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ABSTRACT
Background: One of the main components in tissue engineering is the scaffold, which may serve as a medium to support cell and tissue 
growth. Scaffolds must have good compressive strength and controlled biodegradability to show biological activities while treating 
bone defects. This study uses Chitosan-gelatin (C–G) with good flexibility and elasticity and high-strength carbonate hydroxyapatite 
(CHA), which may be the ideal scaffold for tissue engineering. Purpose: To analyze the compressive strength and static biodegradation 
rate within various ratios of C–G and CHA (C–G:CHA) scaffold as a requirement for bone tissue engineering. Methods: The scaffold 
is synthesized from C–G:CHA with three ratio variations, which are 40:60, 30:70, and 20:80 (weight for weight [w/w]), made with a 
freeze-drying method. The compressive strengths are then tested. The biodegradation rate is tested by soaking the scaffold in simulated 
body fluid for 1, 3, 7, 14, and 21 days. Data are analyzed with a one-way ANOVA parametric test. Results: The compressive strength 
of each ratio of C–G:CHA scaffold 40:60 (w/w), 30:70 (w/w), and 20:80 (w/w), consecutively, are 4.2 Megapascals (MPa), 3.3 MPa, 
2.2 MPa, and there are no significant differences with the p= 0.069 (p>0.05). The static biodegradation percentage after 21 days 
on each ratio variation of C–G:CHA scaffold 40:60 (w/w), 30:70 (w/w), and 20:80 (w/w) is 25.98%, 24.67%, and 20.64%. One-way 
ANOVA Welch test shows the result of the p-value as p<0.05. Conclusion: The compressive strength and static biodegradation of 
the C–G:CHA scaffold with ratio variations of 40:60 (w/w), 30:70 (w/w), and 20:80(w/w) fulfilled the requirements as a scaffold for 
bone tissue engineering.
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INTRODUCTION 

Bone defects may occur in the maxillary and mandibular 
alveolar bone because of congenital anomaly, trauma, bone 
deficiency after tumor resection, periodontal diseases, and 
tooth loss.1–3 The most common treatment is the application 
of bone grafts using the concept of tissue engineering, which 
comprises three fundamental components: cells, scaffolds, 
and growth factors.4 Tissue engineering aims to develop 
new biofunctional tissue to regenerate and repair damaged 
or diseased tissues.5,6 In tissue engineering, scaffolds are 
crucial as they provide support for cell and tissue growth 

and can imitate natural bone.7 The primary characteristics 
required in a scaffold for tissue engineering include 
biocompatibility, good mechanical properties, controlled 
biodegradability, osteoinductivity, osteoconductivity, and 
non-toxicity.8

The scaffold’s synthesization involves biomaterials 
consisting of a natural polymer from chitosan-gelatin 
(C–G) and a bio-ceramic from carbonate hydroxyapatite 
(CHA), which display ideal scaffold characteristics.9 
Providing flexibility and elasticity, C– G is an organic 
material, while CHA is high in crystals, which might 
contribute to the scaffold’s structural strength.10 Chitosan is 
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a natural biopolymer derived from chitin with the desirable 
characteristics of biocompatibility and biodegradability, 
as well as being antibacterial and non-toxic.11 Gelatin 
is a biocompatible, biodegradable, low-toxicity material 
derived from hydrolyzed and denaturalized collagen, 
one of the leading organic components in the natural 
bone.12,13 The combination of gelatin and chitosan may 
help improve the bone repair process.14 With greater 
homogeneity and fixation ability than hydroxyapatite, 
CHA is an inorganic compound and is commonly used 
as a scaffold material for bone repair and replacement 
due to its bioactive, osteoconductive, and biocompatible                                                                        
characteristics.15 It is capable of activating cell adhesion 
differentiation and proliferation with good absorptivity 
for bone defects, which is essential for tissue engineering. 
16,17 CHA may also help increase the ion calcium and 
phosphate required for new bone formation.13 In this 
study, limestone-based CHA from Cirebon, West Java,                                                                     
extracted by the Indonesian Center for Ceramics (BBK 
Indonesia), has potential application as a bio-ceramic 
material in the medical field for bone replacement in 
treating bone defects.

