
Mathematical Problems of Computer Science 48, 5–13, 2017.

An Example of a Multiplayer Serious Game on 3D

Sandpile Model

Hayk E. Nahapetyan

Institute for Informatics and Automation Problems of NAS RA
e-mail: hayknahapetyan@yahoo.com

Abstract

Purpose of this paper is to consider cellular automata models as a base of a type
of serious games.As an example of cellular automata, the Abelian Sandpile model on
3D graphs has been chosen. Moreover, a networked multiplayer gaming environment
(SandGame) has been developed using .Net and C# language.

Keywords: Serious games, CA, ASM, .Net, C#, Multi-user, Simulation, Visualiza-
tion.

1. Introduction

A brief survey of serious games reveals that there seems to be as many definitions available
as there are actors involved, but most agree on a core meaning that serious games (digital)
are games used for purposes other than mere entertainment. Another question of interest
concerns the claimed positive effects of such games, or of applications from related and
sometimes overlapping areas, such as e-learning, edutainment, game-based learning, and
digital game-based learning. Besides, that serious games allow users to experience situations
impossible in real life because of cost, time, safety etc., they can have positive impacts on
the players’ development of a number of different skills. Even so, it is not the case that all
games are good for all learning outcomes. Empirical studies on the use of serious games in
science education here [1] are conducted.

Cellular automata (CA) are discrete models studied in computability theory, mathe-
matics, physics, complexity theory, theoretical biology and microstructure modeling. The
concept of self-organized criticality was first introduced by Bak, Tang and Wiesenfeld in
1987 [2], and gave rise to growing interest in the study of self-organizing systems. Bak et al.
argued that in many natural phenomena, the dissipative dynamics of the system is such that
it drives the system to a critical state, thereby leading to ubiquitous power law behaviors.
This mechanism has been invoked to understand the power law distributions observed in
turbulent fluids, earthquakes, distribution of visible matter in the universe, solar flares and
surface roughening of growing interfaces. The Sandpile models, being a class of cellular au-
tomata, are among the simplest theoretical models which exhibit self-organized criticality. A
special subclass of interest consists of so called Abelian sandpile models (ASM). The Abelian
property means that the final stable state of the CA is independent of the order in which

5



6 An Example of a Multiplayer Serious Game on 3D Sandpile Model

the updates of cells are carried out. This property plays a key role during the numerical, as
well as analytical studies of the ASM [[3], [4], [5]].

In the CA simulator, [6] a new module has been added as an example of a serious game,
named SandGame. The SandGame, developed on the basis of Abelian Sandpile model, has
a carefully thought-out educational purpose and is not intended to be played primarily for
amusement, whereas at the same time, it is entertaining. The idea behind the developed
model relies on various theorems regarded to Sandpile model, which improved the concept
of learning and increased attractiveness. Undoubtedly, it is vital for universities and schools
to have learning mechanisms equipped with scientific games.

2. Concept of Serious Games

Today, the term “Serious Games”is becoming more and more popular. A Google-search
on “serious games” renders about 39,900,000 hits [2017-10-11]. Nowadays, the term itself is
established, but there is no current singleton definition of the concept. Serious games usually
refer to games used for training, advertising, simulation, or education that are designed to
run on personal computers, mobile phones or even on video game consoles. According to
Corti (2006, p.1), game-based learning(serious games) is all about leveraging the power of
computer games to captivate and engage end-users for a specific purpose, such as to develop
new knowledge and skills. It could be argued that for purposes other than purely academic,
there is no need to define serious games. However, while different groups of researchers use
the same term, they also appear to refer to different things. For example, in [7] Serious Game
definition is like “any piece of software that merges a non-entertaining purpose (serious) with
a video game structure (game)”. In another paper [8], Serious Game is formally defined as
an “Interactive computer application, with or without significant hardware component, that
has a challenging goal, is fun to play and engaging, incorporates some scoring mechanism,
and supplies the user with skills, knowledge or attitudes useful in reality”.

