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Abstract
Selection for statistical significance is a well-known factor that distorts the published literature and challenges the
cumulative progress in science. Recent replication failures have fueled concerns that many published results are
false-positives. Brunner and Schimmack (2020) developed z-curve, a method for estimating the expected replica-
tion rate (ERR) – the predicted success rate of exact replication studies based on the mean power after selection for
significance. This article introduces an extension of this method, z-curve 2.0. The main extension is an estimate
of the expected discovery rate (EDR) – the estimate of a proportion that the reported statistically significant results
constitute from all conducted statistical tests. This information can be used to detect and quantify the amount
of selection bias by comparing the EDR to the observed discovery rate (ODR; observed proportion of statistically
significant results). In addition, we examined the performance of bootstrapped confidence intervals in simulation
studies. Based on these results, we created robust confidence intervals with good coverage across a wide range of
scenarios to provide information about the uncertainty in EDR and ERR estimates. We implemented the method in
the zcurve R package (Bartoš & Schimmack, 2020).

Keywords: Publication Bias, Selection Bias, Expected Replication Rate, Expected Discovery Rate, File-Drawer, Power,
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It has been known for decades that the published
record in scientific journals is not representative of all
studies that are conducted. For a number of reasons,
most published studies are selected because they re-
ported a theoretically interesting result that is statis-
tically significant; p < .05 (Rosenthal & Gaito, 1964;
Scheel et al., 2021; Sterling, 1959; Sterling et al.,
1995). This selective publishing of statistically signifi-
cant results introduces a bias in the published literature.
At the very least, published effect sizes are inflated. In
the most extreme cases, a false-positive result is sup-

ported by a large number of statistically significant re-
sults (Rosenthal, 1979).

Some sciences (e.g., experimental psychology) tried
to reduce the risk of false-positive results by demanding
replication studies in multiple-study articles (c.f., Weg-
ner, 1992). However, internal replication studies pro-
vided a false sense of replicability because researchers
used questionable research practices to produce suc-
cessful internal replications (Francis, 2014; John et al.,
2012; Schimmack, 2012). The pervasive presence of
publication bias at least partially explains replication
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failures in social psychology (Open Science Collabo-
ration, 2015; Pashler & Wagenmakers, 2012; Schim-
mack, 2020; Schimmack, 2012) medicine (Begley & El-
lis, 2012; Prinz et al., 2011), and economics (Camerer
et al., 2016; Chang & Li, 2015).

In meta-analyses, the problem of publication bias is
usually addressed by one of the different methods for
its detection and a subsequent adjustment of effect size
estimates. However, many of them (Egger et al., 1997;
Ioannidis & Trikalinos, 2007; Schimmack, 2012) per-
form poorly under conditions of heterogeneity (Renke-
witz & Keiner, 2019), whereas others employ a meta-
analytic model assuming that the studies are conducted
on a single phenomenon (e.g., Hedges, 1992; Maier et
al., 2022; Vevea & Hedges, 1995). Moreover, while the
aforementioned methods test for publication bias (re-
turn a p-value or a Bayes factor), they usually do not
provide a quantitative estimate of selection bias. An
exception would be the publication probabilities/ratios
estimates from selection models (e.g., Hedges, 1992).
Maximum likelihood selection models work well when
the distribution of effect sizes is consistent with model
assumptions, but can be biased when the distribution
when the actual distribution does not match the ex-
pected distribution (e.g., Brunner & Schimmack, 2020;
Hedges, 1992; Vevea & Hedges, 1995). Brunner and
Schimmack (2020) introduced a new method that does
not require a priori assumption about the distribution
of effect sizes. The z-curve method uses a finite mix-
ture model to correct for selection bias. We extended
z-curve to also provide information about the amount
of selection bias. To distinguish between the new and
old z-curve methods, we refer to the old z-curve as z-
curve 1.0 and the new z-curve as z-curve 2.0. Z-curve
2.0 has been implemented in the open statistic program
R as the zcurve package that can be downloaded from
CRAN (Bartoš & Schimmack, 2020).

Before we introduce z-curve 2.0, we would like to
introduce some key statistical terms. We assume that
readers are familiar with the basic concepts of sta-
tistical significance testing; normal distribution, null-
hypothesis, alpha, type-I error, and false-positive result
(see Bartoš & Maier, In press, for discussion of some of
those concepts and their relation).

Glossary

Power is defined as the long-run relative frequency of
statistically significant results in a series of exact repli-
cation studies with the same sample size when the null-
hypothesis is false. For example, in a study with two
groups (n = 50), a population effect size of Cohen’s
d = 0.4 has 50.8% power to produce a statistically signif-
icant result. Thus, 100 replications of this study are ex-

pected to produce approximately 50 statistically signifi-
cant results. The actual frequency will approach 50.8%
as the study is repeated infinitely.

Unconditional power extends the concept of power
to studies where the null-hypothesis is true. Typically,
power is a conditional probability assuming a non-zero
effect size (i.e., the null-hypothesis is false). However,
the long-run relative frequency of statistically signifi-
cant results is also known when the null-hypothesis is
true. In this case, the long-run relative frequency is de-
termined by the significance criterion, alpha. With al-
pha = 5%, we expect that 5 out of 100 studies will pro-
duce a statistically significant result. We use the term
unconditional power to refer to the long-run frequency
of statistically significant results without conditioning
on a true effect. When the effect size is zero and alpha
is 5%, unconditional power is 5%. As we only consider
unconditional power in this article, we will use the term
power to refer to unconditional power, just like Canadi-
ans use the term hockey to refer to ice hockey.