This study uses freeze-drying to synthesize the 
C–G:CHA scaffold. This method can produce porous 
3-dimensional scaffolds with more than 90% porosity and 
a 20–400 micrometer (µm) pore diameter.18 Combining 
several natural materials can improve each material’s 
properties to achieve the scaffold’s ideal characteristics, 
particularly good mechanical properties.19 Chemical cross-
linking between the polymer components of C–G and the 
addition of CHA can affect the mechanical properties of 
a scaffold.20 

Scaffolds used as a bone replacement need a 60% to 
90% porosity with an average pore size of 150 µm and 
compressive strength comparable to the cortical bone 
of 100MPa to 230 MPa or trabecular bone of 1MPa to 
12MPa.21–23 The compressive strength of a scaffold material 
is mainly studied to determine its maximum load-bearing 
capacity.24 The ideal scaffold must have good mechanical 
properties, including compressive strength to withstand 
pressure from tissue and maintain space for cell and new 
bone growth.25 When a scaffold is implanted into the body, 
it must maintain its mechanical properties with enough 
structural integrity, determined by the biodegradability of 
the biomaterial that it can create space for new bone tissue to 
grow. Thus, the research aims to determine the mechanical 
property requirements for a tissue engineering scaffold 
by testing the compressive strength of the C–G:CHA 
scaffold composite with ratio variations of 40:60 (w/w), 
30:70 (w/w), and 20:80 (w/w) and biodegradation testing 
to determine how long it takes for the scaffold to degrade 
into the body completely.26 A scaffold’s controlled and 
stable degradation process may help regenerate new bone 
tissue.27 This study aims to analyze the compressive 
strength and static degradation rate of the C–G:CHA 
scaffold composite with specific ratios as requirements for 
bone regeneration.

MATERIALS AND METHODS 

The materials used in this study were chitosan with a 
medium molecular weight (Sigma Aldrich 448877, USA), 
bovine gelatin (Sigma Aldrich G9391, USA), CHA 
powder made from limestone produced by Indonesian 
Center for Ceramics (BBK Indonesia), natrium hydroxide 
(Biomedicine), acetic acid (Merck), distilled water (Duta 
Farma), and simulated body fluid (SBF Merck). The 
C–G:CHA 40:60 (w/w) scaffold is prepared by weighing 
0.5 grams of chitosan powder, 0.5 grams of gelatin powder, 
and 1.5 grams of hydroxyapatite carbonate powder. Up 
to 2% acetic acid is added to the weighed gelatin up to 2 
milliliters (ml) and stirred with a magnetic agitator at 50°C 
until the gelatin powder is homogeneous. The weighed 
CHA is mixed with 0.94 ml of distilled water and then 
incorporated with a metal spatula until homogeneous. Then, 
the dilute CHA is incorporated in the gelatin gel and then 
stirred until homogeneous, while chitosan powder is added 
gradually to form a C–G:CHA gel. The C–G:CHA gel was 
mixed with 0.5 ml of 0.1 molar NaOH to neutralize the acid. 
The C–G:CHA gel was measured using litmus paper until 
a pH of 7 was obtained. If a pH >7 (alkaline) was obtained, 
0.1 ml of acetic acid solution is added, while if a pH <7 
(acidic) is obtained, 0.1 ml of NaOH solution is added. 
The pH measuring must be done simultaneously to ensure 
the scaffold’s pH is exactly 7. The pH 7 C–G:CHA gel is 
placed into the 48-well plate using a glass spatula and then 
compacted using a cement stopper until no hollow spaces 
are left. The mixture is frozen at −40°C for 2x24 hours and 
freeze-dried for 2x24 hours.28 Scaffolds with the ratios of 
30:70 (w/w) and 20:80 (w/w) are processed the same way. 
On the 30:70 (w/w) ratio, 0.375 grams of chitosan powder, 
0.375 grams of gelatin powder, and 1.75 grams of CHA 
powder are used. For the 20:80 (w/w) ratio, 0.25 grams 
of chitosan powder, 0.25 grams of gelatin powder, and                       
2 grams of CHA powder are applied.