3. Sandpile Model

Consider an undirected graph G = (V,E) described with the set of vertices V =
{v1, v2, . . . , vN} and the set of edges E. Each vertex vi ∈ V is assigned a variable hi which
takes integer values and represents the height of the sand at that vertex. hmax

i denotes the
maximal allowed height for the vertex vi in the graph G. For a d-dimensional lattice, we
take hmax

i = 2d + 1. CT denotes the set of heights hi which determines the configuration
of the system at a given discrete time T . A configuration is called stable, if all heights
satisfy hi < hmax

i . The vertex vi is called closed, if hmax
i = deg(vi), where deg(vi) indicates

the degree of vi. The dynamics of the system is defined by the following rules. Consider
a stable configuration CT at a given time T . We add a grain of sand at a random vertex
vi ∈ V by setting hi to hi +1 (we assume that the vertex is chosen randomly with a uniform
distribution on the set V ). This new configuration, if stable, defines CT+1. If hi ≥ hmax

i ,
then the vi becomes unstable and topples losing hmax

i grains of sand, while all neighbors of vi

receive one grain. Note that if the vertex is open, then the system loses grains. During the
toppling of the closed vertices, the number of grains is conserved. Note also that toppling
of a vertex may cause some of its neighboring vertices to become unstable. In this case
those vertices also topple according to the same toppling rule. Once all unstable vertices are



H. Nahapetyan 7

toppled, a new stable configuration CT+1 is obtained. If the finite connected graph G has
at least one open vertex, then all vertices become stable after a finite number of topplings.
Moreover, the new stable configuration is independent of the toppling order. Therefore, the
dynamics is well defined. Let âi be an operator, which acts on sandpile configurations and
adds a grain at vertex i. It can be easily shown that âiâj = âj âi. This is the reason why the
sandpile model is called Abelian.

4. SandGame

SandGame is based on the Abelian Sandpile model, which has been considered on 3 dimen-
sional connected torus with (n ∗ n ∗ n) size and 2 dimensional connected lattice with (n ∗ n)
size, where n is the length (nodes count) by any direction of torus or lattice. ”Connected”
attribute for both graph types makes each node to have equivalent parameters as for neigh-
bors, as well as for critical height. Besides, the model will not lose any grain, which grants
the game to have a winner.

Consider a 2 dimensional lattice. Every edge with random direction on the lattice is
assigned an arrow parameter, also contours in the graph are excluded. Let Di be the number
of arrows directed towards to the node i. Model will become infinitely unstable if each node
topples at least once during the overall toppling. As each node has 4 neighbors, we put
4−Di grains on every node i. Total grains’ count will be 4 ∗n2−∑

Di = 2 ∗n2, which is an
indispensable number of grains that makes the model become infinitely unstable. With the
statistical methods [9], it is shown that in order to provide an infinitely unstable state, the
required average count of the grains equals 2.12588... ∗ n2. By toppling 2 ∗ n2 − 1 grains on
a 2-dimensional lattice, users need to topple 0.1258 ∗ n2 grains in average in order to make
the model become infinitely unstable. The same logic applied for a 3-dimensional torus, the
indispensable count of the grains will equal 3 ∗ n3, meanwhile the number of toppled grains
will be 3 ∗ n3 − 1.

The SandGame (see Fig. 2) supports 2D/3D visualization along with the model rotation
and zooming in/out possibilities. Microsoft .Net implements a strategy for web services to
connect information; people; systems, and devices via software tools, thus making easier
sharing and using the information between multiple websites, programs, and computers.
Besides, client server architecture has been implemented to facilitate working on shared
models.

So, the game is the following. There is a model with sands on random generated vertices
and there are players, that should play against each other. Each player will topple a grain
on the desired node of the same model by sequence, in order to make the model become
infinitely unstable. The player who will succeed in that will be the winner.

