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Graph Construction: An Empirical Investigation on Setting 
the Range of the Y-Axis 

Jessica K. Witt 
Colorado State University 

Graphs are an effective and compelling way to present scientific results.  With few rigid 
guidelines, researchers have many degrees-of-freedom regarding graph construction.  
One such choice is the range of the y-axis.  A range set just beyond the data will bias 
readers to see all effects as big. Conversely, a range set to the full range of options will 
bias readers to see all effects as small.  Researchers should maximize congruence be-
tween visual size of an effect and the actual size of the effect.  In the experiments pre-
sented here, participants viewed graphs with the y-axis set to the minimum range re-
quired for all the data to be visible, the full range from 0 to 100, and a range of approxi-
mately 1.5 standard deviations.  The results showed that participants’ sensitivity to the 
effect depicted in the graph was better when the y-axis range was between one to two 
standard deviations than with either the minimum range or the full range.  In addition, 
bias was also smaller with the standardized axis range than the minimum or full axis 
ranges.  To achieve congruency in scientific fields for which effects are standardized, the 
y-axis range should be no less than 1 standard deviations, and aim to be at least 1.5 stand-
ard deviations.  
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One way to lie with statistics is to set the range 
of the y-axis to form a misleading impression of the 
data.  A range set too narrow will exaggerate a small 
effect and can even make a non-significant trend 
appear to be a substantial effect (Pandey, Rall, Sat-
terthwaite, Nov, & Bertini, 2015).  Yet the default set-
ting of many statistical and graphing software pack-
ages automatically sets the range as narrow as the 
data will allow. The problem of creating misleading 
graphs persists even when the full range is shown 
instead. As shown in the studies reported below, a 

range set too wide also creates a misleading impres-
sion of the data by making effects seem smaller than 
they are.  Here, I argue that for scientific fields that 
use standardized effect sizes and adopt Cohen’s 
convention that an effect of d = 0.8 is big, the range 
of the y-axis should be approximately 1.5 standard 
deviations (SDs).  

How should the y-axis range of a graph be deter-
mined?  Graph construction should account for the 
visual experience of the people reading the graphs 
(Cleveland & McGill, 1985; Kosslyn, 1994; Tufte, 2001) 
and the strong link between perception and cogni-
tion (Barsalou, 1999; Glenberg, Witt, & Metcalfe, 
2013).  When the visual size of the effect aligns with 
the actual size of the effect, the person reading the 
graph does not have to exert mental effort to decode 
effect size from the graph. Instead, the size of the 
effect is processed automatically. This increases 
graph fluency by making it easier to understand
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Table 1.  Overview of the five experiments.   
Experiment N Effect sizes Graph Type Standardized condition1 
1 9 0.1, 0.3, 0.5, 0.8 Bar graph 2 SDs 
2 14 0.1, 0.3, 0.5, 0.8 Bar graph 1.4 SDs 
3 13 0, 0.3, 0.5, 0.8 Bar graph with error bars 1.2 SDs 
4 20 0, 0.3, 0.5, 0.8 Line graph 1.4 SDs 
5 15 0, 0.3, 0.5, 0.8 Line graph 1 SD 

Notes. 1This refers to the range depicted in the standardized condition, so a range of 1.4 SDs is when the  
graph was centered on the grand mean and extended 0.7 SDs in either direction. 

 
that an effect is big when it looks big and an effect is 
small when it looks small. 

To increase graph fluency, the range of the y-axis 
should be selected to maximize compatibility be-
tween visual size and actual effect size (Kosslyn, 
1994; Pandey et al., 2015; Tufte, 2001). However, the 
current literature fails to provide clear guidelines on 
how to achieve this compatibility. For example, 
some recommend displaying only the relevant range 
so that the axis goes from just below the lowest data 
point to just above the highest data point (Kosslyn, 
1994). This would not achieve the recommended 
compatibility because small effects would look big.  
Others assert that the y-axis should always start 
from 0, particularly for bar graphs (Few, 2012; Pan-
dey et al., 2015; Wong, 2010). This too could fail to 
achieve compatibility by making effects look too 
small.  

In the case of scientific fields for which effect size 
is standardized based on standard deviation, the 
range of the y-axis should be a function of the stand-
ard deviation (SD). In behavioral sciences such as 
psychology and economics, for example, the mean 
effect size is approximately half a SD (Bosco, Aguinis, 
Singh, Field, & Pierce, 2015; Open Science Collabo-
ration, 2015; Paterson, Harms, Steel, & Crede, 2016), 
and a standardized effect size of d = .8 is considered 
a big effect (Cohen, 1988). Consequently, an appro-
priate range for the y-axis would be one to two SDs, 
which would be plotted as the group mean ± 0.75 SD 
(or ±0.5 – 1 SDs). With this range, big effects such as 
a Cohen’s d of .8 would look big and small effects of 
d = .3 would look small.  In other words, this range 
would help achieve compatibility between the visual 
impression of the size of the effect and the actual 
size of the effect. 

 
 

Empirical Studies 

The effect of visual-conceptual size compatibility 
on graph fluency was empirically tested in 57 partic-
ipants across 5 experiments (see Table 1).  The par-
ticipants were naïve college students, which serves 
as an appropriate sample given that scientific results 
should be accessible and comprehensible to this 
population and not just to experts in one’s field.  

