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Abstract 

The introduction of a micro-grid-based power generation network will help to meet the demands of consumers while 
reducing environmental impact. Several industrialized and emerging countries allocate considerable resources to renewable 
energy-based power generation and invest significant sums of money in this area. This study examines the challenges involved 
with electricity generation through photovoltaic (PV) systems and the integration of the same with the grid to mitigate power 
quality issues and improve the power factor for various loading conditions. An innovative multilayer inverter for grid-
connected PV systems has been developed to enhance the voltage profile and resulted in a drop in total harmonic distortion 
(THD). A cascade multilevel inverter (associated with a grid-integrated PV system and managed using multiple innovative 
artificial intelligence controllers) was developed in this research project. Various advanced intelligent controllers, such as 
cascade feedforward neural networks (CFFNN) and deep neural networks (DNN), have been analyzed under various operating 
situations and observed that the THD of voltage, current at the grid, and the load is less than 3 % as per the IEEE 519 standards 
along with this power factor is maintained nearly unity for the grid-connected system. The quality of power in terms of 
voltage, frequency, total harmonics distortion, and power factor are improved by using a novel deep neural network algorithm 
in a cascaded multilevel inverter and verified according to IEEE 1547 and IEEE 519 standards to determine the efficacy of the 
proposed system. 

Copyright ©2022 National Research and Innovation Agency. This is an open access article under the CC BY-NC-SA license 
(https://creativecommons.org/licenses/by-nc-sa/4.0/). 

Keywords: cascaded feedforward neural network; deep neural network; multilevel inverter; photovoltaic system; total 
harmonics distortion. 

 
 

I. Introduction 

Over the past 20 years, renewable energy has 
gained widespread recognition. Future power-
generating technologies are anticipated to be 
competitive with renewable energy sources [1]. 
Increased efforts have been made to employ 
renewable energy sources more frequently rather 
than polluting fossil fuels and other energy sources. 

Alternative energy sources have recently attracted a 
lot of interest, including photovoltaic (PV), hydro, 
fuel, and wind power generation systems. To fulfill 
the growing energy demand and stop climate change, 
the usage of renewable energy has been accelerated 
swiftly [1][2]. 

The two different kinds of PV power generating 
applications are off-grid and grid-integrated systems. 
An off-grid system is best suited for low-power 
applications and needs a battery to accumulate PV 
energy [3]. A grid-connected system, on the other 
hand, is the most economical choice for high-power 
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applications since it doesn't need a battery bank. 
Compared to other renewable energy sources and 
grid-connected systems, the PV array can connect to 
the grid and fulfill grid code requirements with less 
complexity. The DC voltage from the PV array is 
frequently altered to an AC voltage using a power 
electronic voltage source converter (VSC). 

Voltage in transmission and distribution has been 
managed over time by the use of active and reactive 
power. Voltage regulation is the process of 
controlling the difference in voltage between two 
endpoints, such as transmission and distribution. 
Together, static synchronous compensators 
(STATCOM) and static variable compensators (SVC) 
ensure that the voltage across the load stays within 
acceptable bounds. Impedance creates problems 
with voltage regulation, leading to either 
overvoltage or voltage drops below normal under 
heavy load conditions. 

A power electronic interface between the source 
and the load is suggested to enable output voltage 
management [2] while also improving power quality 
(PQ) to address the voltage imbalance. The 
recommended method is distinctive in that it uses a 
multilayer inverter to offer a dual benefit. The term 
"multilevel" comes from the three-level converters. 
To achieve high output voltage levels, the 
semiconductor switches' commutation combines 
several direct current (DC) sources. The benefits of 
multilevel inverters include better PQ, more 
electromagnetic compatibility, reduced switch losses, 
and enhanced voltage capacity. The three 
architectures of multilevel inverters are neutral fixed 
or diode fixed multilevel inverters, flying capacitor 
multilevel inverters, and cascaded multilevel 
inverters (CMLI). This study makes use of the CMLI. 

The main purpose of CMLI [2] is to combine 
numerous dc sources, such as batteries or solar cells, 
to provide the necessary voltage. If the H-bridge DC-
link voltages are equivalent, the CMLI is said to be 
asymmetrical. Because solar PV voltages might 
change depending on the climate, asymmetrical 
inverters are strongly advised. Varying asymmetrical 
inverters have different dc-link voltages [4][5]. The 
design of the PV controller, the inverter, the 
interface, and the scheduling of microgrids [6][7] all 
play significant roles in enhancing the performance 
of grid-connected PV systems. Energy trading in 
microgrids is improved by the application of various 
learning algorithms [8]. 