4.1 SandGame Guidline

This subsection is about the playing flow for SandGame. Here it is specified how the game
is played, and all the interactions are indicated. The definition is divided into three sections:
Pre-construction, Actions, Winner.

Pre-construction: For starting a new game, the player selects “File” on top panel, then
chooses the “New game” option, and then inserts a size for the parameter n. A new model will
be created and initialized with 3∗n3−1 grains. To proceed with sharing the model/game, user
starts broadcasting from the top panel ”Broadcasting”, and then selects “Start Broadcasting”



8 An Example of a Multiplayer Serious Game on 3D Sandpile Model

by typing a name for the game (e.g., Harvard championship). Meanwhile, the other players
open the channels’ list on the top panel ”Broadcasting”; select the ”Connect to Chanel (see
Fig. 4), and then choose the desired game channel from the list. A prominent advantage of
the software is that it provides simulation of all changes made during the model exploration,
even in case of players’ lateness.

Actions: After connecting to a channel players can start dropping grains by selecting
”Edit”, and then ”Add Grain” on the top panel (see Fig. 3) by giving node coordinates.
Players continue these steps until one of them becomes a winner.

Winner: The player, whose dropped grain destabilizes the model resulting in all nodes
toppling at least once, becomes a winner of the game. In a word, the player wins when his
dropped grain forces the model to switch his state into infinitely unstable.

Strong background and theory behind the SandGame, makes it harder to win when you
play against professional players. Each player can create his/her own strategy, but the winner
will be the one, whose strategy will be better. For example, one of the simplest strategies
could be toppling grains on the nodes with max heights, as we know that model will be in
infinitely unstable state when each node topples at least once.

Besides, accounting of attributes is implemented for each change in state, such as: av-
erage/layer/critical solidities; the model stability/non stability; count of nodes of the same
height, etc., (see Fig. 5), in order to facilitate decision making.

Fig 1. SandGame on CA simulator.

Fig 2. Dialog window for adding grain.



H. Nahapetyan 9

Fig 3. Dialog window for the list of games.

Fig 4. Attributes.

5. SandGame from Developer Viewpoint

SandGame was developed under CA simulator, using .Net and C#. To facilitate the collab-
orative play in the global network, Microsoft Azure has been used. From the developers
viewpoint, the SandGame may be divided into three modules: “Visualization”; “Local Sim-
ulation” and “Service-client Architecture”. In order to visualize the model zooms in/out
and provide rotation, .Net’s native libraries have been used.

Within the “Local Simulation” module, a GuiHelper class has been designed to provide
the models creation; saving and loading; grains adding and toppling, as well as attributes
counting, as follows:

public static class GuiHelper
{
event EventHandler GrainAdded;
Viewport3D mainViewPort;
int size;
List<InteractiveSphere> points;
List<InteractiveSphere> Points

// Initialize 3D view



10 An Example of a Multiplayer Serious Game on 3D Sandpile Model

public static void Init(Viewport3D vp);

//Creates model with given sizes

public static void CreateModel(Size size);

//Draws Sandpile model public static void DrawSandpileModel();

//Adds grain on Sandpile model

public static void AddGrain(Position pos);

//Adds grain from visual aspects

private static void addGrainOnVertex
(InteractiveSphere point);

//Returns color regarded to grains count

private static Brush GetColorByWeight
(int weight);
#region File/String IO

//Saves model in file
public static void WriteToFile() {}

//Loads model from file

public static void LoadFromFile(){}
#endregion

}

Within the “Service-client Architecture” module, we have a BroadcastingHelper class
which includes essential functions to enable the broadcaster-subscriber connection, and a
SeService class which implements the ISeService interface. The logic behind is to provide
for a broadcaster to subscribe itself the same channel in order to get changes from other
users. The channel keeps the whole information about changes made by all subscribers.
Meanwhile ,when a new user starts to listen to that channel, he/she not only gets up-to-date
knowledge of the model, but also he/she gets provided with all the changes made since the
moment of broadcasting. For the channels’ database, SQLite has been chosen.