The stimuli were bar or line graphs that had been 
constructed from simulated data.  Data were simu-
lated from two (hypothetical) groups of participants 
by sampling from normal distributions in R (R Core 
Team, 2017). For one group, the data were drawn 
from a normal distribution with a mean of 50 and a 
standard deviation of 10 (as in a memory experiment 
with mean performance of 50% and SD of 10%).  For 
the other group, the data were drawn from a normal 
distribution with a standard deviation of 10 and the 
mean at 49, 47, 45, or 42.  These means correspond 
to effect sizes of d = 0.1, 0.3, 0.5, and 0.8, respec-
tively.  In Experiments 3-5, the mean of 49 (d = 0.1) 
was replaced with the mean of 50 (d = 0).  In Exper-
iments 2-5, the data were re-sampled if the attained 
effect size differed by more than 0.1 from the in-
tended effect size.  Data were simulated 10 times for 
each of the four effect sizes to create 40 sets of data 
for each Experiment.  In Experiments 1-3, the means 
of the simulated data were displayed as a bar graph 
depicting two groups of participants who engaged 
in different study strategies (spaced versus massed; 
see Figure 1).  In Experiments 4-5, the means were 
used to determine the end points of a line graph, and 
the x-axis was labeled as “hours spent studying”.  For 
each set of data, three graphs were constructed that 
varied in the range of the y-axis.  The full condition 
showed the full range from 0 to 100 on a hypothet-
ical memory test.  The minimal condition showed 
the smallest range necessary to see the data.  The 
standardized condition was centered on the group 
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mean and extended by one to two SDs in either di-
rection (the exact value differed across experiments, 
see Table 1 or the Appendix).  Figure 1 shows several 
examples of graphs that served as stimuli.  In Exper-
iment 3, error bars were also included and explained 
to the participants.  Within an experiment, the same 
set of 120 graphs (3 axis ranges x 4 effect sizes x 10 
sets) were shown to the participants.  Graphs were 
shown one at a time, order was randomized, and 
participants completed 4 blocks of 120 trials.  In all 
experiments, the participants’ task was to indicate 
whether there was no effect, a small effect, a me-
dium effect, or a big effect for each graph by press-
ing 1, 2, 3 or 4 on the keyboard.  

Graph fluency was measured using linear regres-
sions rather than accuracy because regression coef-
ficients have the advantage that they provide two 
separate measures.  The slope provides an estimate 
of sensitivity to the magnitude of the effect depicted 
in the plot. A steeper slope indicates better sensitiv-
ity to effect size than a shallower slope.  The inter-
cept provides an estimate of bias.  Two graphs could 
lead to similar levels of sensitivity but different lev-
els of bias.  Separate linear regressions were calcu-
lated for each participant for each y-axis range con-
dition (full, standardized, and minimal).  

 

 
Full Standardized Minimal 

 
 

  

   

 
.  

Figure 1.  Sample stimuli in the experiments on bar graphs and on line graph.  The bar graphs show final test score as a 
function of whether study style was spaced or massed.  The line graphs show final test score as a function of hours spent 
studying from 1 to 4.  Within each experiment, the same data were plotted using the full range from 0-100, the standard-
ized range (in this case, the group mean +/- 0.7 SD), or the minimal range necessary to see the data.  In this example, a 
medium effect (Cohen’s d = 0.5) was simulated for the bar graphs (top row) and a small effect (Cohen’s d = 0.3) was simu-
lated for the line graphs (bottom row).  The participant’s task was to indicate whether there was no effect, a small effect, 
a medium effect, or a big effect. 
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  In each regression, the dependent measure was 

response (on the scale of 1 to 4).  The effect sizes 
were recoded to also be on a scale from 1 to 4 then 
centered by subtracting 2.5 so that perfect perfor-
mance would produce a regression coefficient for 
the slope of 1 and an intercept of 2.5.   

Figure 2 shows the mean slope coefficients 
across all 5 experiments.  Sensitivity was best for the 
standardized graphs and worse for the full range 
graphs.  Participants were better able to assess the 
size of the effect depicted in the graph for the stand-
ardized graphs, than for the minimal or full graphs.  
Participants were also less biased when viewing the 
standardized graphs.  Figure 3 shows the mean bias 
across all 5 experiments.  Bias scores were calcu-
lated as a percent bias based on the coefficients for 

the intercept.  A negative score indicates a bias to 
respond that effects were small, and a positive score 
indicates a bias to respond that the effects were big.  
For the full graphs, there was a large bias to respond 
that the effects were small.  When looking at graphs 
with the full range, participants responded that al-
most all effects (86%) were null or small.  For the 
minimal graphs, there was a large bias to respond 
that the effects were substantial.  When looking at 
graphs with the minimal range for Cohen’s d = 0.10 – 
0.80, participants responded that the effect was big 
on 49% of the trials.  In contrast, there was much 
less bias with the standardized graphs (see Supple-
mental Materials). 
   

Figure 2. Sensitivity is plotted as a function of graph axis condition for the three types of graphs across all 5 experiments.  
Sensitivity was measured as the coefficient for the slope from regressions of actual effect size on estimated effect size.  
Only trials for which the graph depicted an effect size greater than d = 0.1 are included (see supplementary materials for 
all the data). A higher sensitivity score corresponds to better performance, and a coefficient of 1 corresponds to perfect 
performance.  A coefficient of 0 indicates chance performance.  In the left panel, mean sensitivity across all experiments 
is shown.  Error bars are 1 SEM calculated within-subjects, and are approximately the same size as the symbols.  The y-
axis range is 3 SD.  The right panel shows sensitivity for each participant for each experiment.  The data are color-coded 
by experiment (e.g. red = Experiment 1, orange = Experiment 2) and are also laterally positioned from left to right within 
graph type category.  Each point corresponds to one participant, and each participant has one symbol for each of the 
three graph types.  The solid horizontal line at 0 shows the point of no sensitivity and the dashed horizontal line at 1 shows 
the point of perfect sensitivity. 
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Discussion 

The visual impression of the size of an effect has 
a strong influence on the judged size of an effect. 
When the visual impression was compatible with the 
actual effect size, judgments of effect size were bet-
ter calibrated and less biased compared with the 
typical default setting of showing the minimum 
range to display the data and the setting of showing 
the full potential range.  Based on the current stud-
ies, the recommendation is to center the y-axis on 
the grand mean and extend the range 0.75 SDs in ei-
ther direction so that the range of the y-axis is 1.5 
SDs.   

The current studies show improved sensitivity to 
effect size and reduced bias in estimating effect size 
when the range of the y-axis was centered on the 
grand mean of the data and extended approximately 
0.7 SDs in either direction.  The various studies used 
slightly different extensions ranging from 0.5 SDs to 
1 SD.  There were not large detectable differences in 
sensitivity or bias depending on the exact range that 

was used, so the precise value of the y-axis range 
might not be critical.  Rather, the key feature is that 
the visual size aligns with the actual size of the ef-
fect.  The specific range to be used might vary as a 
function of the size of the error bars (the range 
should be large enough to encompass them), the 
size of the effect (the range would have to be ex-
tended for particularly large effects, such as was 
done with the current results), if doing so would 
make the range include nonsensical numbers (such 
as negative numbers for performance), and to 
achieve a consistent scale across multiple graphs to 
enhance across-graph comparisons.  Given that the 
exact range in terms of SD could vary from plot to 
plot, it could be useful to indicate the range in SD 
units in the figure caption.  This indication would be 
particularly useful in cases for which researchers do 
not include error bars.   