Consumers increasingly use microgrids, which 
employ renewable and alternative energy 
technologies, to satisfy their energy demands and 
lessen environmental issues. Utilizing these more 
recent technologies through a microgrid significantly 
improves resource efficiency, PQ, and the availability 
of dependable electricity. Grids that are zone-based 
or dispersed now incorporate these more 
contemporary elements as a result of recent grid 
developments like multi-microgrids, interconnected 
alternating current (AC-AC), and AC-DC microgrids.  

According to IEEE 519 standards, the maximum 
individual harmonic component percentage for 
electrical systems with a voltage of 69 kV or less is 
3 %, and the maximum total harmonic distortion is 

5 %. The standard establishes aims for the plan of 
electrical systems with both linear and non-linear 
loads, point of common coupling, and total harmonic 
distortion should be less than 3 %.  

This manuscript is organized as follows: The 
literature review is explained in section I. The PV 
system was modeled, and its performance was 
examined in section II. Cascade MLI design, its 
performance analysis, and grid-connected PV system 
controllers' design, performance analysis, and 
comparisons are explored in section III, and the 
manuscript is concluded in section IV. 

Md. Halim Mondol et al. [9] used the half-height 
neutral clamped (HHNPC) inverter, a new 1-Ø MLI 
with fewer switches. The suggested MLI comprises a 
10 kW PV system as a DC source, switching devices, 
& a reduced number of control diodes compared to 
traditional topologies. Unipolar variation is used to 
create the triggering points for the recommended 
inverter, which results in the lowest THD in both 
production voltage & current. The suggested inverter 
architecture is modeled as a 1-Ø, nine-level inverter. 
The technology is modeled using MATLAB/Simulink. 
Additionally, the recommended and traditional 
topologies are contrasted. 

N. Thombre et al. [10] have suggested and 
published a variety of unique CMLI topologies in the 
literature. The primary drawback of the three-phase 
CMLI implementation is the high cost of power 
semiconductor components and the input dc supply 
necessary for all suggested topologies. This article 
offers a fresh, expanded concept for reducing the 
quantity of dc power supply, control switches, and 
diodes in an existing CMLI design. The new optimal 
models include two phases: a flow phase that may 
be changed to incorporate a current flow topology, 
and a phase generator stage that comprises a typical 
3-Ø 2-level inverter (CTPTLI) and three bidirectional 
switches. The predicted topologies are validated by 
extensive modeling analysis. The findings may be 
used to show how the proposed technique can 
decrease the device numbers in the current 
topologies while preserving their concerted 
operation. 

A novel CMLI architecture that drastically 
decreases the number of control switches and DC 
voltage sources were presented by N. Thombre et al. 
[10]. The proposed system employs an asymmetrical 
MLI with 11 unidirectional switches, three diodes, 
and four direct current voltage sources to provide 21 
levels of output. The benefit of this topology is that it 
reduces the number of switches, gate driver circuits, 
and DC sources, all of which are now two (2 no.). 
Without compromising the inverter's superior 
output, it also lowers the hardware's charge, 
difficulty, & space necessities.  

For the cascaded switched diode multilevel 
inverter, C.K. Kishore et al. [11] and his colleagues 
proposed a sinusoidal pulse width modulation 
(SPWM) control method as opposed to clock phase 
shifting (CSDMLI). Two similar resistive loads are 
associated with the CSDMLI. The proposed MLI 
reduced the harmonic level by up to 12.76 % by 
delivering many loads when related to the previous 
control method, which produced a 16.82 % 
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harmonic bias. To switch between loads, a basic 
pulse-width modulation approach is used. In high-
power medium voltage applications, MLIs are also 
used. 

On the control switches, Hosseinzadeh et al. [12] 
found lower upright voltage and lower harmonics. 
The fact that multilayer inverters need a lot of 
switching components makes control challenging, 
which is a major drawback [12]. The design and 
construction of an unconventional switch-diode MLI 
for CMLI are discussed in this study. With fewer 
control switches, DC sources, and a lower overall 
obstructive voltage on the switches, the intended 
irregular MLI yields 31 levels. In order to verify the 
benefits and limitations of MLI, the suggested 
topology is connected to the present CMLI. 

A brand-new two-stage CSDMLI design for 
medium-voltage alternative energy integration has 
been created by L. Way et al. [13]. The reduction of 
switches and gate drivers in MLI is the main goal of 
this design. The PQ of a grid-connected system was 
enhanced by Narasimhulu et al. [14] using a variety 
of intelligent controllers for cascaded H-bridge MLI 
and shunt active power filter applications. For 
effective planning and seamless operations, Farooqi 
et al. [15] have concentrated on several connectivity 
configurations of dispersed generating penetration. 
Renewables are incorporated into modern systems 
to maintain a balance between supply and demand 
and to support clean energy projects. The learning 
strategy for microgrid reconnection has been 

described by C. Lassetter et al. [16]. The performance 
analysis of a multilayer cascade H-bridge-based 
active power filter under load change was described 
by Narasimhulu et al. [17]. Hui-Qiong Deng et al. 
[18] discussed the safety and economics of the 
preventative control technique for cascading failures. 
State of charging (SoC) balancing techniques for 
power matching in cascaded H-bridge MLI have been 
described by J. Yu et al. [19]. 

