of data
processing decisions, including (from top to bottom, in
order of processing step); 1) participant removal below
total accuracy threshold, 2) maximum RT cut-off, 3)
minimum RT cut-off, 4) removal of RTs > this number
of SDs from the mean, 5) whether this removal is at the
trial or subject level, and 6) use of mean or median to
derive averages.

Stroop Time 1: Internal Consistency

The median reliability estimate was 0.76, 95% CI
[0.69,0.92]. Estimates ranged from 0.68 to 0.92. 97%
of the reliability estimates were > 0.7.

Stroop Time 2: Internal Consistency

The median reliability estimate was 0.66, 95% CI
[0.61,0.89]. Estimates ranged from 0.58 to 0.90. 25%
of the reliability estimates were > 0.7.

Stroop: test-retest

The median reliability estimate was 0.56, 95% CI
[0.50,0.63]. Estimates ranged from 0.47 to 0.63. 0%
of the reliability estimates were > 0.7. 0.0

Flanker Time 1: Internal Consistency

The median reliability estimate was 0.82, 95% CI
[0.65,0.92]. Estimates ranged from 0.62 to 0.93. 93%
of the reliability estimates were > 0.7.
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Figure 1. Internal consistency reliability multiverse for Stroop RT cost at time 1

Flanker Time 2: Internal Consistency

The median reliability estimate was 0.71, 95% CI
[0.62,0.91]. Estimates ranged from 0.59 to 0.91.
55.00% of the reliability estimates were > 0.7.

Flanker: test-retest

The median reliability estimate was 0.55, 95% CI
[0.30,0.69]. Estimates ranged from 0.29 to 0.72. 2%
of the reliability estimates were > 0.7.

Overlapping time 1 and time 2 multiverses

In the next two figures I overlap the time 1 and time
2 multiverses, separately for the Stroop and Flanker
data. The specifications are ordered by the reliability
estimates at time 1 for each measure (Figures 1 and
3). These figures allow us to compare the patterns of

reliability estimates following the same data processing
decisions.

Dot Probe Task

For ease of presentation (and to reduce the total num-
ber of figures), we visualise the Dot Probe task reliability
multiverses entirely as overlapping plots.

Angry faces

For the angry faces condition median and 95% CIs
for each wave of testing were; wave 1, -0.04, [95% CI
-0.17, 0.58; wave 2, 0.01, [95% CI -0.21, 0.61; wave 3,
0.03, [95% CI -0.08, 0.65.
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Figure 2. Internal consistency reliability multiverse for Stroop RT cost at time 2

Happy faces

For the happy faces condition median and 95% CIs
for each wave of testing were; wave 1, -0.09, [95% CI
-0.19, 0.58; wave 2, -0.01, [95% CI -0.10, 0.65; wave
3, 0.07, [95% CI -0.04, 0.65.

Pained faces

For the pained faces condition median and 95% CIs
for each wave of testing were; wave 1, 0.04, [95% CI
-0.26, 0.65; wave 2, -0.09, [95% CI -0.17, 0.60; wave
3, 0.15, [95% CI -0.08, 0.68.

Dot Probe: test-retest

Test retest reliability estimates (ICC2) for each condi-
tion were: angry, 0.04, 95% CI [0, 0.10]; happy, 0, 95%
CI [0, 0.07]; pain, 0, 95% CI [0, 0.01]

Secondary analyses: reliability and number of trials

Increasing the number of trials typically increases re-
liability estimates (e.g. Hedge et al., 2018; von Bastian
et al., 2020). A visual inspection of the multiverses sug-
gests that specifications involving the removal of more
trials (i.e. removing trials greater than 1 standard de-
viation from the average) leads to higher reliability es-
timates. Table 1 presents the Pearson correlations be-
tween the reliability estimates and the number of trials
retained in each specification. For internal consistency
reliability these correlations typically ran counter to ex-
pectations of reduced trials leading to reduced reliabil-
ity. In most cases the association was negative - more
trials removed during data processing was associated
with higher reliability estimates were observed. In con-
trast, for most of the test-retest reliability multiverses,
removal of more trials led to lower reliability estimates.
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Figure 3. Test-retest reliability multiverse for Stroop RT cost