Compressive strengths are tested using the Mini 
Autograph Universal Testing Machine’s sensor load cell L 
IP3 Class 0.02 with microcontroller software Phyton 2.7 on 
the cylindrical-shaped scaffolds. The diameter and height of 
the scaffolds are measured using vernier calipers to measure 
their surface area. Scaffold samples are placed in the middle 
of the pressing machine with their vertical axis perpendicular 
to the flat plane. Activating the Mini Autograph tool, the 
suppressor crushes the sample slowly with a pressure load 
of 400 newtons and 2 mm/minute speed until the samples 
are distorted and break. The tool will be stopped when the 
graph in the monitor shows that there is an increase after 
a decrease. When this occurs, the load no longer pressures 
the scaffold but is distributed only onto the upper and 
lower suppressor. Calculations will be made from the graph 
results, which show displacement and force accepted by 
the scaffold as the maximum amount of load divided by 
the surface area of the scaffold sample. The data are then 
put into the compressive strength formula to calculate the 
compressive strength value with units of MPa.29
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Static biodegradation testing is achieved by soaking 
the samples in 1.5 ml SBF in an Eppendorf container at a 
temperature of 37°C. Before soaking, the pH measurements 
of the SBF media are taken by weighing the SBF to 
determine the initial weight of the scaffold in its dry state 
(Wo). The percentage of biodegradation is obtained after 
calculating the final weight (Wt) as the scaffolds are dried 
after soaking for 1, 3, 7, 14, and 21 days. The chosen 
formula is used to calculate the biodegradation percentage 
from the scaffolds’ W and Wt data.30 

 𝐵𝑖𝑜𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 = �����
�� 𝑥 100%

Research data are then statistically analyzed using 
the Kolmogorov–Smirnov test to determine if the data 
distribution is normal, followed by homogeneity testing 

using the Levene test. If the p > 0.05, one-way ANOVA 
parametric tests are performed to identify the significance 
of every sample’s data results.

RESULTS

The compressive strength value of the C–G:CHA scaffold 
is obtained after entering the strength test results from the 
Mini Autograph Universal Testing Machine’s sensor load 
cell L IP3 Class 0.02 with the Python 2.7 microcontroller 
software. Results and the standard deviation of the 
C–G:CHA scaffolds’ compressive strength value are 
shown in Table 1 and Figure 1. The average compressive 
strength value of the C–G:CHA scaffold appears to increase 

Table 1. The compressive strengths of various C–G:CHA scaffold ratios (MPa)

Sample n Average of compressive strength value Standard deviation
C–G:CHA scaffold 40:60 6 4.19 0.79
C–G:CHA scaffold 30:70 6 3.29 0.22
C–G:CHA scaffold 20:80 6 2.19 1.19
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= Not significant

Average of compressive strength value

Figure 1. Graph of the average compressive strength of C–G:CHA scaffolds.

Table 2. Static biodegradation test of C–G:CHA scaffold ratios (%)

C–G:CHA 
scaffold ratios

n
Day 1 Day 3 Day 7 Day 14 Day 21
x + SD x + SD x + SD x + SD x + SD

40:60 6 0.41±0.06 1.69±0.69 6.67±1.64 16.13±5.43 25.98±2.74
30:70 6 0.50±0.13 3.18±1.35 6.07±0.52 12.55±2.03 24.67±3.77
20:80 6 0.42±0.09 1.86±0.80 5.51±0.79 8.27±1.51 20.64±6.40

Notes: x: average biodegradation percentage; SD: standard deviation
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 Figure 2. The graph shows the average static biodegradation rate of the C–G:CHA scaffolds on days 1, 3, 7, 14, and 21.
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with an increase in the C–G ratio and a decrease in the                         
CHA ratio.

Initial and final weights are calculated on each sample 
at every time stamp during the research. Time-stamp 
variations for the biodegradation tests are 1, 3, 7, 14, and 
21 days. Data from the initial and final weights are used 
to calculate the degradation percentage of the C–G:CHA 
scaffolds with various ratios. Results and the standard 
deviation of the C–G:CHA scaffolds’ degradation are 
shown in Table 2 and Figure 2.