Mean (unconditional) power is a summary statistic
of studies that vary in power. Mean power is simply the
arithmetic mean of the power of individual studies. For
example, two studies with power = 0.4 and power =
0.6, have a mean power of 0.5.

Discovery rate is a relative frequency of statistically
significant results. Following Sorić (1989), we call sta-
tistically significant results discoveries. For example, if
100 studies produce 36 statistically significant results,
the discovery rate is 36%. Importantly, the discovery
rate does not distinguish between true or false discover-
ies. If only false-positive results were reported, the dis-
covery rate would be 100%, but none of the discoveries
would reflect a true effect (Rosenthal, 1979).

Selection bias is a process that favors the publica-
tion of statistically significant results. Consequently, the
published literature has a higher percentage of statis-
tically significant results than was among the actually
conducted studies. It results from significance testing
that creates two classes of studies separated by the sig-
nificance criterion alpha. Those with a statistically sig-
nificant result, p < .05, where the null-hypothesis is re-
jected, and those with a statistically non-significant re-
sult, where the null-hypothesis is not rejected, p > .05.
Selection for statistical significance limits the popula-
tion of all studies that were conducted to the popula-
tion of studies with statistically significant results. For
example, if two studies produce p-values of .20 and .01,
only the study with the p-value .01 is retained. Selection
bias is often called publication bias. Studies show that
authors are more likely to submit findings for publica-
tion when the results are statistically significant (Franco
et al., 2014)
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Observed discovery rate (ODR) is the percentage of
statistically significant results in an observed set of stud-
ies. For example, if 100 published studies have 80 sta-
tistically significant results, the observed discovery rate
is 80%. The observed discovery rate is higher than the
true discovery rate when selection bias is present.

Expected discovery rate (EDR) is the mean power
before selection for significance; in other words, the
mean power of all conducted studies with statistically
significant and non-significant results. As power is the
long-run relative frequency of statistically significant re-
sults, the mean power before selection for significance
is the expected relative frequency of statistically signif-
icant results. As we call statistically significant results
discoveries, we refer to the expected percentage of sta-
tistically significant results as the expected discovery
rate. For example, if we have two studies with power of
0.05 and 0.95, we are expecting 1 statistically significant
result and an EDR of 50%, (0.95 + 0.05)/2 = 0.50.

Expected replication rate (ERR) is the mean power
after selection for significance, in other words, the mean
power of only the statistically significant studies. Fur-
thermore, since most people would declare a replica-
tion successful only if it produces a result in the same
direction, we base ERR on the power to obtain a sta-
tistically significant result in the same direction. Us-
ing the prior example, we assume that the study with
5% power produced a statistically non-significant re-
sult and the study with 95% power produced a statis-
tically significant result. In this case, we end up with
only one statistically significant result with 95% power.
Subsequently, the mean power after selection for signif-
icance is 95% (there is almost zero chance that a study
with 95% power would produce replication with an out-
come in the opposite direction). Based on this estimate,
we would predict that 95% of exact replications of this
study with the same sample size, and therefore with
95% power, will be statistically significant in the same
direction.

As mean power after selection for significance pre-
dicts the relative frequency of statistically significant re-
sults in replication studies, we call it the expected repli-
cation rate. The ERR also corresponds to the “aggregate
replication probability” discussed by Miller (2009).

Numerical Example

Before introducing the formal model, we illustrate
the concepts with a fictional example. In the exam-
ple, researchers test 100 true hypotheses with 100%
power (i.e., every test of a true hypothesis produces
p < .05) and 100 false hypotheses (H0 is true) with
5% power which is determined by alpha = .05. Conse-
quently, the researchers obtain 100 true positive results

and 5 false-positive results, for a total of 105 statisti-
cally significant results. The expected discovery rate is
(1 × 100 + 0.05 × 100)/(100 + 100) = 105/200 = 52.5%
which corresponds to the observed discovery rate when
all conducted studies are reported.

So far, we have assumed that there is no selection
bias. However, let us now assume that 50 of the 95
statistically non-significant results are not reported. In
this case, the observed discovery rate increased from
105/200 to 105/150 = 70%. The discrepancy between
the EDR, 52.5%, and the ODR, 70%, provides quantita-
tive information about the amount of selection bias.

As shown, the EDR provides valuable information
about the typical power of studies and about the pres-
ence of selection bias. However, it does not provide in-
formation about the replicability of the statistically sig-
nificant results. The reason is that studies with higher
power are more likely to produce a statistically sig-
nificant result in replications (Brunner & Schimmack,
2020; Miller, 2009). The main purpose of z-curve 1.0
was to estimate the mean power after selection for sig-
nificance to predict the outcome of exact replication
studies. In the example, only 5 of the 100 false hypothe-
ses were statistically significant. In contrast, all 100 tests
of the true hypothesis were statistically significant. This
means that the mean power after selection for signifi-
cance is (5 × 0.025 + 100 × 1)/(5 + 100) = 100.125/105 ≈
95.4%, which is the expected replication rate.

Formal Introduction

Unfortunately, there is no standard symbol for power,
which is usually denoted as 1−β, with β being the prob-
ability of a type-II error. We propose to use epsilon, ϵ, as
a Greek symbol for power because one Greek word for
power starts with this letter (ϵξoνσια). We further add
subscript 1 or 2, depending on whether the direction of
the outcome is relevant or not. Therefore, ϵ2 denotes
power of a study regardless of the direction of the out-
come and ϵ1 denotes power of a study in a specified
direction.