The current experiments explored graphs of 
stimulated data from between-subjects designs.  
The recommendations likely generalize to within-
subject designs with the caveat that the y-axis 

Figure 3. Bias (as a percentage) is plotted as a function of graph axis condition for the three types of graphs across all 5 
experiments. A negative bias corresponds to responding that effects are smaller than they are, and a positive bias corre-
sponds to responding that effects are bigger than their actual size. In the left panel, mean bias across all experiments is 
shown. Error bars are 1 SEM calculated within-subjects, and are approximately the same size as the symbols.  The y-axis 
range is 4 SD.  The right panel shows bias for each participant for each experiment. The data are color-coded by experi-
ment (e.g. red = Experiment 1, orange = Experiment 2) and are also ordered from left to right within graph type category. 
Each point corresponds to one participant, and each participant has one symbol for each of the three graph types. 
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should be a function of the denominator used to cal-
culate the within-subjects effect size.  For example, 
the denominator for Cohen’s dz is the square root of 
the sum of the squares of the standard deviations 
minus the product of the standard deviations and 
the correlation between the two measures.  Graphs 
plotting within-subjects data could be ± 0.75 times 
this denominator (or one of the other suggested 
measures for within-subjects effects sizes; e.g. 
Lakens, 2013).   In cases for which there are both be-
tween-subjects and within-subjects factors, the re-
searchers will have to decide which denominator to 
use for the range depending on which effect they 
most want to emphasize.   

It is debatable whether the recommendation of-
fered here should be employed with bar graphs.  
Some have shown that graphs that start at a position 
other than 0 are deceptive (e.g., Pandey et al., 2015).  
The idea is that bar graphs should always start at 0 
because the height of the bar signifies the value of 
the condition being represented. When the y-axis 
starts at a value greater than 0, the height of the bar 
corresponds to the difference between the condi-
tion’s value and the starting point, rather than the 
condition’s value itself.  Consider the following ex-
ample: imagine that group A scored 70% on a 
memory test and group B scored 60%.  On a plot for 
which the y-axis starts at 50%, group A’s score 
would appear twice as big as group B’s score, even 
though they only scored 10% higher.  The issue at 
hand concerns the visual impression of the data.  If 
the graph gives the impression that the differences 
are big, and that aligns with the size of the effect, the 
graph would be produce compatibility between vi-
sion and true effect size.  If, however, the impression 
is that one group’s performance was twice as good 
as the other group’s performance, this would pro-
duce a misleading impression of the data.  The cur-
rent experiments cannot speak to which impression 
was experienced because participants were asked to 
rate the size of the effect as being no effect, small, 
medium, or big, rather than quantifying the size of 
one bar relative to another.  The specific task used 
here did not permit measuring the spontaneous im-
pression given by the graphs.  One option is for re-
searchers to use alternative types of graphs to avoid 
the issue.  Alternatives include point graphs and a 
newly-designed type of graph called a hat graph 
(Witt, 2019).   

The recommendation to set the y-axis range to 
be 1.5 SDs does not generalize to fields for which the 
SD is unknown or irrelevant for interpreting effect 
size.  For these fields, previous recommendations 
such as Tufte’s Lie Detector Ratio could be appro-
priate (Tufte, 2001).  But for scientific fields that rely 
on standard deviation to interpret effect size, this is 
the first empirically-based recommendation that 
provides clear guidelines for constructing graphs to 
communicate the magnitude of the effects.   

Maximizing compatibility between visual size and 
conceptual size improved comprehension of the ef-
fects shown in the graphs.  The data presented in the 
graphs were exactly the same, yet participants were 
less biased and were more sensitive to the size of the 
depicted effect when the axis range was one to two 
SDs.  Furthermore, emphasizing SD and effect size 
in graph construction could help shift researchers’ 
focus to effect size, rather than statistical signifi-
cance.  Indeed, effect size (as measured with Co-
hen’s d) provides a better measure for discriminat-
ing real effects from null effects than p values or 
Bayes factors (Witt, 2019).  Such a shift could help 
guard against practices that have contributed to re-
cent failures to replicate in various scientific fields 
(Camerer et al., 2016; Open Science Collaboration, 
2015).   

In his famous book on how to lie with statistics, 
Huff noted that as long as the y-axis is correctly la-
beled, “nothing has been falsified – except the im-
pression that it gives” (Huff, 1954, p. 62).  The impres-
sion matters.  Researchers should select the range 
of the y-axis so that small effects look small and big 
effects look big (based on the field’s adopted con-
ventions).  A simple way to do this is to set the range 
to be 1.5 (or more) standard deviations of the de-
pendent measure.  That this improves graph com-
prehension is both intuitive and is now supported by 
empirical evidence. 

Open Science Practices 

   
 
This article earned the Open Data and the Open 
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Appendix: Experimental Details 

Experiment 1: Bar Graphs with Axis Range of 2 SD 

Participants judged the size of effects depicted in 
bar graphs that were constructed with three axis 
range options. 

Method 

Participants.  Nine students in an introductory 
psychology course participated in exchange for 
course credit.  In this and all subsequent experi-
ments, the number of participants was maximized 
within a pre-determined time limit. 

Stimuli and Apparatus.  Graphs were con-
structed in R (R Core Team, 2017).  For each graph, 
two means were generated.  One mean was 50, and 
the other mean was 49, 47, 45, or 42.  These equated 
to effect sizes of Cohen’s d = .1, .3, .5, and .8, respec-
tively.  To add some noise to each graph, each mean 
was drawn from a normal distribution centered on 
the desired mean with 1000 samples and a standard 
deviation of 10.  The means were presented in bar 
graphs (see Figure A1).  The left bar was white and 
labeled “Spaced” and the right bar was black and la-
beled “Massed”.  For each set of simulated data, 
three bar graphs were constructed that corre-
sponded to the three y-axis range conditions.  For 

the full graphs, the y-axis range went from 0 to 100.  
For the minimal graphs, the y-axis went from the 
smallest data value minus 1 to the largest data value 
plus 1.  For the standardized graphs, the mean of the 
two groups was calculated, and 1 SD (10) was added 
in either direction to set the y-axis range.  This pro-
cess of creating 3 graphs for each set of data was re-
peated 10 times for each of the 4 effect sizes for a 
total of 120 graphs.  Graphs were 500 pixels by 500 
pixels and were shown on a 19” computer monitors 
with 1028 x 1024 resolution.   

