Mathematical Problems of Computer Science 45, 77--89, 2016.

Two-Party Regular Expression Matching Protocol without
Asymmetric Cryptography Operations

Gurgen H. Khachatryan!, Mihran M. Hovsepyan?, Aram H. Jivanyan®

! American University of Armenia
2 Russian-Armenian (Slavonic) University
3 Onecryptor CJSC
e-mail: gurgenkh@aua.am, hovsepyan.mihran@gmail.com, aram@skycryptor.com

Abstract

In this paper we describe a new protocol for secure evaluation of
Deterministic Finite Automata (DFA) between two parties (client and server).
The protocol has no restrictions on the DFA’s input alphabet and runs in a single
client-server communication round. It uses O(mn) operations for client-side
computations; O(mn|Q|) operations for server-side computations, and the
network communication bandwidth is O(mnk|Q|) bytes where k is the security
parameter of the protocol, m is the size of the DFA’s input alphabet, n is the
length of the input text and |Q] is the number of the DFA states. As a building
block our algorithm uses white-box based 1-out-of-n oblivious transfer protocol,
which results that the protocol does no public-key operations. Apart from the
description of the protocol the paper also contains results of efficiency
benchmarks done on our implementation of the protocol.

Keywords: Cryptography, Secure function evaluation, Secure pattern
matching, Oblivious transfer.

1. Introduction

The problem of two-party oblivious (secure) evaluation of DFA is a subproblem of more generic
two-party secure function evaluation problem.

In two-party secure function evaluation problem there is a known for two parties function F: U X
V — Z, the first party has an input argument u € U and the second party has an input argument
v € V and the objective of these two parties to calculate F(u, v) allowing one or both parties to
learn the result, but none of them should learn any additional information about the other’s input.
This problem has various real life applications. One such example is searching a number of
appearances of a specific DNA pattern among people of some specific group (the FBI wants to

7

mailto:gurgenkh@aua.am
mailto:hovsepyan.mihran@gmail.com
mailto:aram@skycryptor.com

78 Two-Party Regular Expression Matching Protocol without Asymmetric Cryptography Operations

allow biogenetical researchers (clients) to find the number of people among the criminals who
have a specific (featured by the researchers) pattern in their DNAs without providing the entire
list of DNAs of such people, and without learning which patterns have been searched). In this
example the input argument of the first party is the pattern and the input of the second party is
the database of DNAs.

The next application is in banking: a person wants to take a credit from the bank. The bank

needs to check whether he fits their requirements, particularly they want to check his credit
history stored in Credit Report Agencies (CRA). But full credit report of a person may contain
lots of private information as long as the criteria of the bank for giving a credit for the person
also may be private. So the bank may want to check his criteria with the CRA without learning
the full credit history and without providing the criteria to the CRA. The range of applications of
the two-party secure function evaluation problem is not limited to the privacy-preserving
genomic computations and credit checking, it can also be used in remote diagnostics, graph
algorithms, data mining, medical diagnostics, face recognition, policy checking and in other
areas. For more details see [3], it gives entire overview of the problem and its applications.
Here we consider a problem where the first party (client) has a DFA (regular expression) I' as
long as the second party (server) has a text string X which consists of the letters of the DFA’s
input alphabet. Their objective is to check whether the string X belongs to the language
generated by the T" or, in other words, whether the string X matches I" allowing both parties to
learn the answer so that neither the client nor the server learned any additional information about
the input of each other. This problem may have some variations:

a) The client wants to hide the answer from the server.

b) The client or both parties want to learn whether the string X has a substring y which
matches T.

c) The client or both parties want to learn positions of all substrings of the string X which
match T.

d) The client or both parties want to learn the number of substrings of the string X which
match T.

In this paper we describe a protocol which solves the initial problem and it is shown that after
a little modification the protocol can be applied to these variations as well.
Similar to the “Efficient Protocol for Oblivious DFA Evaluation” [1] construction our protocol
runs in a single client-server communication round and in both client and server sides it has the
same as the protocol from [1] complexity of symmetric operations when the input alphabet of the
DFA is binary. But unlike [1], our protocol has no restriction on the DFAs input alphabet and
it uses no asymmetric operations anymore.