This research suggests several artificial 
intelligence control methods for the CMLI to 
enhance the voltage level in cascaded H-bridge MLI 
to enhance the quality of power under various 
loading scenarios. The THD, active power, and power 
factors for several control algorithms are compared 
in this work. These cutting-edge network topologies 
may maximize the usage of renewable and 
substitute energy sources. Linking two or more 
microgrids, for instance, enables standby allocation, 
voltage, and frequency support and ultimately 
increases the reliability and flexibility of the linked 
microgrids overall. 

Figure 1 displays the whole block diagram for PQ 
control of a grid-connected PV system. To extract 
most of the power from the system, a 10 KWp PV 
system with a boost converter and a cascaded 
feedforward neural network-based MPPT Control 
algorithm is used. A set of 4 such PV systems are 
then used to convert DC to AC using a 9-level 
cascaded multilevel inverter, allowing the system to 
be integrated with the grid. The grid and load 

 
Figure 1. Complete block diagram of PQ control of grid-connected PV system 
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voltages are used as a reference to create the firing 
pulses for the cascaded multilevel inverter 
employing multiple controllers in the feedback 
system. 

PV systems may have several detrimental effects 
on the grid if PV penetration is very high. Reverse 
power flow, overvoltage throughout the distribution 
system, trouble in controlling voltage, phase 
imbalance, PQ issues, enhanced reactive power, and 
difficulty detecting islanding are among them. 

This work is intended to: 
• Studying a PQ improvement in a grid-

connected PV system using voltage and current 
controller topologies. 

• Train the novel deep neural network (DNN) 
using input parameters, including grid power 
changes, switching pulses, and the proportional 
plus integral (PI) controller's target gain 
settings. During the testing period, the DNN 
predicts the PI controller's gain parameters 
based on grid side parameter fluctuation, and 
the grid side's PQ has been improved. 

• Evaluate the performance of the DNN control 
technique under various operating conditions 
[20] with PI, Fuzzy, ANFIS,  and cascaded 
feedforward neural network (CFFNN) 
Controllers. 

II. Materials and Methods 

A. Modeling of PV system 

In Figure 2, an additional series and parallel 
resistors link the solar cell to a diode as a dependent 
current source. It's important to note that when 
solar light is not present, no power is produced, and 
the PV cell behaves like a diode [21]. The amount of 
sunlight that strikes the PV cell (photo-current) 
regulates the real current coming from the PV cell 
(Figure 2). Equation (1) illustrates how the voltage 
loss across the diode will impact the voltage 
generation in the PV cells. 

V = ( 
NKT 

Q
) ln

IL−Io

Io
+  1  

The generated current by light (radiation) is 
shown in equation (2) 

IL = (
G

Gref
) ∗ (IL ref +∝𝐼𝑠𝑐 ( TC − TC ref))   

Reverse saturation current is shown in equations 
(3) and (4) 

Io = Ior (
Tc

Tref 
)

3 
e

(Q∗Eg)

(K∗N)∗⌈(
1

Tcref
)−(

1
Tc

)⌉   

Ior =
Iscn

e
(

Vocn
N∗Vtn

)
  

Current S C (Ish = Il) as shown in equation (5) 

Ish = (IL − Io) ∗ (e 
eV

KT − 1 ) A  

B. Grid integration of PV systems and design 
simulation of MLI 

The CMLI is well known for grid interconnection 
of alternative energy sources to improve system PQ 
and reliability. The suggested CMLI was designed 
using a small number of power electronics (PE) 
switches to decrease THD for both the current and 
voltage waveforms. Here, five metal oxide 
semiconductor field-effect transistor (MOSFET) PE 
switches are engaged, with 4 PV models coupled to 
each PE switch, as illustrated in Figure 3. The 
suggested multilayer inverter uses the staircase 
modulation technique to generate pulses. The 

 
Figure 2. The equivalent PV cell circuit 

 
Figure 3. CMLI architecture (9-level) for a PV system linked to the grid 
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suggested MLI was designed in two phases, DC-DC 
and DC-AC, utilizing an H-bridge. The 3-phase 
output voltage is shown in Figure 4. 