Procedure.  After providing informed consent, 
each participant was seated at a computer.  They 
were given the following instructions: “You will see 
graphs showing the effect of study style on final test 
performance.  There were two study styles. Massed 
is like cramming everything at once at just before 
the exam.  Spaced refers to studying a little bit every 
day for weeks before the exam.  The y-axis shows 
final test performance, with higher value meaning 
better performance.   
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Exp 
(SD 

Range) Full Standardized Minimal 
1 

(2) 

   
2 

(1.4) 

   
3 

(1.2) 

   
4 

(1.4) 
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5 
(1) 

   
 

Figure A1.  Sample stimuli for each of the 5 experiments.  Each row corresponds to one experiment and 
shows a single set of a data plotted in the three different ways (full, standardized, and minimal).  In all cases, 
the data show a medium effect (Cohen’s d = 0.5).  The number in parentheses under the experiment number 
indicates the range of the standardized condition. 

 

For each graph, indicate if study style had 1. No 
effect, 2. A small effect, 3. A medium effect, 4. A big 
effect on final performance.  Ready? Press ENTER”.   

A trial began with a fixation cross at the center of 
the screen for 500ms.  The graph was then shown.  
Above the graph, text reminded participants of the 
four response options.  The graph remained until 
participants made a response, at which point, the 
graph disappeared and a blank screen was shown for 
500ms.  Each block of trails consisted of the presen-
tation of each of the 120 graphs (3 graph types x 4 
depicted effect sizes x 10 repetitions).  Order was 
randomized within block, and participants com-
pleted 4 blocks for a total of 480 trials. 

Results and Discussion 

One participant only completed 431 trials, but 
their data were still included.  The depicted effect 
size was recoded on a scale from 1 to 4 to be con-
sistent with the scale of the response.  The smallest 
effect size (d = .1) was coded as 1.5 to account for the 
idea that this effect is smaller than a small effect but 
bigger than no effect.  In later experiments, these 
graphs were replaced with graphs for which there 
was no effect instead of d = .1.   

For each participant for each of the 3 axis range 
conditions, the data were submitted to separate lin-
ear regressions with estimated effect size as the de-
pendent factor and actual effect size (recoded on a 

scale from 1-4 then centered by subtracting 2.5) as 
the independent factor.   The regressions produced 
two coefficients for each participant for each axis 
range condition.  The slope indicates sensitivity to 
the size of the effect.  A slope of 1 indicates perfect 
sensitivity.  A slope less than 1 indicates attenuated 
sensitivity.  The intercept indicates any bias to see 
effects as smaller or larger than their true size.  One 
participant had slopes that were identified as outli-
ers in the full and minimal conditions because they 
were greater than 1.5 times the interquartile range 
for each condition.  This participant was excluded 
from the analysis (despite being the best performer 
in the group) because their data were not typical of 
the rest of the sample.  Another participant had a 
slope less than 1.5 times the interquartile range in 
the full condition, and was also excluded for not be-
ing typical of the rest of the sample. 

The coefficients were analyzed using paired-
samples t-tests to compare each graph condition to 
the others.  Analyses were done in R (R Core Team, 
2017).  Bayes factors were calculated using the 
BayesFactor package in R with a medium prior (Mo-
rey, Rouder, & Jamil, 2014).  A Bayes factor greater 
than 3 indicates moderate evidence, and a Bayes 
factor greater than 10 indicates substantial evidence 
for the alternative hypothesis over the null hypoth-
esis.  Conversely, a Bayes factor less than .33 and less 
than .10 indicates moderate and substantial evi-
dence for the null hypothesis over the alternative 
hypothesis.  Effect sizes were calculated using the 
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recommendations of Lakens (2013), and 95% confi-
dence intervals (CIs) on the effect size were calcu-
lated using the cohen.d.ci function in the PSYCH 
package (Revelle, 2018).   

 
Figure A2.  Mean response is plotted as a function 
of depicted effect size and graph type for Experi-
ment 1.  Error bars are 1 SEM calculated within-
subjects. Solid lines represent linear regressions for 
depicted effects d ≥ .3. Dashed lines represent lin-
ear regressions for depicted effects less than d ≤ .3. 

The standardized graphs produced significantly 
greater slopes than the full graphs, t(6) = 3.84, p = 
.009, dz = 1.45, 95% CIs [.33, 2.51], Bayes factor = 7.54 
(see Figure A2).  With the standardized y-axis range, 
participants were more sensitive to the differences 
in actual effect size (M = .47, SD = .11) compared with 
graphs that showed the full range from 0 to 100 (M 
= .30, SD = .07).  Sensitivity was also better for the 
standardized graphs than the minimal graphs, t(6) = 
3.61, p = .011, dz = 1.37, 95% CIs [.28, 2.40], Bayes fac-
tor = 6.17.  The minimal graphs (M = .28, SD = .04) 
produced sensitivity similar to the full graphs, p = .51, 
dz = .26, 95% CIs [-.50, 1.01], Bayes factor = 0.43. 

These data show an advantage for the standard-
ized graphs because participants were more sensi-
tive to differences among magnitudes of the de-
picted effect sizes with the standardized graphs 
than with the full or minimal graphs.  However, the 
standardized graphs led to performance that was far 

from perfect.  The slope was .47, and perfect perfor-
mance would have produced slopes of 1.  Thus, even 
though the standardized graphs signify an improve-
ment over the other two options, more work is still 
necessary to improve graph comprehension. 