To investigate this further, I reran the multiverses
for Stroop and Flanker data using only the first half
of trials collected for each participant. I also reran the
multiverses for the Dot Probe data using only the first
20 trials for each trial type (I attempted to rerun the
Dot Probe data with only 14 trials for each trial type,
but this led to errors under stricter specifications where
there were too few trials to run the reliability estima-
tion). To save the reader from viewing all 18 multi-
verses for a second time, the code and all outputs can
be found in the supplementary materials. On visual in-
spection of the multiverse visualisations, the overall pat-
tern of results is similar: specifications resulting in the
removal of more trials tend to result in higher reliabil-
ity estimates. The final column in Table 1 presents the
mean difference in reliability estimates for each of the
18 multiverses (positive values indicate higher reliabil-

ity estimates with the full number of trials). For internal
consistency estimates: multiverses with fewer trials had
lower reliability estimates, on average, for the Stroop
and Flanker tasks. But, against expectations, reliabil-
ity estimates increased for the Dot Probe task when the
number of trials was reduced. In contrast, almost all
test-retest estimates were reduced in the reduced num-
ber of trials analyses. Figure 13 presents the difference
between reliability estimates in full vs reduced trials
multiverses for all 18 multiverse analyses.

Discussion

Across 18 reliability multiverse analyses, and their
colourful visualisations, we explored the influence of
data pre-processing specifications on measure reliabil-
ity. To briefly summarise: Internal consistency reliability
estimates ranged from 0.58 to 0.92 in the Stroop data,
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Figure 4. Internal consistency reliability multiverse for Flanker RT cost at time 1

0.59 to 0.93 in the Flanker data, and -0.28 to 0.68 in the
Dot Probe data. Test-retest reliability estimates ranged
from 0.47 to 0.63 in the Stroop data, 0.29 to 0.72 in the
Flanker data, and 0 to 0.11 in the Dot Probe data. From
the introduction we remember that reliability estimates
are a product of: the sample and the population they
are drawn from, the task (including any differences in
implementation), and the circumstances in which the
measurement was obtained, i.e. reliability is not an in-
herent quality of the task itself. The first conclusion we
can draw from these multiverse analyses is that data
processing specifications are also an integral part of this
list.

At the onset of this project, I thought it reasonable to
assume that a particular feature of the data processing
path might result in consistently higher (and lower) re-
liability estimates. The clearest indication we can take

from these analyses is that there is no single set of data
processing specifications, or combination of data pro-
cessing decisions, that lead to improved reliability. The
wide ranges of estimates are an additional cause for
concern. Seemingly arbitrary data processing decisions
can lead to differences of more than .3 in the reliability
of a measure. These decisions are equally reasonable
and logical choices, and we should not expect them to
have meaningful impact on the theoretical questions be-
ing asked of the data. The reliability multiverse analy-
ses presented here demonstrate this using data from a
Stroop and a Flanker task. As well as across tasks, over-
lapping the time 1 and time 2 multiverses for both tasks
highlights that even the same set of specifications does
not lead to directly comparable internal consistency re-
liability estimates over time. Data processing decisions
appear to be extremely important contributors to mea-
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Figure 5. Internal consistency reliability multiverse for Flanker RT cost at time 2

sure reliability, but their influence is unpredictable and
arbitrary.