C. Modeling of microgrid-connected PV system 

The simulation model grid integration of PV 
systems with an MLI and proposed controllers, VSC 
for bridged inverter, voltage control loop in with PI 
controller in VSC, and a proposed current controller 
to regulate the current in VSC with various 
intelligent controllers were shown in Figure 5, 
Figure 6, Figure 7, and Figure 8 respectively. To 
overcome the above time lag problem, the proposed 
DNN controller is implemented in the 
MATLAB/Simulink tool for standalone and grid-
connected modes of operations, and the same 

algorithm is compared with connecting CFFNN, 
ANFIS, Fuzzy, and PI controller algorithms to show 
that the proposed algorithm gives better response 
with non-linear and unbalanced loading conditions. 

D. Cascaded feed forward neural network 
controller  

The most fundamental element of a neural 
network is a neuron (NN). Synaptic weight serves as 
the link between neurons. Figure 9 depicts this NN's 
five invisible levels and production layer. A CFFNN is 
one such type of NN which architecture is shown in  
Figure 10. The information process in CFFNNs is 
conveyed from the contribution nodes to the hidden 
nodes and from the hidden nodes to the output 
nodes. The initial connection for each layer in the 

 
Figure 4. The waveform of the multi-level inverter output voltage with 3 phases and 9 levels 

 
Figure 5. Photovoltaic systems integration into micro-grid simulation model using a proposed controller and multilevel inverter 
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network goes from the input to that layer, and the 
next link travels from that layer to the following 
levels. 

In a perceptron, the relationship between the 
input and the output is direct. However, a CFFNN has 
an indirect connection between input and output. 
The unseen layer's relationship is both linear and 
non-linear in shape because of a stimulation 
function. It is feasible to build a network that 
connects the input and output layers by combining 
perceptron and multilayer networks. The CFFNN 
produced by this connection architecture is called 
cascade forward. One option for the CFFNN model is 
in equation (6). 

𝑦 =  ∑ 𝑓𝑖𝑤𝑖
𝑖𝑥𝑖𝑛

𝑖=1 + 𝑓𝑜(∑ 𝑤𝑗
0𝑓𝑗

ℎ𝑘
𝑗=1 (∑ 𝑤𝑗𝑖

ℎ𝑥𝑖))𝑛
𝑖=1  (6) 

where fo is the activation function on the output 
layer, 𝑓𝑗

ℎ  is an activation function on the hidden 
layer, 𝑤𝑗

0is the weight of the jth neuron at the output 
layer, 𝑤𝑗𝑖

ℎ  is the weight of the jth neuron at the 
hidden layer, and 𝑤𝑖

𝑖 is the weight of the ith neuron at 
the input layer 

The job in issue is the stimulation task between 
the contribution and production layers, and the 
stimulation function from the contribution layer to 
the production layer is represented by the weight in 
the contribution layer's stimulation function. 
equation (6) changes to resemble equation (7) when 
an additional bias is applied to the contribution layer 
and each neuron in the hidden layer has an 
activation function of fh. 

 
Figure 6. VSC regulator for photovoltaic systems integration with microgrid 

 

 
Figure 7. Photovoltaic system micro-grid connectivity using VSC 

 

  
Figure 8. Suggested micro-grid interconnection of a photovoltaic system with current regulator controller 
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i j i
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= = =

  
= + +  

  
     (7) 

where 𝜔𝑏 is the weight of the bias from the input. 
The CFNN model often employs time series data. 

The outcome is present data at Xt level because 
neurons in the input layer delay the time series data 
represented by the data at Xt-1, Xt-2, Xt-3, and Xt-p 
levels. To increase the size of the entire network by 
the number of neurons in the contribution layer, the 
network weight must be computed and modified. 
The feedforward algorithm on CFNN, known as 
backpropagation, consists of three stages: initial 
weight computation, pattern error counting, and 
further weight calculation. The error is computed 
during the feedforward phase, and then the 
development continues with the feedforward design 
(the variation in the result to the target). The next 
step is to adjust the weights before rerunning the 
computation to make sure everything is still 
accurate. As long as no error or iteration halt is 
found, the process is resumed. This section briefly 
discusses the conjugate gradient optimization 
method for modifying the CFNN's weights. Assume 
that is a length-s weight vector and that the goal is 

to locate all network weights as indicated by 
equation (8). 

𝑒 =
1

2
(𝑋𝑡 − �̂�𝑡)

2
  (8) 

The optimistic positive matrix dimension is s*s  
Whereas QT = Q is defined as Q. The following are 

the stages of the Conjugate Gradient Optimization 
procedure: 

Step 1: Set k = 0 & choose the starting position as 0 

Step 2: Determine the gradient of the initial weight 
as shown in equation (9) 

𝑔(0) =  
𝑑𝑒

𝑑𝑤0
=  

𝑑𝑒

𝑑𝑤|𝑤= 𝑤0
=  |

𝑑𝑒

𝑑𝑤1
(0)  . . . . . . . .