Another advantage for the standardized graphs 
can be seen with respect to bias.  Bias scores were 
calculated as a percentage score of underestimation 
(negative values) and overestimation (positive val-
ues).  They were calculated as the participant’s co-
efficient for the intercept minus the true intercept 
(2.5) divided by the true intercept.  There were sig-
nificant differences between the bias scores across 
all conditions, ps < .003.  The bias scores for the full 
graphs was negative (M = -27%, SD = 10%) and sig-
nificantly below 0, t(6) = -7.01, p < .001, dz = 2.64, 95% 
CIs [1.00, 4.27], Bayes factor = 82.  The bias scores for 
the minimal graphs were positive (M = 36%, SD = 
19%) and significantly above 0, t(6) = 4.91, p = .003, 
dz = 1.86, 95% CIs [.57, 3.10], Bayes factor = 19.  In 
contrast, the bias scores for the standardized graphs 
were significantly less biased than in the other con-
ditions (ps < .003), and were not significantly differ-
ent from 0 (M = 1%, SD = 4%), t(6) = 0.47, p = .66, dz = 
.18, 95% CIs [-.58, .82], Bayes Factor = 0.39.  With the 
full graphs, most effects looked like small effects.  
Indeed, 91% of the trials with the full graphs were 
labeled as showing no effect or a small effect.  With 
the minimal graphs, 58% of the effects were labeled 
as big effects and 88% were labeled as medium or 
big.  With the standardized graphs, small effects 
looked small and medium effects looked medium 
(see Figure A3). However, the big effects only looked 
medium.  Thus, the experiment was replicated but 
with a smaller range in the standardized condition 
to determine if that would improve detection of big 
effects. 

Experiment 2: Bar Graphs with Axis Range of 1.4 SD 

Standardized graphs, for which the y-axis range 
is a function of the standard deviation, produced 
better sensitivity and less bias in participants who 
judged the size of the depicted effect compared with 
graphs that showed the full range and graphs that 
showed only the minimal range necessary to see the 
data.  However, sensitivity with the standardized 
graphs was still below perfect performance.  In this 
experiment, the range of the standardized graphs 
was decreased from 2 SDs to 1.4 SDs.   
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Method 

Fourteen students in an introductory psychology 
course participated in exchange for course credit.  
Everything was the same in Experiment 1 except for 
the construction of  the standardized graphs, for 
which the y-axis range went from the group mean 
minus 0.7 SD to the group mean plus 0.7 SD (see Fig-
ure A1).  Thus, the standardized range was 1.4 SD (in-
stead of 2 SD as in Experiment 1).  In addition, the 

simulated data were evaluated to ensure that the 
outcomes were similar to the intended outcomes.  
The effect size of the simulated data were compared 
to the intended effect size, and if they differed by 
more than 0.1, the data were resampled until the dis-
crepancy was less than 0.1.  Participants completed 
4 blocks of 120 trials, and order was randomized 
within block.

 
 

 
Figure A3.  Response is plotted as a function of depicted effect size for the three types of axis range condi-
tions (full, minimal, and standardized) for Experiment 1.  The bottom right panel shows the correct response.  
Response was entered as 1 (no effect), 2 (small effect), 3 (medium effect), and 4 (big effect).  Each point cor-
responds to one participant’s response on one trial.  The data have been jittered along both axes to enable 
visibility. 
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Results and Discussion 

The data were analyzed as before.  Three partic-
ipants had a slope that was deemed an outlier for 
being beyond at least 1.5 times the interquartile 
range for the full or minimal graphs.   

The slope, which indicates sensitivity to the size 
of the effect in the graph, was greater for the stand-
ardized graphs (M = .54, SD = .17) than the full graphs 
(M = .31, SD = .08), t(10) = 3.46, p = .006, dz = 1.04, 95% 
CIs [.28, 1.77], Bayes factor = 9.00 (see Figure A4).  
Sensitivity was also greater for the standardized 
graphs than the minimal graphs (M = .30, SD = .06), 
t(10) = 4.07, p = .002, dz = 1.23, 95% CIs [.42, 2.00],  
Bayes factor = 20.  Replicating Experiment 1, the cur-
rent data show that setting the range of the y-axis 
to be a function of the standard deviation, rather 
than the full range of options or the minimal range 
necessary to show the data, improved graph com-
prehension.  Recall, participants were not asked to 
indicate how big the effect looked but rather how 
big the effect was.  Full and minimal graphs both 
produced misleading impressions of the data that 
severely attenuated sensitivity to effect size.  Simply 
setting the range of the y-axis in relation to the 
standard deviation improved readers’ sensitivity to 
the data. 

 

 

Figure A4.  Mean response is plotted as a function 
of depicted effect size and graph type for Experi-
ment 2.   Error bars are 1 SEM calculated within-
subjects. Solid lines represent linear regressions for 
depicted effects d ≥ .3. Dashed lines represent lin-
ear regressions for depicted effects less than d ≤ .3. 

 

Bias was again found for the full and minimal 
graphs but not the standardized graphs.  For the full 
graphs, the bias was to underestimate effect size by 
28% (SD = 9%), t(10) = -10.51, p < .001, dz = 3.17, 95% 
CIs [1.67, 4.64], Bayes factor > 100.  Indeed, of all the 
trials with the full graphs, the effect was labeled as 
small or no effect on 90% of responses.  The bias was 
of a similar magnitude but in the opposite direction 
for the minimal graphs, t(10) = 4.91, p < .001, dz = 1.48, 
95% CIs [.59, 2.33], Bayes factor = 61.  With the min-
imal graphs, participants overestimated the size of 
the effects by 31% (SD = 21%).  Over half of all effects 
with the minimal graphs were labeled big (53%), and 
81% were labeled as medium or big.  In contrast, the 
bias was much smaller (M = 6%, SD = 9%) for the 
standardized graphs, and only marginally signifi-
cantly different from 0, t(10) = 2.13, p = .059, dz = .64, 
95% CIs [-.02, 1.28], Bayes factor = 1.50.  The bias 
with the standardized graphs was far less than the 
biases observed with the full and minimal graphs, ps 
< .001.   

The evidence thus far is clear: graphs with a y-
axis range that is a function of the standard devia-
tion produces better sensitivity and less bias in par-
ticipants when they are tasked with judging the size 
of an effect, compared with graphs that present the 
full range and with graphs that present only the 
minimal range necessary to view all of the data. 