The secondary analyses give us more insight into
the relationship between the number of trials retained
through data processing and the resultant reliability es-
timates. The picture is not a simple one. Figure 13 high-
lights the unpredictable influence of what is essentially
another multiverse specification decision – do I remove
half of trials before any other data processing? While
the underlying pattern of more data reduction lead-
ing to greater reliability generally holds across tasks,
within tasks fewer trials led to lower reliability on av-
erage for the Stroop and Flanker tasks (as we should
expect) but not the Dot Probe. More work is needed to
unravel these influences, but a take-home message may
be: while administering more trials to participants is
typically a good thing for reliability, there may be some

benefit (in terms of reliability) of removing more trials.
Though, as I discuss below, pursuit of reliability alone
should not be the goal.

In the core of this discussion I raise several open ques-
tions and suggest some plausible actions that could be
taken to mitigate some of the risk reliability heterogene-
ity poses.

How do we guard against reliability heterogeneity?

In simple bivariate analyses, we usually think low
reliability will simply attenuate estimated effect sizes
(e.g. Spearman, 1904). But the influence can be far
less predictable (the reader may be noticing a trend of
unpredictability in this paper). Low reliability can lead
to elevation of effect size estimates and even reversals
in direction (or examples, see Brakenhoff et al., 2018;
Segerstrom and Boggero, 2020), with the influence be-
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Figure 6. Internal consistency reliability multiverse for Flanker RT cost at time 2

coming more unpredictable in more complex models. It
is therefore important to take reliability heterogeneity
into account when comparing effect sizes (for several
clear examples, see Cooper et al., 2017). It is plau-
sible that some studies may have obtained smaller or
larger effect sizes than others based, in part, on the
reliability of the measurements taken. Similarly, iden-
tical observed effect sizes may represent very different
‘true’ effect sizes, if reliability is taken into account. Re-
cently, Wiernik and Dahlke (2020) made a strong case
for correcting for measurement error in meta-analyses
and provide the necessary formula and code for doing
so. There are several actions we can take to begin to
account for reliability heterogeneity.

Two simple recommendations

To briefly reiterate two recommendations I and my
colleagues have made previously: a) report all data
processing steps taken, and b) report the reliability of
measures analysed (Parsons et al., 2019). These recom-
mendations will not ‘fix’ potential psychometric issues
within one’s study, or reliability heterogeneity across
studies. However, complete reporting of data processing
will assist in the computational reproducibility of one’s
results. Reporting psychometric information will assist
in the interpretation of results, including comparisons of
effect sizes, as well as provide useful information about
the utility of a task in studies of individual differences.
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Figure 7. Overlapped internal consistency reliability multiverse for Stroop RT cost at times 1 and 2

Multiverse analyses as a robustness check

One approach is running a multiverse across a justi-
fied set of data processing specifications (that yield the
same theoretically justified construct of interest, see the
below section on validity) and generating a distribution
of effect sizes from the final analyses under these spec-
ifications. In principle this is the same as a sensitivity
or robustness analysis, and act as a check on the relia-
bility heterogeneity introduced by different (but equally
justifiable) data processing specifications.

Adopt a modelling approach

Incorporating trial level variation into our analy-
ses with hierarchical modelling approaches (aka mixed
models, multilevel models) will likely be a vital step in
protecting us against reliability heterogeneity. Psycho-

logical effects are often heterogeneous across individu-
als (Bolger et al., 2019), and factors within tasks have
important effects [e.g. stimuli differences, (DeBruine
and Barr, 2021). It follows that our models should take
trial-level variation into account. More than this, us-
ing models that capture the theorized data generating
process, including relevant distributions (e.g. response
time distributions are typically very right skewed),
likely have a better chance of capturing the process of
interest in the first place. Using the Stroop and Flanker
data from Hedge et al. (2018) Rouder, Kumar, and Haaf
(2019; also see Rouder and Haaf, 2018) demonstrated
that hierarchical models should be used to account for
error in measurement (for additional guidance on ap-
plying this modelling, see Haines, 2019). Adopting this
approach has the benefit of ‘correcting’ the effect size
estimate (and standard error) for measurement error as
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Figure 8. Overlapped internal consistency reliability multiverse for Flanker RT cost at times 1 and 2

part of the model, rather than as an additional step to
aid in interpretations and effect size comparisons (a step
that is often missed once reliability is deemed “accept-
able”, assuming that reliability is estimated in the first
place). Rouder and colleagues demonstrate that this is
also a more effective approach than ‘correcting’ the ef-
fect size estimate using e.g. Spearman’s correction for
attenuation formula (Spearman, 1904). Yet, even bet-
ter corrections cannot fully save us from measurement
error.