𝑑𝑒

𝑑𝑤𝑠
(0)|

𝑇

 (9) 

If 𝑔(0)= 0 then stop and then obtained the optimal 

weight Ω(0). Else, 𝑑(0) = 𝑔(0) 

Step 3: Determine 𝛼𝑘 using equation (10) 

𝛼𝑘 = arg 𝑚𝑖𝑛𝛼≥0  𝑒(𝑤(𝑘) + 𝛼𝑑𝑘) =  − 
𝑔(𝑘)𝑇𝑑(𝑘)

𝑑(𝑘)𝑇𝑄𝑑(𝑘)
  (10) 

Step 4: Determine 𝛺(𝑘+1) using equation (11) 

Ω(𝑘+1) =  Ω𝑘 +  𝛼𝑘𝑑(𝑘) (11) 

Step 5: ( 1)
( 1)

k
k

eg
w

+

+


=


 if 𝑔(𝑘+1) = 0 stop and the 

optimal weight is w(k+1) 

Step 6: Determine 𝛽𝑘 using equation (12) 

𝛽𝑘 =
𝑔(𝑘+1)𝑄𝑑𝑘

𝑑(𝑘)𝑇𝑄𝑑𝑘
  (12) 

Step 7: Determine 𝑑(𝑘+1) using equation (13) 

𝑑(𝑘+1) =  − 𝑔(𝑘+1) + 𝛼𝑘𝑑(𝑘)  (13) 

Step 8: k = k+1: drive to stage 3 

Epoch repetition is also referred to as weight 
searching on CFNN in feedforward neural networks 
(FFNN). To start the repetition method, the program 
must not have satisfied the iteration termination 
condition before epoch k = K. The direction vector is 
reset after each iteration because this method can't 
guarantee convergence in the n steps, and the 
procedure is continued until the termination 
condition is met. In the non-linear model, Q is a non-
constant Hessian matrix that is produced for each 

Input Layer Hidden Layer Output Layer

Xt-1

Xt-2

Xt-P

ᶋ 

ᶋ 

ᶋ 

Xt

 
Figure 9. CFFNN architecture – five layers 

 
Figure 10. The architecture of CFFNN 
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iteration. An algorithm for eliminating Q is 
employed to make the method straightforward, with 
the only sources of algorithm reliance being the 
function and gradient value for each iteration. One of 
the many formulae for substituting Qd(k) with other 
forms is the Hestenes-Stiefel formula, or Qd(k). Thus, 
the k may be expressed as in equation (14). 

𝛽𝑘 =
𝑔(𝑘+1)𝑇[𝑔(𝑘+1)−𝑔𝑘]

𝑑(𝑘)𝑇[𝑔(𝑘+1)−𝑔𝑘]
  (14) 

The best validation performance of CFFNN model 
is shown in Figure 11, and the best-validated 
performance is at the 25th epoch with 7.3503e-08 
mse. Figure 12 shows the gradient, Mu, and 
validation checks with CFFNN’s controller at epoch 

 
Figure 11. The validation performance of the CFFNN model (7.3503e-8 at epoch 25) 

 

 
Figure 12. Gradient, Mu, and validation checks with CFFNN controller 
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31. In Addition, the training, the validation test, and 
the regression performance with CFFNN controller 
are shown in Figure 13. 

E. Deep neural network (DNN) 

Basic connected components known as neurons 
make up an artificial neural network (ANN). Each 
neuron is a mapping with many inputs and a single 
output. The output of a neuron is inversely 
correlated with the sum of its inputs. A neuron is 
produced by an activation function, which is a 
function. Since a single neuron's single output can be 
used as an input to other neurons, the symbol for a 
single neuron shows the number of arrows 
emanating from the neuron. The input and output 
layers of the perceptron's two-layer network are the 
sole layers.  

The perceptron is the source of the signal. The 
signal is directly transferred from the contribution 
layer to the production layer in a perceptron. 
Production and contribution are inversely correlated. 
Transferring weighted amounts from donations to 
production implies a close relationship between the 

two levels. Because the NN contains many layers 
between input and output, it is known as a 
"multilayer perceptron". The multilayer perceptron 
system is also recognized as an FFNN in NN 
modeling. The FFNN network has an additional layer 
called the hidden layer. The signal is guided in a 
weighted fashion from the input layer to the unseen 
layer. 