The EDR,

EDR =
∑K

k=1 ϵ2,k

K
, (1)

is defined as the mean power (ϵ2) of a set of K stud-
ies, independent on the outcome direction. Following
Brunner and Schimmack (2020), the expected replica-
tion rate (ERR) is defined as the ratio of mean squared
power and mean power of all studies, statistically sig-
nificant and non-significant ones. We modify the def-
inition here by taking the direction of the replication
study into account. The mean square power in the nom-
inator is used because we are computing the expected
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relative frequency of statistically significant studies pro-
duced by a set of already statistically significant stud-
ies – if a study produces a statistically significant result
with probability equal to its power, the chance that the
same study will again be significant is power squared.
The mean power in the denominator is used because
we are restricting our selection to only already statisti-
cally significant studies which are produced at the rate
corresponding to their power (see also Miller, 2009).
The ratio simplifies by omitting division by K in both
the nominator and denominator to:

ERR =
∑K

k=1 ϵ2,k × ϵ1,k∑K
k=1 ϵ2,k

, (2)

which can also be read as a weighted mean power,
where each power is weighted by itself. The weights
originate from the fact that studies with higher power
are more likely to produce statistically significant re-
sults. The weighted mean power of all studies is there-
fore equal to the unweighted mean power of the stud-
ies selected for significance (ksig; cf. Brunner & Schim-
mack, 2020).

If we have a set of studies with the same power (e.g.,
set of exact replications with the same sample size) that
test for an effect with a z-test, the p-values converted
to z-statistics follow a normal distribution with mean µz

and a standard deviation equal to 1. Using an alpha
level α, the power is the tail area of a standard normal
distribution (Φ) centered over a mean, (µz) on the left
and right side of the z-statistics corresponding to alpha,
−1.96 and 1.96 (with the usual alpha = .05),

ϵ2,z = 1 − Φ(1.96 − µz) + Φ(−1.96 − µz), (3)

or the tail area on the right side of the z-statistics
corresponding to alpha, when we are also considering
whether the directionality of the effect,

ϵ1,z = 1 − Φ(1.96 − µz). (4)

Two-sided p-values do not preserve the direction of
the deviation from null and we cannot know whether a
z-statistic comes from the lower or upper tail of the dis-
tribution. Therefore, we work with absolute values of
z-statistics, changing their distribution from normal to
folded normal distribution (Elandt, 1961; Leone et al.,
1961).

Figure 1 illustrates the key concepts of z-curve with
various examples. The first three density plots in the
first row show the sampling distributions for studies
with low (ϵ = 0.3), medium (ϵ = 0.5), and high (ϵ = 0.8)
power, respectively. The last density plots illustrate
the distribution that is obtained for a mixture of stud-
ies with low, medium, and high power with equal fre-

quency (33.3% each). It is noteworthy that all four den-
sity distributions have different shapes. While Figure 1
illustrates how differences in power produce differences
in the shape of the distributions, z-curve works back-
ward and uses the shape of the distribution to estimate
power.

Although z-curve can be used to fit the distributions
in the first row, we assume that the observed distribu-
tion of all z-statistics is distorted by the selection bias.
Even if some statistically non-significant p-values are
reported, their distribution is subject to unknown se-
lection effects. Therefore, by default z-curve assumes
that selection bias is present and uses only the distri-
bution of statistically significant results. This changes
the distributions of z-statistics to folded normal distribu-
tions that are truncated at the z-statistic corresponding
to the significance criterion, which is typically z = 1.96
for p = .05 (two-tailed). The second row in Figure 1
shows these truncated folded normal distributions. Im-
portantly, studies with different levels of power produce
different distributions despite the truncation. The dif-
ferent shapes of truncated distributions make it possible
to estimate power by fitting a model to the truncated
distribution.

The third row of Figure 1 illustrates the EDR as a
proportion of statistically significant studies from all
conducted studies. We use Equation 3 to re-express
EDR (Equation 1), which equals the mean uncondi-
tional power, of a set of K heterogeneous studies using
the means of sampling distributions of their z-statistics,
µz,k,

EDR =
∑K

k=1 ϵ2,z,k

K
. (5)

Z-curve makes it possible to estimate the shape of the
distribution in the region of statistically non-significant
results on the basis of the observed distribution of sta-
tistically significant results. That is, after fitting a model
to the grey area of the curve, it extrapolates the full
distribution.

The fourth row of Figure 1 visualizes a distribution of
expected z-statistics if the statistically significant studies
were to be exactly replicated (not depicting the small
proportion of results in the opposite direction than the
original, significant, result). The full line highlights the
portion of studies that would produce a statistically sig-
nificant result, with the distribution of statistically non-
significant studies drawn using the dashed line. An ex-
act replication with the same sample size of the stud-
ies in the grey area in the second row is not expected
to reproduce the truncated distribution again because
truncation is a selection process. The replication distri-
bution is not truncated and produces statistically signif-
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Figure 1. Density (y-axis) of z-statistics (x-axis) generated by studies with different powers (columns) across different
stages of the publication process (rows). The first row shows a distribution of z-statistics from z-tests homogeneous
in power (the first three columns) or by their mixture (the fourth column). The second row shows only statistically
significant z-statistics. The third row visualizes EDR as a proportion of statistically significant z-statistics out of
all z-statistics. The fourth row shows a distribution of z-statistics from exact replications of only the statistically
significant studies (dashed line for non-significant replication studies). The fifth row visualizes ERR as a proportion
of statistically significant exact replications out of statistically significant studies.

icant and non-significant results. By modeling the se-
lection process, z-curve predicts the non-truncated dis-
tributions in the fourth row from the truncated distribu-
tions in the second row.