Hierarchical measures do bring their own considera-
tions and potential issues. Applied researchers, or those
without training, may need further support to ensure
the model specifications are appropriate. The model co-
variance structure, and appropriate priors in the case
of Bayesian approaches, do have potential to introduce
additional sources of bias/researcher degrees of free-

dom. But, given existing resources and a growing body
of training materials and work in this area, it is my view
that a modelling approach is likely the best next step
(Haines et al., 2020; Rouder et al., 2019; Sullivan-Toole
et al., 2021; DeBruine and Barr, 2021). An additional
benefit of these approaches is that they typically avoid
much of the data pre-processing aspects discussed in
this paper, and thus the reliability heterogeneity they
generate.

Limitations and room for expansion

A small number of tasks. One limitation of this
study is the focus on a small sample of tasks. It is
possible that data from other tasks tend to yield more
or less consistent patterns of reliability estimates across
data processing specifications. Similarly, I have only ex-
amined RT costs (i.e. a difference score between two
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Figure 9. Internal consistency reliability multiverse for Dot Probe attention bias (angry faces) at times 1, 2, and 3

trial types) as the outcome measure. The analyses could
have examined accuracy rates, RT averages, signal de-
tection, and a wide variety of outcome measures. It is
very possible that other outcome indices would be more
or less consistently reliable across the range of data pro-
cessing specifications. I opted for brevity in this paper
by selecting only these tasks; I welcome future work
seeking to examine a wider range of tasks and outcome
indices.

Extracting the influence of individual decisions.
The analyses here do not allow for an in depth exam-
ination of the influence of specific data processing deci-
sions. Given lack of consistency across timepoints and
measures, I am not confident that robust conclusions
could be drawn about a specific decision compared to
another. A plausible approach to examine this is a Vibra-
tion of Effects analysis (e.g. Klau et al., 2021) in which

the variance of the final distribution of estimates can
be decomposed to examine the relative influence of dif-
ferent categories of decisions, e.g. model specifications
and data processing decisions. Using this information,
we might be able to prioritise sources of measurement
heterogeneity more accurately.

Applicability to experimental vs correlational
analyses. There is a paradox in measurement relia-
bility (see Hedge et al., 2018): Experimental effects
that are highly replicable (for example, the Stroop ef-
fect) may also show low reliability. Homogeneity within
groups or experimental conditions allows for larger and
more robust effects; researchers can opt to develop
tasks that capitalise on homogeneity. Unfortunately,
reliability requires robust individual differences (and
vice versa). Highly reliable measures by necessity show
consistent, potentially large, individual differences and
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Figure 10. Internal consistency reliability multiverse for Dot Probe attention bias (happy faces) at times 1, 2, and 3

would not be suitable for group differences or experi-
mental research. As a result, measures tend to be more
appropriate for questions of a) assessing differences be-
tween groups or experimental conditions, or b) corre-
lational or individual differences. I was primarily con-
cerned with the use of these measures in individual dif-
ferences research – hence the focus on reliability. Yet, it
would be overly simplistic to assert that the discussions
in this paper do not also relate to experimental differ-
ences questions. Indeed, the data processing specifica-
tions that maximise the measure’s utility in individual
differences analyses can also hinder the measure’s util-
ity in experimental questions. Further research would
be needed to quantify the relative influences on correla-
tional vs experimental analyses. Yet, large fluctuations
in relative between-subjects vs within-subjects variance,
due to data processing, holds importance for any re-