Experiment 3: Bar Graphs with Error Bars 

The graphs in Experiments 1 and 2 did not contain 
error bars.  As a result, the graphs did not contain 
enough information to know if an effect was null, 
small, medium, or big.  This was a conscious decision 
given that introductory psychology students might 
not know how to interpret error bars.  Yet, it is nec-
essary to know if standardized graphs still produce 
an advantage even when there is enough infor-
mation presented in the graphs to be able to accu-
rately answer the question.  In addition, the graphs 
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with the smallest effects in Experiments 1 and 2 had 
the awkward feature of being bigger than no effect 
but smaller than a “small” effect, so it was unclear 
whether the correct answer should be 1 or 2.  This 
ambiguity was eliminated in the current experiment. 

Method 

Thirteen students in an introductory psychology 
course participated in exchange for course credit. 

Graphs were constructed similarly as in Experi-
ment 2 with the following exceptions.  The four ef-
fect sizes that were modeled were Cohen’s d = 0, .3, 
.5, and .8, which corresponds to no effect, a small ef-
fect, a medium effect, and a big effect, respectively.  
The data were simulated as coming from two inde-
pendent groups of 100 participants.  The mean used 
to model the data for the hypothetical group that 
used the spaced studying strategy was always 50 (as 
in 50% accuracy on a memory test).  The mean used 
to model the data for the hypothetical group that 
used the massed studying strategy was 50 minus 0, 
3, 5, or 8 depending on the effect size being mod-
eled.  Using these means and a SD of 10, data were 
sampled from a normal distribution and summarized 
for the graphs.  Error bars were calculated as 95% 
confidence intervals.  In addition to the instructions 
given in Experiments 1 and 2, participants were also 
told the following: “Important! An effect is statisti-
cally significant if p < .05.  However, you can also as-
sess statistical significance by looking at error bars.  
Error bars are lines that extend from the mean of 
each condition.  The mean of each condition is 
shown by the top of the bar.  If the error bar from 
one condition overlaps the mean from the other 
condition, the effect is NOT significant.  If neither 
bar overlaps the mean of the other condition, then 
the effect is significant.  The farther apart the error 
bars, the bigger the effect.”  Note that this rule of 
thumb is overly simplified.  There can be cases for 
which the error bars overlap but the effect is statis-
tically significant at the p < .05 level (Cumming & 
Finch, 2005), but this level of nuance was not pre-
sented to the participants. 

For each set of simulated data, 3 graphs were 
constructed.  For the full graphs, the y-axis range 
went from 0 to 100.  For the standardized graphs, 
the y-axis range went from the grand mean minus 
0.6 SD to the grand mean plus 0.6 SD.  For the min-
imal graphs, the bottom of the y-axis range was the 

smallest combination of the mean minus the lower 
confidence interval minus 0.1, and the top of the 
range was the biggest combination of the mean plus 
the upper confidence interval plus 0.1.  Participants 
completed 4 blocks of 120 randomized trials. 

 

Results and Discussion 

The data were analyzed as before.  One partici-
pant had a negative slope for the standardized 
graphs, and another participant had a high slope for 
the full graphs.  Both were 1.5 times beyond the in-
terquartile range and excluded from analyses.  

 
Figure A5.  Mean response is plotted as a function of 

depicted effect size and graph type for Experiment 3.  Er-
ror bars are 1 SEM calculated within-subjects. Solid lines 
represent linear regressions for depicted effects d ≥ .3. 
Dashed lines represent linear regressions for depicted ef-
fects less than d ≤ .3. 

The slopes were steeper, showing better sensi-
tivity, for the standardized graphs (M = .62, SD = .19) 
compared with the full graphs (M = .24, SD = .09) and 
the minimal graphs (M = .55, SD = .20).  The differ-
ence in slopes between the standardized and full 
graphs was significant, t(10) = 7.76, p < .001, dz = 2.34, 
95% CIs [1.16, 3.50], Bayes factor > 100.  The differ-
ence in slopes between the standardized versus 
minimal graphs was also significant, t(10) = 3.09, p = 
.011, dz = .93, 95% CIs [.20, 1.63], Bayes factor = 5.46.  
Even though all the information was the same across 
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the three graph conditions and even though this in-
formation was sufficient for determining the size of 
each effect, participants were better able to deter-
mine effect size when the range of the y-axis was a 
function of the standard deviation (see Figure A5).   

The impression given by Figure A3 indicates that 
sensitivity was just as good if not better for the min-
imal graphs than the standardized graphs when 
comparing no effect to a small effect (ds = 0 and .3), 
but sensitivity was better (steeper) for the standard-
ized graphs when comparing across small, medium, 
and big effects (ds = .3, .5, and .8).  This impression 
prompted an unplanned analysis.  Linear regres-
sions were again conducted for each participant for 
each graph condition.  However, in one set of re-
gressions, only effect sizes 0 and .3 were included.  
In another set of regressions, only effect sizes .3, .5, 
and .8 were included.  Two additional participants 
were identified as outliers because the slopes for all 
three graphs in the latter analysis were 1.5 times be-
yond the interquartile range, and were excluded 
from the remaining analyses. 

With respect to determining whether or not an 
effect is present (by comparing slopes for graphs de-
picting ds = 0 and .3), all three graph types led to 
similar performance (Standardized: M = .89, SD = .40; 
Full: M = .49, SD = .22; Minimal: M = 1.02, SD = .45).  
With all three types of graphs, participants were 
sensitive to whether or not there was an effect, as 
shown by coefficients for each graph type that were 
positive and significantly greater than 0, ps < .001. 
The standardized graph produced some benefit over 
the full graphs, t(8) = 2.82, p = .022, dz = .85, 95% CIs 
[.14, 1.53], Bayes factor = 3.76.  The standardized 
graph was no better, and marginally worse, than the 
minimal graphs, t(8) = -1.82, p = .11, dz = .55, 95% CIs 
[-.10,1.17], Bayes factor = 1.03.  It should be noted that 
a bias to see all effects as being bigger (as found with 
minimal graphs) would lead to a steeper slope when 
comparing just the graphs that depict a null effect 
and a small effect.  Thus, it cannot be known 
whether sensitivity is better with the minimal 
graphs or if the bias caused by the minimal graphs 
leads to greater estimates of sensitivity.   