The contribution signals are received by the 
buried layer, which then distributes them to the 
neurons. The initiation function of the layer then 
progresses signals that arrive at the neurons of the 
unseen layer. The initiation function of the unseen 
layer is a non-linear function that may be utilized as 
a transfer function. In the unseen layer, the weighted 
total of the respective neuron's output is then 
transmitted to the output layer. Before being 
transmitted to the output layer, the incoming signal 
is processed by this layer's activation function. 
Identity mapping is a common activation function 
for the production layer, as it assures that the 
productivity made in this layer is equal to the 
contribution signal. The MLP with n contributions xi, 

 
 

Figure 13. Training, validation test, and regression performance with CFFNN controller 
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where I = 1,..., n, one production neuron y and k 
unseen neurons layer are shown in Figure 14. 

The output of a suppressed layer neuron is 
denoted by zj, where j=1,... k. The contribution x1,... 
xn is circulated to the neurons by the unseen layer. 
The initiation function of the respective neuron in 
the contribution layer is called uniqueness mapping. 
A neuron's initiation function in the unseen layer is 
signified as "fh" whereas a neuron's initiation 
function in the production layer is written as "fo". 
The initiation functions are all R to R. Figure 14 
shows the deep neural network architecture, and the 
same can be expressed in a mathematical equation 
as shown in equation (15) 

𝑦 = 𝑓𝑜 (∑ 𝑤𝑗
𝑜𝑓𝑗

ℎ𝑘
𝑗=1 (∑ 𝑤𝑗𝑖

ℎ𝑥𝑖
𝑛
𝑖=1 ))  (15) 

where f0 is the production layer initiation function, 
and fj

h is the unseen layer initiation function, the 
preceding Equation becomes fh if a bias is applied to 
the contribution layer and the initiation function of 
the respective neuron in the unseen layer is fh, as 
shown in equation (16) 

𝑦 =  𝑓0 (𝑤𝑏 + ∑ 𝑤𝑗
0𝑓𝑗

ℎ(∑ 𝑤𝑗𝑖
ℎ𝑥𝑖)) 𝑘

𝑗=1  (16) 

where the bias to production weight is wb, while the 
bias to unseen layer weight is wj

b.  
Figure 15 shows the best validation of the DNN 

model (9.9565e-11 at epoch 2703). Figure 16 shows 
gradient, Mu, and validation checks with DNN’s 
controller. Moreover, Figure 17 shows the training, 
validation, testing, and overall performance with 
DNN’s controller. 

 

 
Figure 15. The best validation of the DNN model (9.9565e-11 at epoch 2703) 

 

 

 

Figure 14. The architecture of DNN  
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Figure 16. Gradient, Mu, and validation checks with DNN Controller 

 

 
Figure 17. Training, validation, testing, and overall performance with DNN controller 
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III. Results and Discussions 

Figure 18 shows the 10 kWp PV system output 
power and PV-connected boost converter output 
power with cascaded feedforward neural network 
MPPT algorithm, with variable irradiance.  

Figure 19 shows the 10 kWp connected boost 
converter output voltage and current. From the 
figures, it is clear that the efficiency of the 10 kW PV 
system is maintained at 99.9 %, and the boost 
converter with CFFNN MPPT algorithm output 
voltage is around 500 Volts. 

A. CFFNN controller for standalone system 

In a Matlab environment, the suggested CFFNN-
based MPPT technique was established. More than 

90,000 data points are employed to offer training 
(80 %), testing (10 %), and validation (10 %).  

The suggested system's best validation 
performance is highlighted at 7.3503e-8 at epoch 25, 
as shown in Figure 10. As previously shown in 
Figure 11, many parameters were utilized at epoch 
31 to explore the best validation performance of 
current regulation, including gradient 2.7214e-5 and 
Mu 1e-7. 

Figure 20 demonstrate the overall performance 
of the suggested current regulator (load voltage, load 
current, active, reactive powers, and power factors) 
using the CFFNN algorithm for a standalone system. 
The power factor by using CFFNN based controller 
for a standalone system is 0.996 which is almost 
unity as shown in Figure 20(e).  

 
 

 
Figure 18. The output power of 10 kW PV system with CFFNN MPPT controller 

 

 
 

 
Figure 19. Boost converter output voltage and current with CFFNN MPPT controller 
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(a) 

 
 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

 
 

 
(e) 

 
Figure 20. Three-phase load waveform of CFFNN controller for a standalone system: (a) load voltage; (b) load current; (c) active power; 
(d) reactive power; and (e) power factor  
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Figure 21 and Figure 22 give the total harmonic 
distortion of load voltage and load current at 
different loading conditions like unbalanced and 
non-linear load for a standalone system in a 

specified time period with CFFNN current controller. 
From the figure, it is clear that the THD for load 
voltage is 3.59 %, and the load current is 1.16 %. 