DISCUSSION 

The scaffold’s mechanical properties are essential in the 
manufacturing process. Developing a porous structured 
scaffold compatible with bone is a central issue in tissue 
engineering.31,32 The porous structure of the scaffold is to 
facilitate cell attachment and proliferation, but then it must 
also have the sufficient mechanical strength to enhance 
biostability.33

Based on the results, the average compressive strength 
value increases when the CHA ratio decreases, and the C–G 
ratio rises. A one-way ANOVA statistical analysis showed 
no significant difference in the compressive strength 
values of the three variations of the C–G:CHA scaffold 
ratios of 20:80 (w/w), 30:70 (w/w), and 40:60 (w/w). 
This result means that the average compressive strength 
value increase was insignificant. In previous studies, the 
C–G:CHA scaffold had been tested by FTIR, SEM-EDX, 
and XRD, and the results contained a phosphate group 
(PO4

3-), a carbonate group (CO3
2-), and a hydroxyl group 

(OH-). Chitosan has several hydroxyl groups (-OH) and 
amine groups (-NH2) in its chain, while gelatin has active 
hydroxyl groups (-OH), carboxylic groups (-COOH), and 
amine groups (-NH2). The groups in chitosan and gelatin 
form hydrogen bonds between the amine and carboxylic 
groups or with phosphate and carbonate groups.33

Bonds between carboxyl groups in gelatin and amine 
groups in chitosan also produce ionic bonds, which cause 
the formation of a scaffold with denser properties.34 Bonds 
in chitosan and gelatin will form intermolecular hydrogen 
bonds. Hydrogen bonds will be created due to bonds 
with –NH2 and carbonates hydroxyapatite or interactions 
between –COOH and carbonates apatite. Combining 
these 3 materials will form crystalline particles, which 
are dominantly formed from CHA material containing the 
elements O, Ca, and P and has crystalline particles.33 During 
the freeze-drying process, the mixture of the three materials 
will produce crystals and amorphs, which will balance the 
crystallinity of the scaffold so that the addition of the C–G 
ratio can increase the bond to the 3 materials.

The above confirms the opinion that chemical cross-
linking between polymer components, namely C–G, can 
affect the mechanical properties of the scaffold.20 The 
compressive strength value in this study is still in the 
range of compressive strength values in trabecular bone of 

0.1 to 16 MPa. Engineering scaffold tissue must possess 
sufficient mechanical properties to support new bone 
tissue at the implantation site and maintain good integrity 
for cells in vitro and in vivo.35-38 Thus, it is vital for a 
bone scaffold to have identical mechanical properties as 
trabecular bone.23

In the results of previous studies, the trabecular bone 
mechanical properties have a value of compressive strength 
of at least 1 MPa.39 A study by Waletzko-Hellwig showed 
that the compressive strength of trabecular bone is 2 to 48 
MPa. In comparison, a study by Mohaghegh suggested a 
compressive strength of 1.5 to 45 MPa, and research by 
Gerhardt and Boccaccini showed a compressive strength 
of 0.1 to 16 MPa.37,40,41 This indicates that trabecular 
bone has a highly anisotropic and heterogeneous structure 
whose mechanical properties depend highly on anatomical 
location.42 In addition, the stiffness level of the bone 
scaffold must not be too low to provide mechanical stability 
and not too high to prevent stress shielding, resulting in 
friction under continuous pressure and damage to the 
surrounding bones.43 This can affect bone remodeling.44 
Previous research on Balai Besar Keramik’s hydroxyapatite 
(HABBK) scaffold, combined with C–G, proved the 
HABBK:C–G scaffold composite with a ratio of 60:40 
(w/w) had the highest average compressive strength value, 
i.e. 0.81 MPa,  less than the compressive strength value of 
this study using CHA.29,45 This study shows that all ratios 
meet the requirements as a scaffold in tissue engineering: 
the compressive strength in the C–G:CHA scaffold with 
the ratio of 40:60 (w/w) is 4.19 MPa; the C–G:CHA 30:70 
(w/w) is 3.29 MPa; and the C–G:CHA scaffold 20:80 (w/w) 
is 2.19 MPa. All these values are still within the range 
of compressive strength values of the trabecular bone. 
Developing chitosan, gelatin, and CHA materials into a 
three-dimensional structural scaffold with good mechanical 
strength and biological function will increase the recovery 
of bone defects. It can be used as a good candidate for 
designing biomimetic bone scaffolds.