With respect to determining the magnitude of an 
effect that is present (by comparing slopes for 
graphs depicting ds = .3, .5, and .8), the standardized 
graphs produced better sensitivity than the full or 

minimal graphs (Standardized: M = .46, SD = .11; Full: 
M = .09, SD = .06; Minimal: M = .25, SD = .13), ps ≤ 
.001.  The comparison between the standardized 
graphs to the full graphs resulted in a Bayes factor 
greater than 100, dz = 2.81, 95% CIs [1.45, 4.14].  The 
comparison between the standardize graphs to the 
minimal graphs resulted in a Bayes factor of 65, dz = 
1.50, 95% CIs [.60, 2.35]. In each of the three graph 
types, participants showed some level of sensitivity 
to the magnitude of the effect, as shown by the co-
efficients being significantly greater than 0, ps < 
.003.   

In addition to better sensitivity with the stand-
ardized graphs, the standardized graphs also pro-
duced less bias compared with the other graphs, ps 
<= .001.  For the full graphs, there was a 28% bias (SD 
= 12%) to underestimate effect size, which was sig-
nificantly different from 0, t(10) = -7.82, p < .001, dz 
= 2.36, 95% CIs [1.17, 3.52], Bayes factor > 100.  For 
the minimal graphs, there was a 14% bias (SD = 24%) 
to overestimate the size of the effect, which was 
marginally significantly from 0, t(10) = 2.03, p = .069, 
dz = .61, 95% CIs [-.05, 1.25], Bayes factor = 1.33.  For 
the standardized effects, the bias was 7% (SD = 19%) 
and was not significantly different from 0, t(10) = 
1.29, p = .227, dz = .39, 95% CIs [-.23, .99], Bayes fac-
tor = .58.   

In summary, even with error bars, graphs with 
the y-axis range set as a function of the standard de-
viation produced better sensitivity and less bias 
compared with graphs that showed the full range 
and graphs that showed only the minimal range nec-
essary to see the data. 

Experiment 4: Line Graphs with Axis Range of 1.4 
SD 

The current experiment used line graphs as stim-
uli instead of bar graphs to see if the previous rec-
ommendations generalized to a different kind of 
graph. 

Method 

Twenty students in an introductory psychology 
course participated in exchange for course credit.  
Stimuli were graphs that were constructed by sim-
ulating data from two groups, and connecting their 
means with a line to create an impression of data 
across four groups.  The four effect sizes that were 
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modeled were Cohen’s d = 0, .3, .5, and .8, which cor-
responds to no effect, a small effect, a medium ef-
fect, and a big effect, respectively.  The y-axis range 
was full (0-100), minimal (smallest value minus 1 to 
largest value plus 1), or standardized (group mean 
minus 0.7 SD to the group mean plus 0.7 SD).  Eve-
rything else was the same as in the previous experi-
ments, except the x-axis was labeled as hours spent 
studying on a range from 1-4.   

Results and Discussion 

The data are shown in Figure A6.  The data were 
analyzed as before with three separate linear re-
gressions for each participant for each graph type 
for each combination of all effect sizes, d = 0 and .3 
only, and d = .3 - .8 only.  One participant had slopes 
greater than 1.5 times the interquartile range for the 
full and minimal graphs, and 3 participants had 
slopes less than 1.5 times the interquartile range for 
the minimal graphs.  All 4 were excluded.  

For regressions on all effect sizes depicted in the 
graphs, the standardized graphs lead to greater 
slopes than the full graphs, t(15) = 7.16, p < .001, dz = 
1.79, 95% CIs [.98, 2.59], Bayes factor > 100 (see Table 
A1).  The standardized graphs did not lead to signifi-
cantly different slopes than the minimal graphs 
when calculated across the entire range, t(15) = 0.18, 
p = .86, dz = .05, 95% CIs [-.45, .53], Bayes factor = 
.26.  However, this is because the minimal graphs 
produced superior performance with respect to de-
termining whether there was an effect or not but in-
ferior performance when an effect was present and 
the magnitude had to be determined.  For regres-
sions comparing d = 0 to d = .3, the slopes for the 
minimal graphs were higher than for the standard-
ized graphs, t(15) = -4.70, p < .001, dz = 1.17, 95% CIs 
[.52, 1.81], Bayes factor > 100.  Again, recall that the 
bias generated by the minimal graphs to see effects 
as bigger would produce greater sensitivity scores 
even if participants were not necessarily more sen-
sitive to the effect.  Indeed, the slope coefficient is 
1.29, which is greater than perfect accuracy of 1, 
which implies some bias.  For regressions comparing 
ds > 0, the slopes for the standardized graphs were 
higher than for the minimal graphs, t(15) = 3.05, p = 
.008, dz = .76, 95% CIs [.19, 1.31], Bayes factor = 6.46.  
This suggests that the standardized graphs still pro-
duced better outcomes than the full or minimal 
graphs. 

 

 
Figure A6.  Mean response is plotted as a function 
of depicted effect size and graph type for Experi-
ment 4.  Error bars are 1 SEM calculated within-
subjects. Solid lines represent linear regressions for 
depicted effects d ≥ .3. Dashed lines represent lin-
ear regressions for depicted effects less than d ≤ .3. 

 

Table A1.   

Mean (and SD) coefficients for the slopes for each 
graph type for each analysis from Experiment 4.   

Graph Type All data ds = .3-.8 ds = 0 - .3 

Full .30 (.08) .15 (.08)   .61 (.22) 

Standardized .61 (.15) .52 (.18)   .86 (.32) 

Minimal .61 (.06) .31 (.25) 1.29 (.56) 

Note. The slopes indicate the linear relationship between 
the size of the effect depicted and the estimate of the ef-
fect size, both of which were coded on a scale from 1-4. 

 

Regarding bias, similar results were found as in 
previous experiments.  The bias was -26% (SD = 11%) 
with the full graphs, indicating a bias to underesti-
mate the effects, t(15) = -9.52, p < .001, dz = 2.38, 95% 
CIs [1.39, 3.34], Bayes factor > 100.  The bias was 19% 
(SD = 17%) with the minimal graphs, indicating a bias 
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to overestimate the size of the effects, t(15) = 4.36, p 
< .001, dz = 1.09, 95% CIs [.46, 1.70], Bayes factor = 64.  
With the standardized graphs, the bias was 2% (SD = 
10%), which was not significantly different from 0, 
t(14) = 0.73, p = .48, dz = .18, 95% CIs [-.31, .67], Bayes 
factor = .32.  With the line graphs, as with the bar 
graphs, the standardized axis range produced better 
sensitivity and less bias than the full axis range or 
the minimal axis range. 