The fifth row of Figure 1 visualizes ERR as a propor-
tion of statistically significant exact replications in the
expected direction from a set of the previously statis-
tically significant studies. The ERR (Equation 2) of a
set of heterogeneous studies can be again re-expressed
using Equations 3 and 4 with the means of sampling
distributions of their z-statistics,

ERR =
∑K

k=1 ϵ2,z,k × ϵ1,z,k∑K
k=1 ϵ2,z,k

. (6)

Z-curve 2.0

Z-curve is a finite mixture model (Brunner & Schim-
mack, 2020). Finite mixture models leverage the fact
that an observed distribution of statistically significant
z-statistics is a mixture of K truncated folded normal
distribution with means µz,k and standard deviations 1.
Instead of trying to estimate µz,k of every single observed
z-statistic, a finite mixture model approximates the ob-
served distribution based on K studies with a smaller set
of J truncated folded normal distributions, f (z; θ), with
J < K components,

f (z; θ) =
J∑

j=1

π j f j[a,b](z; θ j). (7)
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Each mixture component j approximates a propor-
tion of π j observed z-statistics with a probability density
function, f j[a,b], of truncated folded normal distribution
with parameters θ j – a mean µz, j and standard deviation
equal to 1. For example, while actual studies may vary
in power from 40% to 60%, a mixture model may rep-
resent all of these studies with a single component with
50% power.

Z-curve 1.0 used three components with varying
means. Extensive testing showed that varying means
produced poor estimates of the EDR. Therefore, we
switched to models with fixed means and increased the
number of components to seven. The seven components
are equally spaced by one standard deviation from z = 0
(power = alpha) to 6 (power ≈ 1). As power for z-
statistics greater than 6 is essentially 1, it is not neces-
sary to model the distribution of z-statistics greater than
6, and all z-statistics greater than 6 are assigned a power
value of 1 (Brunner & Schimmack, 2020). The power
values implied by the 7 components are 0.05, 0.17, 0.50,
0.85, 0.98, 0.999, 0.99997. We also tried a model with
equal spacing of power, and we tried models with fewer
or more components, but neither did improve perfor-
mance in simulation studies. We use the model parame-
ter estimates to compute the estimated EDR and ERR as
the weighted average of seven truncated folded normal
distributions centered over z = 0 to 6,

ÊDR ≈
J∑

j=1

π̂ j × ϵ2,z, j, (8)

ÊRR ≈

∑J
j=1 π̂ j × ϵ2,z, j × ϵ1,z, j∑J

j=1 π̂ j × ϵ2,z, j
.

Curve Fitting

Z-curve 1.0 used an unorthodox approach to find
the best fitting model that required fitting a truncated
kernel-density distribution to the statistically significant
z-statistics (Brunner & Schimmack, 2020). This is a
non-trivial step that may produce some systematic bias
in estimates. Z-curve 2.0 makes it possible to fit the
model directly to the observed z-statistics using the well-
established expectation maximization (EM) algorithm
that is commonly used to fit mixture models (Dempster
et al., 1977; Lee & Scott, 2012). Using the EM algorithm
has the advantage that it is a well-validated method to
fit mixture models. It is beyond the scope of this article
to explain the mechanics of the EM algorithm (Bishop,
2006, e.g., ), but it is important to point out some of its
potential limitations. The main limitation is that it may
terminate the search for the best fit before the best fit-
ting model has been found. In order to prevent this, we

run 20 searches with randomly selected starting values
and terminate the algorithm in the first 100 iterations, or
if the criterion falls below 10−3. We then select the out-
come with the highest likelihood value and continue un-
til 1000 iterations or a criterion value of 10−5 is reached.
To speed up the fitting process, we optimized the proce-
dure using Rcpp (Eddelbuettel & François, 2011).

Information about point estimates should be accom-
panied by information about uncertainty whenever pos-
sible. The most common way to do so is by providing
confidence intervals. We followed the common practice
of using bootstrapping to obtain confidence intervals for
mixture models (Ujeh et al., 2016). As bootstrapping is
a resource-intensive process, we used 500 samples for
the simulation studies. Users of the z-curve package can
use more iterations to analyze actual data.

Simulations

Brunner and Schimmack (2020) compared several
methods for estimating mean power and found that z-
curve performed better than three competing methods.
However, these simulations were limited to the estima-
tion of the ERR. Here we present new simulation stud-
ies to examine the performance of z-curve as a method
to estimate the EDR as well. One simulation directly
simulated power distributions, the other one simulated
t-tests. We report the detailed results of both simulation
studies in a Supplement. For the sake of brevity, we
focus on the simulation of t-tests because readers can
more easily evaluate the realism of these simulations.
Moreover, most tests in psychology are t-tests or F-tests
and Brunner and Schimmack (2020) already showed
that the numerator degrees of freedom of F-tests do
not influence results. Thus, the results for t-tests can
be generalized to F-tests and z-tests.

The simulation was a complex 4× 4× 4× 3× 3 design
with 576 cells. The first factor of the design that was
manipulated was the mean effect size with Cohen’s ds
ranging from 0 to 0.6 (0, 0.2, 0.4, 0.6). The second factor
in the design was heterogeneity in effect sizes was simu-
lated with a normal distribution around the mean effect
size with SDs ranging from 0 to 0.6 (0, 0.2, 0.4, 0.6).
Preliminary analysis with skewed distributions showed
no influence of skew. The third factor of the design was
sample size for between-subject design with N = 50,
100, and 200. The fourth factor of the design was the
percentage of true null-hypotheses that ranged from 0
to 60% (0%, 20%, 40%, 60%). The last factor of the
design was the number of studies with sets of k = 100,
300, and 1, 000 statistically significant studies.