search question.
Simulation studies. Several valuable extensions to

the current approach could be made via simulation ap-
proaches. By simulating data with a known measure-
ment structure, we could examine variance in reliability
estimates that operates purely by chance: i.e. where
no systematic differences in reliability exist across pre-
processing decisions. Comparing the distributions to
those observed in tasks such as those analysed here
would offer insight into how severe reliability hetero-
geneity is introduced in “real world” data. These simu-
lations are beyond the scope of this initial paper; how-
ever hold promise to detect variance and bias relative to
a ‘true’ value of reliability in the simulated data.



16

Figure 11. Internal consistency reliability multiverse for Dot Probe attention bias (pain faces) at times 1, 2, and 3

What about validity?

Others have previously demonstrated that measures
are often used ad hoc or with little reported validation
efforts (e.g. Flake et al., 2017; Hussey and Hughes,
2018). This study cannot begin to assess the influence
of data processing flexibility on measure validity – nor
did this paper attempt to address this question. Relia-
bility is only one piece of evidence needed to demon-
strate the validity of a measure. Yet, it is an impor-
tant piece of evidence as “reliability provides an upper
bound for validity” (Zuo et al., 2019, page 3). While
we cannot directly conclude that flexibility in data pro-
cessing influences measure validity, we should look to
further research to investigate. One possibility would
be to conduct a validity multiverse analysis similar to
the “Many Analysts, One Data Set” project (Silberzahn
et al., 2018). In this project, 29 teams (61 analysts to-

tal) analysed the same dataset. The teams adopted a
number of different analytic approaches which resulted
in a range of results. The authors concluded that, “Un-
certainty in interpreting research results is therefore not
just a function of statistical power or the use of ques-
tionable research practices; it is also a function of the
many reasonable decisions that researchers must make
in order to conduct the research” (page 354).

Another important validity consideration is the rela-
tionship between our data processing pipelines and the
(latent) construct of interest. In questionnaire develop-
ment, removing or adapting items might influence re-
liability. But, more importantly, will give rise to a dif-
ferent measure that may be more or less related to our
latent construct of interest. For example, Fried (2017)
found that several common depression questionnaires
captured very different clusters of symptoms, which
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Figure 12. Internal consistency reliability multiverse for Dot Probe attention bias (pain faces) at times 1, 2, and 3

should make us question what is meant by “depression”
in the first place when using these measures.

More relevant to task measures, to maximise reliabil-
ity we might seek to develop a novel version of a task
that relies on average response times, instead of a dif-
ference score between average response times. While
this would yield highly reliable measures, the purpose
of the difference score is to isolate the process of inter-
est. Therefore, while we have maximized reliability, we
have also influenced both the construct of interest and
the validity of the measure. Perhaps this more reliable
measure fails to capture the effect we intended to mea-
sure. For a more in depth discussion about balancing
these theoretical, validity, and reliability considerations
see von Bastian et al. (2020, Goodhew and Edwards,
2019).

With respect to the data pre-processing steps taken in

this paper, it could be reasonably argued that some pre-
processing specifications yield different constructs of in-
terest or could be more or less valid for the process of in-
terest. Are we really interested in the construct includ-
ing only very accurate participants and only 60% of tri-
als close to the average response time? In this sense, the
data pre-processing decisions a researcher might adopt
are certainly not arbitrary from a validity standpoint. A
reasonable approach in applied work would be to select
a narrower set of processing specifications that the re-
searcher believes are theoretically similar enough that
the same construct is being measured.