Experiment 5: Line Graphs with Axis Range of 1 SD 

The current experiment replicated Experiment 4 
using a smaller axis range for the standardized 
graphs. 

Method 

Fifteen students in an introductory psychology 
course participated in exchange for course credit.   
The stimuli were the same as in Experiment 4 except 
that for the standardized graphs, the range was the 
group mean ± 0.5 SD.  

Results and Discussion 

The data were analyzed as before with three sep-
arate linear regressions for each participant for each 
graph type for each combination of all effect sizes, d 
= 0 and .3 only, and d = .3 - .8 only.  One participant 
had a slope that was less than 1.5 times the inter-
quartile range for the minimal graphs, and one had a 
slope greater than 1.5 times the interquartile range 
for the full graphs.  Both were excluded. The mean 
slope coefficients for the remaining participants are 
shown in Table A2 and the data are shown in Figure 
A7. 

Table A2.   

Mean (and SD) coefficients for the slopes for each 
graph type for each analysis from Experiment 5. 

Graph Type All data ds = .3-.8 ds = 0 - .3 

Full .32 (.12) .20 (.13) .58 (.22) 

Standardized .55 (.20) .48 (.17) .76 (.49) 

Minimal .53 (.16) .36 (.25) .96 (.52) 

 

 
Figure A7.  Mean response is plotted as a function 
of depicted effect size and graph type for Experi-
ment 5.  Error bars are 1 SEM calculated within-
subjects. Solid lines represent linear regressions for 
depicted effects d ≥ .3. Dashed lines represent lin-
ear regressions for depicted effects less than d ≤ .3. 

The patterns match those found in Experiment 4.  
Participants were more sensitive to the size of the 
effect for the standardized graphs than for the full 
graphs when all trials were included, t(13) = 4.41, p < 
.001, dz = 1.22, 95% CIs [.48, 1.94], Bayes factor = 46, 
and when trials for which the effect size depicted 
was greater than 0, t(13) = 6.69, p < .001, dz = 1.86, 
95% CIs [.93, 2.76], Bayes factor > 100, but not when 
only trials for which the effect size depicted was null 
or small, t(13) = 1.41, p = .19, dz = .39, 95% CIs [-.18, 
.95], Bayes factor = .62.  Participants were more sen-
sitive to the size of the effect for the standardized 
graphs than for the minimal graphs but only when 
the depicted effect in the graph was greater than 0, 
t(13) = 2.59, p = .023, dz = .72, 95% CIs [.09, 1.32], 
Bayes factor = 2.88.   There was no difference in sen-
sitivity across all effect sizes, p = .65, Bayes factor = 
.31, and the minimal graphs produced better sensi-
tivity when only data from graphs depicting a null or 
small effect were included, t(13) = -3.11, p = .009, dz 
= .86, 95% CIs [.21, 1.49], Bayes factor = 6.27.  As be-
fore, the bias created by the minimal graphs could 
account for this apparent increase in sensitivity. 
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Regarding the bias, the full graphs produced a 
bias of -15% (SD = 17%), indicating a bias to underes-
timate effect size, t(12) = -3.07, p = .010, dz = .85, 95% 
CIs [.20, 1.48], Bayes factor = 5.90.  The minimal 
graphs produced a bias of 12%, (SD = 20%), which 
was marginally above 0, t(12) = 2.21, p = .047, dz = .61, 
95% CIs [.01, 1.20], Bayes factor = 1.69.  The stand-
ardized graphs led to a small bias of 6% (SD = 14%), 
that was marginally close to 0, t(12) = 1.63, p =.13, dz 
= .45, 95% CIs [-.13, 1.01], Bayes factor = .80.   

Across Experiment Comparisons 

Sample size was not selected to achieve sufficient 
power to do analyses across experiments.  To facili-
tate preliminary exploration of the data, the coeffi-
cients are reported in Tables S3, S4, and S5, and are 
plotted in Figure A8 and Figures 2 and 3 in the main 

text.  It may be interesting to note that sensitivity of 
the size of the effect was not notably better with er-
ror bars than without error bars even though error 
bars are necessary to understand effect size.  Alt-
hough this may not be surprising given the partici-
pants being introductory psychology student, the 
pattern is consistent with previous findings that 
many researchers do not know how to interpret er-
ror bars (Belia, Fidler, Williams, & Cumming, 2005).  
In addition, the lack of noticeable differences in sen-
sitivity between the experiments suggests that the 
use of a y-axis range that is approximately 1.5 SDs 
could help better report the results in cases for 
which researchers neglect to include error bars.   

  

Table A3.   

Mean slopes (and standard deviations) from regressions on all trials for each of the 5 experiments.    

Graph Type Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

Full .28 (.10) .31 (.08) .21 (.08) .30 (.08) .32 (.13) 

Standardized .46 (.13) .54 (.17) .58 (.17) .61 (.15) .55 (.20) 

Minimal .27 (.03) .30 (.06) .49 (.15) .61 (.06) .53 (.16) 

Note. A slope of 1 indicates perfect performance and a slope of 0 indicates chance performance. 

 

Table A4.   

Mean slopes (and standard deviations) from regressions on trials for which Cohen’s d > 0.1 for 
each of the 5 experiments.   

Graph Type Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

Full .17 (.10) .18 (.10) .09 (.06) .15 (.08) .20 (.13) 

Standardized .42 (.16) .46 (.16) .46 (.11) .52 (.18) .48 (.17) 

Minimal .07 (.09) .13 (.14) .25 (.13) .31 (.25) .36 (.25) 

Note. A slope of 1 indicates perfect performance and a slope of 0 indicates chance performance. 
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Table A5.   

Mean bias scores as a percentage (and standard deviations) for each of the 5 experiments.   

Graph Type Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

Full -27 (5) -28 (9) -25 (10) -26 (11) -15 (17) 

Standardized 1 (4) 6 (9) 14 (13) 2 (10) 6 (14) 

Minimal 36 (21) 31 (21) 23 (16) 19 (17) 12 (20) 

Note. Bias scores were calculated as a percent bias based on intercepts from regressions on all 
trials including those for which Cohen’s d = 0. 

 