Each cell of the design was run 100 times for a total of
57, 600 simulations. For the main effects of this design
there were 57, 600/4 = 14, 400 or 57, 600/3 = 19, 200



7

simulations. Even for two-way interaction effects, the
number of simulations is sufficient, 57, 600/16 = 3, 600.
For higher interactions the design may be underpow-
ered to detect smaller effects. Thus, our simulation
study meets recommendations for sample sizes in simu-
lation studies for main effects and two-way interactions,
but not for more complex interaction effects (Morris et
al., 2019). The code for the simulations is accessible at
https://osf.io/r6ewt/.

Evaluation

For a comprehensive evaluation of z-curve 2.0 esti-
mates, we report bias (i.e., mean distance between esti-
mated and true values), root mean square error (RMSE;
quantifying the error variance of the estimator), and
confidence interval coverage (Morris et al., 2019). To
check the performance of the z-curve across different
simulation settings, we analyzed the results of the facto-
rial design using analyses of variance (ANOVAs) for con-
tinuous measures and logistic regression for the evalua-
tion of confidence intervals (0 = true value not in the
interval, 1 = true value in the interval). The analy-
sis scripts and results are accessible at https://osf.io/
r6ewt/.

Results

We start with the ERR because it is essentially a con-
ceptual replication study of Brunner and Schimmack
(2020) simulation studies with z-curve 1.0.

ERR. Visual inspection of the z-curves ERR esti-
mates plotted against the true ERR values did not show
any pathological behavior due to the approximation by
a finite mixture model (Figure 2).

Figure 2 shows that even with k = 100 studies, z-
curve estimates are clustered close enough to the true
values to provide useful predictions about the replica-
bility of sets of studies. Overall bias was less than
one percentage point, −0.88 (SEMCMC = 0.04). This
confirms that z-curve has high large-sample accuracy
(Brunner & Schimmack, 2020). RMSE decreased from
5.14 (SEMCMC = 0.03) percentage points with k = 100 to
2.21 (SEMCMC = 0.01) percentage points with k = 1, 000.
Thus, even with relatively small sample sizes of 100
studies, z-curve can provide useful information about
the ERR.

The Analysis of Variance (ANOVA) showed no statisti-
cally significant 5-way interaction or 4-way interactions.
A strong three-way interaction was found for effect size,
heterogeneity of effect sizes, and sample size, z = 9.42.
Despite the high statistical significance, effect sizes were
small. Out of the 36 cells of the 4 × 3 × 3 design, 32
cells showed less than one percentage point bias. Larger

biases were found when effect sizes were large, het-
erogeneity was low, and sample sizes were small. The
largest bias was found for Cohen’s d = 0.6, SD = 0, and
N = 50. In this condition, ERR was 4.41 (SEMCMC = 0.11)
percentage points lower than the true replication rate.
The finding that z-curve performs worse with low het-
erogeneity replicates findings by Brunner and Schim-
mack (2020). One reason could be that a model with
seven components can easily be biased when most pa-
rameters are zero. The fixed components may also cre-
ate a problem when true power is between two fixed
levels. Although a bias of 4 percentage points is not
ideal, it also does not undermine the value of a model
that has very little bias across a wide range of scenarios.

The number of studies had a two-way interaction
with effect size, z = 3.8, but bias in the 12 cells of the
4 × 3 design was always less than 2 percentage points.
Overall, these results confirm the fairly good large sam-
ple accuracy of the ERR estimates.

We used logistic regression to examine patterns in
the coverage of the 95% confidence intervals. This time
a statistically significant four-way interaction emerged
for effect size, heterogeneity of effect sizes, sample size,
and the percentage of true null-hypotheses, z = 10.94.
Problems mirrored the results for bias. Coverage was
low when there were no true null-hypotheses, no het-
erogeneity in effect sizes, large effects, and small sam-
ple sizes. Coverage was only 31.3% (SEMCMC = 2.68)
when the percentage of true H0 was 0, heterogeneity of
effect sizes was 0, the effect size was Cohen’s d = 0.6,
and the sample size was N = 50.

In statistics, it is common to replace confidence in-
tervals that fail to show adequate coverage with con-
fidence intervals that provide good coverage with real
data; these confidence intervals are often called robust
confidence intervals (Royall, 1996). We suspected that
low coverage was related to systematic bias. When con-
fidence intervals are drawn around systematically bi-
ased estimates, they are likely to miss the true effect
size by the amount of systematic bias, when sampling
error pushes estimates in the same direction as the sys-
tematic bias. To increase coverage, it is therefore nec-
essary to take systematic bias into account. We created
robust confidence intervals by adding three percentage
points on each side. This is very conservative because
the bias analysis would suggest that only adjustment in
one direction is needed.