Returning to the garden

My intention for this project was to provide some
indication about the influence of data processing path-
ways on the reliability of our cognitive measurements.
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Table 1
Correlations between reliability estimates and number of trials retained across specifications

task time measure correlation 95% CI low 95% CI high Difference

Stroop 1 splithalf -0.38 -0.48 -0.28 0.13
Stroop 2 splithalf -0.38 -0.48 -0.28 0.10
Flanker 1 splithalf -0.61 -0.68 -0.53 0.12
Flanker 2 splithalf -0.55 -0.63 -0.47 0.24
DPTangry 1 splithalf -0.54 -0.62 -0.45 -0.03
DPTangry 2 splithalf -0.66 -0.72 -0.58 -0.27
DPTangry 3 splithalf -0.27 -0.37 -0.16 -0.23
DPThappy 1 splithalf -0.58 -0.65 -0.50 -0.02
DPThappy 2 splithalf -0.51 -0.59 -0.42 -0.22
DPThappy 3 splithalf -0.42 -0.51 -0.32 -0.23
DPTpain 1 splithalf -0.59 -0.66 -0.51 -0.06
DPTpain 2 splithalf -0.39 -0.49 -0.29 -0.27
DPTpain 3 splithalf -0.15 -0.26 -0.03 -0.20
Stroop ICC 0.37 0.26 0.46 0.08
Flanker ICC -0.59 -0.66 -0.51 0.11
DPTangry ICC 0.61 0.54 0.68 0.04
DPThappy ICC 0.42 0.32 0.51 -0.01
DPTpain ICC -0.01 -0.12 0.11 0.00

The influence can be profound; the multiverse anal-
yses show large differences between the highest and
lowest reliability estimates. Yet, we see little consis-
tency in the pattern of decisions leading to higher, or
lower, estimates. We have the worst of both worlds:
data processing decisions are largely arbitrary yet can
have a large – relatively unpredictable – impact on the
resulting reliability estimates. Briefly returning to the
garden of forking paths metaphor; I imagined that this
project would help illuminate the point in which our hy-
pothetical researcher would enter the garden, based on
their data processing decisions. But, our investigation
has uncovered an unfortunate secret: Our researcher’s
forking paths are almost entirely arbitrary and interwo-
ven. Each path diverges wildly, leading to almost any-
where in the garden. It is as if our researcher is simply
spinning in dizzy circles until they stumble somewhere
along the fence of reliability. I discussed several actions
researchers can take collectively to help with the issue.
But, by no means were these remedies to our reliabil-
ity issues, nor would they directly help issues with the
validity of our measurements.

Thankfully, there is a growing awareness that mea-
surement matters (Fried & Flake, 2018). A valuable
term, Questionable Measurement Practices (QMPs),
was recently added to our vernacular by Flake and Fried
(2020). QMPs describe “decisions researchers make
that raise doubts about the validity of the measures used
in a study, and ultimately the validity of the final con-

clusion” (p. 458). I hope that QMPs and the importance
of measurement become as widely discussed as the par-
allel idiom, ‘Questionable Research Practices’ (QRPs).
Most importantly, wider discussion of these practices
should make it clear to all researchers that we make
many potentially impactful decisions in the design of
our measures, our data processing or cleaning, and our
data analysis.

I am concerned that we sit on the precipice of a mea-
surement crisis. The so-called replication crisis shook
much of our field into widespread and ongoing reforms.
Yet, much of the focus has been on improving method-
ological and statistical practices. This is undoubtedly
worthwhile, but largely omits discussion of reliability
and validity of our measurements – despite our mea-
surements forming the basis of any outcome or infer-
ence. This oversight feels like repairing a damaged wall
at the same time as ignoring the shifting foundations
under it. I hope that this paper, along other related
work, highlights the issue and encourages researchers
to place more emphasis on quality measurement. As a
field, we can orchestrate a measurement revolution (cf.
the “credibility revolution,” Vazire, 2018) in which the
quality and validity of our measurements is placed an
order of importance above obtaining desired results. If
the reader takes home a single message from this paper,
please let it be “measurement matters.”
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Figure 13. Difference in reliability estimates from all trials to reduced trials. Note: red = test-retest ICC2, blue =
internal consistency estimate
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