Table 2 and Figure 2 show that the average value of 
the static biodegradation rate of the C–G:CHA scaffold 
in each ratio variation increased during the study from 
day 1 to day 21. The test results for the highest average 
degradation rate value of the C–G:CHA scaffold sample 
for each ratio variation were obtained on the 21st day. In 
the C–G:CHA scaffold with a variation of the ratio of 40:60 
(w/w), the static biodegradation rate is faster compared 
to the other ratio variations. One of the ideal properties 
of biomaterials in tissue engineering is biodegradability. 
Biomaterials used for scaffolds have an essential role in 
the success of tissue engineering. Tissue engineering in 
a scaffold must support the tissue growth process that 
acts as a temporary extracellular matrix during the cell 
attachment and adhesion processes. This matrix must 
be made of biodegradable materials capable of being 
metabolized by the body and eventually gradually degraded 
when cells begin to undergo a process of proliferation and 
differentiation.46,47
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The static biodegradation rate of the 40:60, 30:70, and 
20:80 scaffolds throughout 1, 3, 7, 14, and 21 days increased 
due to bonds between the scaffold components and calcium 
and phosphate ions from the SBF solution. This bond 
gradually damages the scaffold components and causes 
a decrease in the weight of the scaffold, increasing the 
degradation rate due to the interaction between the scaffold 
and the SBF media. In the degradation process of the 
C–G:CHA scaffold in the SBF, the increasing weight loss 
was affected by the bond between the scaffold components 
with Ca2+ ions and PO4

3+ ions originating from the SBF 
solution. The interaction of the scaffold and the SBF also 
caused the degradation of chitosan in the form of an amide 
complex such as NH2 in the SBF. This process will cause 
the SBF to gradually damage the scaffold components and 
increase the percentage of scaffold weight loss as the static 
immersion time rises to 21 days.33,48

The static biodegradation test, the gold standard, is used 
in this study.49 According to previous research, the reduction 
in scaffold weight should not be too fast or slow, following 
the bone remodeling process of around 3–6 months.50,51 
In another opinion, the minimum degradation process is 
between 1–2 weeks because this period is the bone repair 
stage, starting with the elimination of damaged cells and 
replacing the weak fibrin clot with a more mechanically 
stable structure called a callus.52

The biodegradation rate of the C–G:CHA scaffold 
is 20% to 25.98% on day 21, the largest ratio variation 
in the study. Based on previous research, the trabecular 
bone regeneration process takes place for about 2–3 
months.53According to other studies, bone regeneration in 
the trabecular bone takes about 200 days (6 months).54 In 
this study, the degradation rate of C–G:CHA scaffold of 
20% to 25.98% for 21 days is expected to lead to complete 
degradation within 3–6 months, showing that the C–G:CHA 
scaffold has a biodegradation rate suitable for the bone 
regeneration process. All of the C–G:CHA scaffold ratios 
demonstrate biodegradable properties. Over 1, 3, 7, 14, and 
21 days, the scaffold underwent in vitro bone regeneration, 
or it could be said that the scaffold was degraded. Therefore, 
the C–G:CHA scaffold with the ratios of 40:60 (w/w), 30:70 
(w/w), and 20:80 (w/w) all have reasonable degradation 
rates for a scaffold in tissue engineering. This study has 
limitations because it has not been able to observe complete 
biodegradation, which will occur in the future. It is also 
necessary to undertake further research using dynamic 
degradation techniques by simulating the movement of 
bone marrow in the trabecular bone.

In conclusion, the compressive strength value of the 
C–G:CHA scaffold composite with ratio variations of 40:60 
(w/w), 30:70 (w/w), and 20:80 (w/w) met the requirements 
of a scaffold in tissue engineering. The variation of the ratio 
of the C–G:CHA scaffold composite 40:60 (w/w), 30:70 
(w/w), and 20:80 (w/w) increased throughout 1, 3, 7, and 
14 days, with the highest percentage of biodegradation 
on day 21 of 25.98% on the C–G:CHA scaffold with a 
ratio variation of 40:60 (w/w). With good flexibility and 

elasticity, C–G combined with high-strength CHA, is an  
ideal scaffold for tissue engineering.
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