The logistic regression analysis still showed some sta-
tistically significant variation in coverage. The most no-
table finding was a 2-way interaction for effect size and
sample size, z = 4.68. However, coverage was at 95%
or higher for all 12 cells of the design. Further inspec-
tion showed that the main problem remained scenarios

https://osf.io/r6ewt/
https://osf.io/r6ewt/
https://osf.io/r6ewt/
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Figure 2. Estimated (y-axis) vs. true (x-axis) ERR in simulation U across a different number of studies.

with high effect sizes (d = 0.6) and no heterogeneity
(SD = 0), but even with small heterogeneity, SD = 0.2,
this problem disappeared. We therefore recommend ex-
tending confidence intervals by three percentage points.
This is the default setting in the z-curve package, but
the package allows researchers to change these settings.
Moreover, in meta-analyses of studies with low hetero-
geneity, alternative methods that are more appropri-
ate for homogeneous methods (e.g., selection models;
Hedges, 1992) may be used or the number of compo-
nents could be reduced.

EDR. Visual inspection of EDRs plotted against the
true discovery rates (Figure 3) showed a noticeable in-
crease in uncertainty. This is to be expected as EDR
estimates require estimation of the distribution for sta-
tistically non-significant z-statistics solely on the basis of
the distribution of statistically significant results.

Despite the high variability in estimates, they can be
useful. With the observed discovery rate in psychol-
ogy being often over 90% (Sterling, 1959), many of
these estimates would alert readers that selection bias
is present. A bigger problem is that the highly variable
EDR estimates might lack the power to detect selection
bias in small sets of studies.

Across all studies, systematic bias was small, 1.42
(SEMCMC = 0.08) for 100 studies, 0.57 (SEMCMC = 0.06)
for 300 studies, 0.16 (SEMCMC = 0.05) percentage points
for 1000 studies. This shows that the shape of the dis-
tribution of statistically significant results does provide
valid information about the shape of the full distribu-
tion. Consistent with Figure 3, RMSE values were large
and remained fairly large even with larger number of
studies, 11.70 (SEMCMC = 0.11) for 100 studies, 8.88
(SEMCMC = 0.08) for 300 studies, 6.49 (SEMCMC = 0.07)
percentage points for 1000 studies. These results show
how costly selection bias is because more precise esti-
mates of the discovery rate would be available without

selection bias.
The main consequence of high RMSE is that confi-

dence intervals are expected to be wide. The next anal-
ysis examined whether confidence intervals have ade-
quate coverage. This was not the case; coverage =
87.3% (SEMCMC = 0.14). We next used logistic regres-
sion to examine patterns in coverage in our simulation
design. A notable 3-way interaction between effect size,
sample size, and percentage of true H0 was present,
z = 3.83. While the pattern was complex, not a single
cell of the design showed coverage over 95%.

As before, we created robust confidence intervals by
extending the interval. We settled for an extension by
five percentage points. The 3-way interaction remained
statistically significant, z = 3.36. Now 43 of the 48 cells
showed coverage over 95%. For reasons that are not
clear to us, the main problem occurred for an effect
size of Cohen’s d = 0.4 and no true H0, independent
of sample size. While improving the performance of z-
curve remains an important goal and future research
might find better approaches to address this problem,
for now, we recommend using z-curve 2.0 with these
robust confidence intervals, but users can specify more
conservative adjustments.

Application to Real Data

It is not easy to evaluate the performance of z-curve
2.0 estimates with actual data because selection bias is
ubiquitous and direct replication studies are fairly rare
(Zwaan et al., 2018). A notable exception is the Open
Science Collaboration project that replicated 100 studies
from three psychology journals (Open Science Collabo-
ration, 2015). This unprecedented effort has attracted
attention within and outside of psychological science
and the article has already been cited over 1, 000 times.
The key finding was that out of 97 statistically signifi-
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Figure 3. Estimated (y-axis) vs. true (x-axis) EDR across a different number of studies.

cant results, including marginally significant ones, only
36 replication studies (37%) reproduced a statistically
significant result in the replication attempts.

This finding has produced a wide range of reactions.
Often the results are cited as evidence for a replication
crisis in psychological science, especially social psychol-
ogy (Schimmack, 2020). Others argue that the replica-
tion studies were poorly carried out and that many of
the original results are robust findings (Bressan, 2019).
This debate mirrors other disputes about failures to
replicate original results. The interpretation of replica-
tion studies is often strongly influenced by researchers’
a priori beliefs. Thus, they rarely settle academic dis-
putes. Z-curve analysis can provide valuable informa-
tion to determine whether an original or a replication
study is more trustworthy. If a z-curve analysis shows
no evidence for selection bias and a high ERR, it is
likely that the original result is credible and the repli-
cation failure is a false negative result or the replication
study failed to reproduce the original experiment. On
the other hand, if there is evidence for selection bias and
the ERR is low, replication failures are expected because
the original results were obtained with questionable re-
search practices.

Another advantage of z-curve analyses of published
results is that it is easier to obtain large representative
samples of studies than to conduct actual replication
studies. To illustrate the usefulness of z-curve analy-
ses, we focus on social psychology because this field
has received the most attention from meta-psychologists
(Schimmack, 2020). We fitted z-curve 2.0 to two stud-
ies of published test statistics from social psychology
and compared these results to the actual success rate
in the Open Science Collaboration project (k = 55).

One sample is based on Motyl et al. (2017) assess-
ment of the replicability of social psychology (k = 678).
The other sample is based on the coding of the most

highly cited articles by social psychologists with a high
H-Index (k = 2, 208; Schimmack, 2021). The ERR es-
timates were 44%, 95% CI [35, 52]%, and 51%, 95% CI
[45, 56]%. The two estimates do not differ significantly
from each other, but both estimates are considerably
higher than the actual discovery rate in the OSC repli-
cation project, 25%, 95% CI [13, 37]%. We postpone the
discussion of this discrepancy to the discussion section.