 

Figure 21. Load voltage THD for a standalone system with CFFNN controller 

 

 

Figure 22. Load current THD for a standalone system with CFFNN controller 
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B. CFFNN controller for grid integrated PV system 

Figure 12 and Figure 13 present the results of an 
evaluation of the recommended current regulator 
algorithms' overall performance utilizing parameters, 
training, testing, and validation. The created current 

controller algorithm has been applied in the planned 
CMLI for coordinating into the grid, and the grid-
connected model's load voltage, current, active 
power, reactive power, and power factor are 
analysed in Figure 23. 

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

 
 

 
(e) 

 
 

Figure 23. Three-phase load waveform of a grid-connected system with CFFFNN control algorithm: (a) gridside voltage; (b) gridside current; 
(c) active power; (d) reactive power; and (e) power factor  
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Figure 24 and Figure 25 show the THD values of 
load voltage and current at the common coupling 
point (PCC) with the CFFNN algorithm at VSC, and 
the table with all topologies of load voltage and 

current THD values for all phases is listed in Table 1. 
The power factor by using the CFFNN controller for a 
grid-connected system is 0.982 shown in 
Figure 23(e). Figures 24 and Figure 25 give the total 

 
Figure 24. Load voltage THD at the common coupling of PV and power grid with CFFNN controller 

 

 
Figure 25. Load current THD at the common coupling of PV and power grid with CFFNN controller 
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harmonic distortion of load voltage and load current 
at different loading conditions like unbalanced and 
non-linear load for a standalone system in a 
specified time period with CFFNN current controller. 
From the figure, it is clear that the THD for load 
voltage is 0.96 %, and the load current is 2.55 %. 

C. DNN controller for standalone system 

Figure 26 demonstrate the overall performance 
of the suggested current regulator (load voltage, load 
current, active, reactive powers, and power factors) 
using the DNN algorithm for a standalone system.  

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

 
 

 
(e) 

 
 

Figure 26. Three-phase load waveform of DNN controller for a standalone system: (a) load voltage; (b) load current; (c) active power; 
(d) reactive power; and (e) power factor  
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Figure 27 and Figure 28 give the THD of load 
voltage and load current for a standalone system 
with DNN. The power factor by using the DNN 
controller for a standalone system is 0.996, which is 
almost unity, as shown in Figure 26(e). Figures 27 
and Figure 28 give the total harmonic distortion of 

load voltage and load current at different loading 
conditions like unbalanced and non-linear load for a 
standalone system in a specified time period with 
DNN current controller. From the figure, it is clear 
that the THD for load voltage is 3.19 %, and the load 
current is 0.79 %. 

Fundamental (50Hz) = 452.3 , THD= 3.19%
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Figure 27. Load voltage THD for a standalone system with DNN controller 

 

 
Figure 28. Load current THD for a standalone system with DNN controller 



M. Rupesh and V.S. Tegampure / Journal of Mechatronics, Electrical Power, and Vehicular Technology 13 (2022) 157-178 
 

175 

D. DNN controller for grid integrated PV system 

The PV system's recommended DNN-based grid 
integration was built in a Matlab environment, as 
illustrated in Figure 15. More than 90,000 data 
points are employed to provide training (80 %), 
testing (10 %), and validation (10 %). The suggested 
system's best validation performance is 1.1225e-12 
at epoch 3448, as shown in Figure 16. The suggested 
DNN algorithm for the current regulator's overall 

performance was evaluated using the following 
parameters: training, validation testing, and overall 
results are shown in Figure 17. For grid 
synchronization, the developed current regulator 
algorithm was used on the suggested PV-connected 
inverter. The created current regulator algorithm has 
been applied in the planned CMLI for coordinating 
into the grid, and the grid-connected model's load 
voltage, current, active power, reactive power, and 
power factor are analyzed in Figure 29.  

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

 
 

 
(e) 

 
 

Figure 29. Three-phase load waveform of a grid-connected system with DNN controller: (a) PCC voltage; (b) PCC current; (c) active power; 
(d) reactive  power; and (e) power factor  
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Figure 30 and Figure 31 show the THD values of 
load voltage and current at PCC with the CFFNN 
algorithm at VSC, and the table with all topologies of 
load voltage and current at PCC THD values for all 

phases are listed in Table 1. The power factor by 
using DNN controller for a grid-connected system is 
0.993, which is almost unity as shown in 
Figure 29(e). Figure 30 and Figure 31 give the total 

 
Figure 30. Load voltage THD at the common coupling of PV and power grid with DNN controller 

 

 
Figure 31. Load current THD at the common coupling of PV and power grid with DNN controller 
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harmonic distortion of load voltage and load current 
at different loading conditions like unbalanced and 
non-linear load for a grid-connected system in a 
specified time period with DNN current controller. 
From the figure, it is clear that the THD for load 
voltage is 0.97 %, and the load current is 0.21 %. 