public static class BroadcastingHelper
{
public static long SelfChannelId;
public static long SubscribedChannelId;
private static long LastActionId;
private static Timer timer;
private static ActionModel locker;
public static EventHandler<> ChannelClosed;

//Starts to listen to the given channel

public static void ListenChannel
(ChannelModel channel);



H. Nahapetyan 11

//Disconnects from channel if it’s closed

static void timer Elapsed
(object sender, ElapsedEventArgs e)

//Ends broadcasting

public static void EndBroadcasting();

//Disconnects from channel

public static void DisconnectFromChannel();

public interface ISeService
{ [OperationContract]

long StartBroadcasting(string name);
[OperationContract]
void EndBroadcasting(long id);

[OperationContract]
void AddAction(long channelId,

ActionType type, string data);

[OperationContract]
ActionModel GetNextAction(long channelId,

long lastActionId);
[OperationContract]
List<ChannelModel> GetActiveChannels();

}

As already mentioned, CA simulator has been created on the example of ASM. There
are two main ASM related functions: the DrawSandpileModel() which provides visual-
ization of changes in already created model for ASM vision, and the AddGrain(Position
pos) which supports changes performed by the user on an ASM model. It is quite easy
to generate another CA model simply by manipulating the visualization and model modi-
fication functions. In order to make it a new CA available within a global network, a few
functions of the ISeService interface should be adapted to the new CA model described
within the SeService class. The sources of the CA simulator can be found in Bitbucket
under https : //nhayk@bitbucket.org/nhayk/casimulator.git link.

6. Conclusion

In this paper, a serious game, namely, “SandGame”, has been presented. The goal of
the SandGame is to provide joint study/research of Sandpile on 2D/3D graphs. Features
developed currently, are: simulation of ASM; visualization within 2D and 3D space; shared
play on the same model at the same time within global networks; models’ attributes counting.
SandGame has been developed on the concept of the multiuser simulator (CA simulator),
which was introduced and implemented in a way to make the solution available and fitting
to any other type of cellular automata. Perspectives on the work will be outlined in the near



12 An Example of a Multiplayer Serious Game on 3D Sandpile Model

future in order to make the game environment more user-friendly, as well as to increase its
usability and scalability. Enhancements in visualization techniques will be implemented to
make the simulator applicable for larger graphs, for what the technique described here [10]
can be used.

Acknowledgement

The author is grateful to Prof. Yu. H. Shoukourian, Dr. S. Poghosyan and Dr. Y.
Alaverdyan for important discussions and critical remarks at all stages of the work. This
work was supported by the State Committee of Science MES RA, in the frames of the
research project No. 16YR-1B008.

References

[1] Ch. Meng-Tzu, Ch. Jhih-Hao, C. Sheng-Ju and Ch. Shin-Yen, “The use of serious games
in science education: a review of selected empirical research from 2002 to 2013”, Journal
of Computers in Education, no. 01 pp. 353-375, 2015.

[2] P. Bak, C. Tang and K. Wiesenfeld,“Self-organized criticality: An explanation of the
1/f noise”,Phys. Rev. Lett., vol.59, no. 4, pp. 381–384, 1987.

[3] V. S. Poghosyan, S. Y. Grigorev, V. B. Priezzhev and P. Ruelle, , “Pair correlations in
the sandpile model: A check of logarithmic conformal field theory”, Phys. Lett. B, vol.
659, pp. 768–772, 2008.

[4] Su. S. Poghosyan, V. S. Poghosyan, V. B. Priezzhev and P. Ruelle, “Numerical study
of correspondence between the dissipative and fixed-energy Abelian sandpile models”,
Phys.Rev. E, 84, 066119, 2011.

[5] V.S. Poghosyan, S. S. Poghosyan and H. E. Nahapetyan, “The investigation of models
of self-organized systems by parallel programming methods based on the example of an
abelian sandpile model”, Proc. CSIT Conference 2013, Yerevan Armenia, Sept. 23-27,
pp. 260-262, 2013.