The EDRs estimates were 16%, 95% CI [5, 32]%, and
14%, 95% CI [7, 23]%. Again, both of the estimates over-
lap and do not significantly differ. At the same time,
the EDR estimates are much lower than the ODRs in
these two data sets (90%, 89%). The z-curve analysis
of published results in social psychology shows a strong
selection bias that explains replication failures in actual
replication attempts. Thus, the z-curve analysis reveals
that replication failures cannot be attributed to prob-
lems of the replication attempts. Instead, the low EDR
estimates show that many non-significant original re-
sults are missing from the published record.

Discussion

A previous article introduced z-curve as a viable
method to estimate mean power after selection for sig-
nificance (Brunner & Schimmack, 2020). This is a use-
ful statistic because it predicts the success rate of exact
replication studies. We therefore call this statistic the
expected replication rate. Studies with a high replica-
tion rate provide credible evidence for a phenomenon.
In contrast, studies with a low replication rate are un-
trustworthy and require additional evidence.

We extended z-curve 1.0 in two ways. First, we im-
plemented the expectation maximization algorithm to
fit the mixture model to the observed distribution of
z-statistics. This is a more conventional method to fit
mixture models. We found that this method produces
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good estimates, but it did not eliminate some of the
systematic biases that were observed with z-curve 1.0.
More important, we extended z-curve to estimate the
mean power before selection for significance. We call
this statistic the expected discovery rate because mean
power predicts the percentage of statistically significant
results for a set of studies. We found that EDR estimates
have satisfactory large sample accuracy, but vary widely
in smaller sets of studies. This limits the usefulness for
meta-analysis of small sets of studies, but as we demon-
strated with actual data, the results are useful when a
large set of studies is available. The comparison of the
EDR and ODR can also be used to assess the amount of
selection bias. A low EDR can also help researchers to
realize that they test too many false hypotheses or test
true hypotheses with insufficient power.

In contrast to Miller (2009), who stipulates that es-
timating the ERR (“aggregated replication probability”)
is unattainable due to selection processes, Brunner and
Schimmack (2020) z-curve 1.0 addresses the issue by
modeling the selection for significance.

Finally, we examined the performance of boot-
strapped confidence intervals in simulation studies. We
found that coverage for 95% confidence intervals was
sometimes below 95%. To improve the coverage of con-
fidence intervals, we created robust confidence intervals
that added three percentage points to the confidence
interval of the ERR and five percentage points to the
confidence interval of the EDR.

We demonstrate the usefulness of the EDR and confi-
dence intervals with an example from social psychology.
We find that ERR overestimates the actual replicability
in social psychology. We also find clear evidence that
power in social psychology is low and that high success
rates are mostly due to selection for significance. It is
noteworthy that while the Motyl et al. (2017) dataset is
representative for social psychology, Schimmack (2021)
dataset sampled highly influential articles. The fact that
both sampling procedures produced similar results sug-
gests that studies by eminent researchers or studies with
high citation rates are no more replicable than other
studies published in social psychology.

Z-curve 2.0 does provide additional valuable infor-
mation that was not provided by z-curve 1.0. Moreover,
z-curve 2.0 is available as an R-package, making it eas-
ier for researchers to conduct z-curve analyses (Bartoš &
Schimmack, 2020). This article provides the theoretical
background for the use of the z-curve package. Subse-
quently, we discuss some potential limitations of z-curve
2.0 analysis and compare z-curve 2.0 to other methods
that aim to estimate selection bias or power of studies.

Bias Detection Methods

In theory, bias detection is as old as meta-analysis.
The first bias test showed that Mendel’s genetic experi-
ments with peas had less sampling error than a statisti-
cal model would predict (Pires & Branco, 2010). How-
ever, when meta-analysis emerged as a widely used tool
to integrate research findings, selection bias was often
ignored. Psychologists focused on fail-safe N (Rosen-
thal, 1979), which did not test for the presence of bias
and often led to false conclusions about the credibility
of a result (Ferguson & Heene, 2012). The most com-
mon tools to detect bias rely on correlations between
effect sizes and sample size. A key problem with this
approach is that it often has low power and that results
are not trustworthy under conditions of heterogeneity
(Inzlicht et al., 2015; Renkewitz & Keiner, 2019). The
tests are also not useful for meta-analysis of heteroge-
neous sets of studies where researchers use larger sam-
ples to study smaller effects, which also introduces a
correlation between effect sizes and sample sizes. Due
to these limitations, evidence of bias has been dismissed
as inconclusive (Cunningham & Baumeister, 2016; In-
zlicht & Friese, 2019).

It is harder to dismiss evidence of bias when a set
of published studies has more statistically significant re-
sults than the power of the studies warrants; that is,
the ODR exceeds the EDR (Sterling et al., 1995). Aside
from z-curve 2.0, there are two other bias tests that rely
on a comparison of the ODR and EDR to evaluate the
presence of selection bias, namely the Test of Excessive
Significance (TES; Ioannidis & Trikalinos, 2007) and the
Incredibility Test (IT; Schimmack, 2012).

Z-curve 2.0 has several advantages over the existing
methods. First, TES was explicitly designed for meta-
analysis with little heterogeneity and may produce bi-
ased results when heterogeneity is present (Renkewitz
& Keiner, 2019). Second, both the TES and the IT take
observed power at face value. As observed power is
inflated by selection for significance, the tests have low
power to detect selection for significance, unless the se-
lection bias is large. Finally, TES and IT rely on p-values
to provide information about bias. As a result, they do
not provide information about the amount of selection
bias.