The reactive power of the system under 
standalone and grid-connected conditions for non-
linear and unbalanced loads are given in Figures 
20(d), 23(d), 26(d), and 29(d). From the figures, it is 
observed that for standalone systems, the required 
active power is supplied with a small-time delay of 
0.3 s in the CFFNN control algorithm and 0.25 s of 
time delay in the DNN control algorithm. Table 1 
represents the THD values of each phase of a 
standalone and grid-connected system with PI, 
Fuzzy, ANFIS, CFFNN, and DNN control algorithms 
with respect to non-linear and unbalanced resistive 
and inductive load. Table 2 represents the power 
factors of both control algorithms under standalone 
and grid-connected conditions with respect to non-
linear and unbalanced RL loading conditions. 

IV. Conclusion 

In this study, the recommended DNN control 
method was applied to model a 10 kW PV system 
with a decreased switching 9-Level CMLI in Matlab. 
The system's performance was assessed under a 
range of operating situations, including active and 
reactive power, power factor, load voltage, and 
current THDs, and the model was simulated. The 
second portion of this study report focused on how 
different control algorithms are integrated and 
performed with PV systems. Last but not least, the 
suggested system was tested in a range of conditions, 
including unbalanced and non-linear. The time 

needed to attain the voltage, current, and active 
power rating levels for standalone systems 
employing both CFFNN and DNN control algorithms 
takes 0.3 s and 0.25 s, respectively. According to the 
performance of the systems, the THD values of load 
voltage and current are 8.94 % and 8.54 % with 
CFFNN and 7.49 % and 7.07 % with the DNN 
controller, respectively. For grid-connected systems, 
neither the control algorithms have a time lag to 
reach the rated voltage, current, or active power, but 
the power factor values are 0.99 and 
approximately 1 for CFFNN and DNN controllers, 
respectively. PCC voltage THD values were 1.34 % 
and 2.58 % with CFFNN and 1.35 % and 0.82 % with 
DNN, respectively, excluding THD and DER 
connectivity to the grid. The DNN is used to virtually 
optimize unstructured data to obtain the best pulses 
for the cascaded inverter. The multiple layers in the 
DNN allow models to learn complex features more 
effectively and perform more intensive 
computational tasks, and it learns from its mistakes 
to obtain the optimized values. Deep learning 
algorithms may take into account diversity in 
learning characteristics to drastically reduce error 
margins across sectors and verticals. This is 
especially true when you consider deep learning 
algorithms' advantages over the limits of the 
traditional machine learning approach. When used 
in data science, deep learning can provide better and 
more efficient processing models. Accuracy and 
results are continuously improved because of its 
unsupervised learning capability. Additionally, it 
provides data scientists with clearer and more 
dependable analytical results. Due to its capacity to 
analyze enormous volumes of data and carry out 
numerous calculations in a time- and cost-efficient 
way, deep learning is extremely scalable. 

Table 1. 
THD comparison with nonlinear & unbalanced RL load 

Controllers Phase Grid side voltage Grid side current Load side voltage Load side current 

Using PI controller R 1.98 % 3.53 % 1.98 % 3.73 % 

 Y 4.35 % 4.26 % 4.35 % 4.51 % 

 B 2.41 % 3.71 % 2.41 % 3.93 % 

Using fuzzy controller R 1.98 % 3.42 % 1.98 % 3.74 % 

 Y 4.37 % 4.15 % 4.37 % 4.4 % 

 B 2.42 % 3.61 % 2.42 % 3.79 % 

Using ANFIS controller R 1.24 % 3.47 % 1.24 % 3.79 % 

 Y 2.94 % 3.77 % 2.94 % 4.13 % 

 B 1.73 % 3.39 % 1.73 % 3.71 % 

Using CFFNN R 0.96 % 2.55 % 0.96 % 2.66 % 

 Y 2.39 % 3.44 % 2.39 % 3.63 % 

 B 1.46 % 2.73 % 1.46 % 2.84 % 

Using DNN R 0.97 % 0.97 % 0.97 % 0.21 % 

 Y 2.38 % 2.38 % 2.38 % 1.54 % 

 B 1.41 % 1.41 % 1.41 % 1.74 % 

 

Table 2. 
Power factors of various control algorithms 

S.No Power factor for standalone system Power factor for grid-connected system 

CFFNN control algorithm 0.99 0.99 

DNN control algorithm 0.99 ≡ 1 
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Productivity (faster deployment/rollouts), 
modularity, and portability are all directly impacted 
by this. The efficacy of the suggested system is 
assessed using IEEE 519 simulation data. Based on 
the aforementioned study, it is obvious that the 
proposed DNN controller performs better in all 
aspects, including time to attain rated values, power 
factor, and THD calculation. As a result, the DNN is 
the ideal architecture for increasing the PQ of grid-
connected PV systems under a variety of operating 
scenarios. 
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