[6] H. Nahapetyan, J.-Pierre Jessel, S. Poghosyan and Yu. Shoukourian,”A Multi user and
multi purpose ca simulator”,Phys. Rev. Lett., vol.59, no. 4, pp. 381–384, 1987. Proc.
CSIT Conference 2017, Yerevan Armenia, Sept. 23-27, pp. 260-262.

[7] Djaouti Damien; Alvarez Julian; Jessel Jean-Pierre. ”Classifying Serious Games: the
G/P/S model” IRIT University of Toulouse, France.

[8] M. Graafland, J. M. Schraagen and M. P. Schijven “Systematic review of serious games
for medical education and surgical skills training”, Department of Surgery, Academic
Medical Centre, Amsterdam, and Netherlands Organization for Applied Scientific Re-
search, Soesterberg, The Netherlands.

[9] A. Fey, L. Levine and D.B. Wilson, “Approach to criticality in sandpiles”, Phys. Rev.
E 82, 031121 Published 15 September 2010.

[10] H. E. Nahapetyan, S. S. Poghosyan, V. S. Poghosyan and Yu. H. Shoukourian, “The
parallel simulation method for d-dimensional abelian sandpile automata”, Mathematical
Problems of Computer Science, vol. 46, 117–125, 2016.

Submitted 14.08.2017, accepted 28.11.2017.



H. Nahapetyan 1 3

´³½Ù³û·ï³ï»ñ “Èáõñç Ë³Õ”-Ç ûñÇÝ³Ï ¹Çï³ñÏí³Í
³í³½³ÏáõÛïÇ »é³ã³÷ Ùá¹»ÉÇ íñ³

Ð. Ü³Ñ³å»ïÛ³Ý

²Ù÷á÷áõÙ

²Ûë Ñá¹í³ÍÇ Ýå³ï³ÏÝ ¿ ¹Çï³ñÏ»É µçç³ÛÇÝ ³íïáÙ³ïÝ»ñÇ Ùá¹»ÉÝ»ñÁ áñå»ë
ÑÇÙù áñáß³ÏÇ “Èáõñç Ë³Õ»ñ”-Ç Ñ³Ù³ñ: àñå»ë µçç³ÛÇÝ ³íïáÙ³ïÇ ûñÇÝ³Ï ÁÝïñí»É
¿ ²µ»ÉÛ³Ý ³í³½³ÏáõÛïÇ Ùá¹»ÉÁ »é³ã³÷ ·ñ³ýÇ Ñ³Ù³ñ: êï»ÕÍí»É ¿ ó³Ýó³ÛÇÝ
µ³½Ù³û·ï³ï»ñ Ë³Õ³ÛÇÝ Ñ³Ù³Ï³ñ· (SandGame) û·ï³·áñÍ»Éáí .Net and C # É»½áõÝ:

Ïðèìåð ìíîãîïîëüçîâàòåëüñêîé èãðû íà òðåõìåðíîé
ìîäåëè ïåñ÷àíîé êó÷è

Ã. Íàãàïåòÿí

Àííîòàöèÿ

Öåëü ýòîé ñòàòüè - ðàññìîòðåòü ìîäåëè êëåòî÷íûõ àâòîìàòîâ êàê îñíîâó
îïðåäåëåííûõ ñåðüåçíûõ èãð. Â êà÷åñòâå ïðèìåðà êëåòî÷íûõ àâòîìàòîâ
âûáðàíà ìîäåëü ïåñ÷àíîé êó÷è íà òðåõìåðíûõ ãðàôàõ. Ðàçðàáîòàíà ñåòåâàÿ
ìíîãîïîëüçîâàòåëüñêàÿ èãðîâàÿ ñðåäà (SandGame) ñ èñïîëüçîâàíèåì .Net è ÿçûêà
C # .


	Hayk's article
	Hayk