Z-curve 2.0 overcomes these problems by correcting
the power estimate for selection bias, providing quan-
titative evidence about the amount of bias by compar-
ing the ODR and EDR, and by providing evidence about
statistical significance by means of a confidence interval
around the EDR estimate. Thus, z-curve 2.0 is a valu-
able tool for meta-analysts, especially when analyzing a
large sample of heterogenous studies that vary widely in
designs and effect sizes. As we demonstrated with our
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example, the EDR of social psychology studies is very
low. This information is useful because it alerts readers
to the fact that not all p-values below .05 reveal a true
and replicable finding.

Nevertheless, z-curve has some limitations. One limi-
tation is that it does not distinguish between significant
results with opposite signs. In the presence of multi-
ple tests of the same hypothesis with opposite signs,
researchers can exclude inconsistent significant results
and estimate z-curve on the basis of significant results
with the correct sign. However, the selection of tests
by the meta-analyst introduces additional selection bias,
which has to be taken into account in the comparison of
the EDR and ODR. Another limitation is the assumption
that all studies used the same alpha criterion (.05) to
select for significance. This possibility can be explored
by conducting multiple z-curve analyses with different
selection criteria (e.g., .05, .01). The use of lower se-
lection criteria is also useful because some questionable
research practices produce a cluster of just significant
results. However, all statistical methods can only pro-
duce estimates that come with some uncertainty. When
severe selection bias is present, new studies are needed
to provide credible evidence for a phenomenon.

Predicting Replication Outcomes

Since 2011, many psychologists have learned that
published significant results can have a low replication
probability (Open Science Collaboration, 2015). This
makes it difficult to trust the published literature, es-
pecially older articles that report results from studies
with small samples that were not pre-registered. Should
these results be disregarded because they might have
been obtained with questionable research practices?
Should results only be trusted if they have been repli-
cated in a new, ideally pre-registered, replication study?
Or should we simply assume that most published results
are probably true and continue to treat every p-value
below .05 as a true discovery?

The appeal of z-curve is that we can use the published
evidence to distinguish between credible and “incredi-
ble” (biased) statistically significant results. If a meta-
analysis shows low selection bias and a high replication
rate, the results are credible. If a meta-analysis shows
high selection bias and a low replication rate, the results
are incredible and require independent verification.

As appealing as this sounds, every method needs to
be validated before it can be applied to answer substan-
tive questions. This is also true for z-curve 2.0. We used
the results from the OSC replicability project for this
purpose. The results suggest that z-curve predictions of
replication rates may be overly optimistic. While the ex-
pected replication rate was between 44% and 51% (35%

- 56% CI range), the actual success rate was only 25%,
95% CI [13, 37]%. Thus, it is important to examine why
z-curve estimates are higher than the actual replication
rate in the OSC project.

One possible explanation is that there is a prob-
lem with the replication studies. Social psychologists
quickly criticized the quality of the replication studies
(Gilbert et al., 2016). In response, the replication team
conducted the new replications of contested replication
studies. Based on the effect sizes in these much larger
replication studies, not a single original study would
have produced statistically significant results (Ebersole
et al., 2020). It is therefore unlikely that the quality
of replication studies explains the low success rate of
replication studies in social psychology.

A more interesting explanation is that social psy-
chological phenomena are not as stable as boiling dis-
tilled water under tightly controlled laboratory condi-
tions. Rather, effect sizes vary across populations, ex-
perimenters, times of day, and a myriad of other factors
that are difficult to control (Stroebe & Strack, 2014). In
this case, selection for significance produces additional
regression to the mean because statistically significant
results were obtained with the help of favorable hidden
moderators that produced larger effect sizes that are un-
likely to be present again in a direct replication study.

The worst-case scenario is that studies that were se-
lected for significance are no more powerful than stud-
ies that produced statistically non-significant results. In
this case, the EDR predicts the outcome of actual repli-
cation studies. Consistent with this explanation, the
actual replication rate of 25%, 95% CI [13, 37]%, was
highly consistent with the EDR estimates of 16%, 95%
CI [5, 32]%, and 14%, 95% CI [7, 23]%. More research
is needed once more replication studies become avail-
able to see how closely actual replication rates are to
the EDR and the ERR. For now, they should be con-
sidered the worst and the best possible scenarios and
actual replication rates are expected to fall somewhere
between these two estimates.

A third possibility for the discrepancy is that ques-
tionable research practices change the shape of the z-
curve in ways that are different from a simple selection
model. For example, if researchers have several statis-
tically significant results and pick the highest one, the
selection model underestimates the amount of selection
that occurred. This can bias z-curve estimates and in-
flate the ERR and EDR estimates. Unfortunately, it is
also possible that questionable research practices have
the opposite effect and that ERR and EDR estimates un-
derestimate the true values. This uncertainty does not
undermine the usefulness of z-curve analyses. Rather it
shows how questionable research practices undermine
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the credibility of published results. Z-curve 2.0 does not
alleviate the need to reform research practices and to
ensure that all researchers report their results honestly.

Conclusion

Z-curve 1.0 made it possible to estimate the replica-
tion rate of a set of studies on the basis of published test
results. Z-curve 2.0 makes it possible to also estimate
the expected discovery rate; that is, how many tests
were conducted to produce the statistically significant
results. The EDR can be used to evaluate the presence
and amount of selection bias. Although there are many
methods that have the same purpose, z-curve 2.0 has
several advantages over these methods. Most impor-
tantly, it quantifies the amount of selection bias. This
information is particularly useful when meta-analyses
report effect sizes based on methods that do not con-
sider the presence of selection bias.
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