2. Preliminaries

2.1 Notations

We will assume that the client has a DFA T'(Q;Z; A;s;; F) with input alphabet ¥ =
{by, by, ..., by }; set of states Q = {q1, @2, -, o }; table of transitions A5, where A[g, b] € Q
is the state following after state g through letter b; initial state s; and set of accepting (or final)
states F, while the server has an n length string X € ™. Saying the result of evaluation of I on
the string X (or simply I'(X)) we mean the Boolean value which is 1 (or true) if the state

G. Khachatryan, M. Hovsepyan, A.Jivanyan 79
A [...A [A[sl,X[l]],X[Z]] ...,X[n]],

is an accepting state (i.e., belongs to F) and 0 (or false), otherwise. By k we denote the security
parameter of the protocol. The pipe-sign | is used to denote concatenation of strings and the
circled plus sign @ is used to denote per-bit XOR operation. By [r] we denote the ceiling of a
real number r. In matrix indexing sometimes we use letters of the input alphabet ¥ and states Q
instead of their numbers (i.e., b; instead of j, q; instead of).

2.2 Definitions:

We will use the following concepts for describing the protocol and its security.

One round 1-out-of-n Oblivious Transfer protocol (later OT): A protocol is intended for solving
the following problem. The client has a number i from 1 to n and the server has a set of n secrets
{s1,52, ..., Sp}. They should communicate and after that the client should learn the i-th secret s;,
but the server should not learn i and the client should not learn any other secret apart from the s;.
There are various implementations of OT protocols, here we will use white box based 1-out-of-n
oblivious transfer described in [2].

Secure Two-party Computation: Let f = (fy, f5) of form f:{0,1}* x {0,1}* — {0,1}* x {0,1}" be
a two-party computation and be a two-party protocol for computing f between the parties p;
and p,. The input of p; is x and the input of p, is y. Here we will briefly define two notions of
security.

a) Full security (simulation-based security) against malicious adversaries: This security level is
defined by requiring indistinguishability (perfect, statistical or computational) between a real
execution of the protocol and an ideal execution in which there is a TTP (trusted third party) who
receives the parties input, evaluates the function and outputs the results to them.

b) Privacy against malicious adversaries: This level of security guarantees that a corrupted party
will not learn any information about the honest parties input. However, this does not always
guarantee that the joint outputs of the parties in the real world is simulatable in an ideal world.
For more detailed discussion of these security notations refer to [12].

Looking ahead we want to note that in our protocol, we prove full-secure against one malicious
party and private against the other.

3. The Protocol for Binary DFAs

At first let us consider the case when the input alphabet of the DFA X = {0,1} is binary, we call
such DFAs “binary DFA”.
Brief description of the protocol: The main steps of the protocol are the following:

a) Client: Create a special evaluation matrix (DFA matrix) M of size n X |Q| X 2 intended

for evaluation of ' on n-length binary strings.

b) Client: Create garbled DFA matrix GM by permuting each row of the My matrix, then
encrypting each cell of the matrix using one time pad. As a result, to calculate I'(X) it
will be enough for the server to have the garbled DFA matrix GM and a key for each
position i; 1 < i < n of the string X corresponding to the letter of that position.

c) Server: For each letter of string X create an OT query token [2] and send them all along
with the OT initialization data to the client.

80 Two-Party Regular Expression Matching Protocol without Asymmetric Cryptography Operations

d) Client: For each OT query token create an OT response token for the corresponding key
[2] and send them together with the garbled DFA matrix G My to the Server.
e) Server: From OT response tokens invoke the keys for positions of the string X, then
compute I'(X) using those keys and GMy garbled DFA matrix.
Now let us look at these steps in more detail.
Step a): For evaluating T on any n-length binary string we create a DFA matrix My of size n X
|Q| x 2 such that for each state g and letter b My[i,q,b] = Alq,b]Vi;1<i<n-—1 and
Mr[n,q,b] = 1 if A[q, b] is a final state and M[n, q, b] = 0 if A[g, b] is not final. It is easy to
see that in such notation I'(X) is equal to

M [n o My [2, Mr[l,sl,X[l]],X[Z]] ...,X[n]].

Figure 1 (a, b) bellow illustrates an example of DFA with its DFA matrix.

Step b): Here it is worth to note that for any permutation P: Q — Q the DFA T is equal (i.e.,
accepts the same set of strings) to the DFA I'x(Q; {0,1}; Ap; P[s,]; Fp) (where for each state g
and letter Ap[P[q], b] = P[Alg,b]]; and Fp = {q: P~1[q] € F}). The first stage of DFA matrix
garbling is based on this fact. Namely, we first create n random permutations of the DFA states
Q and fill by them n rows of an n x |Q| permutations matrix PER, then we create permuted
DFA matrix PMp such that for each state g and letter b

PMr[i, PER[i, q],b] = PER[i + 1, Mr[i, q, b]],
foreachi;1<i<n-1and
PMr[n, PER[n, q], b] = Mr[n, q, b].

Figure 1 (c) bellow illustrates an example of a PM matrix. Here it is not hard to observe that in
terms of PM matrix I'(X) is equal to

PM; [n . PMp [2, PMF[l,PER[1,51],X[1]],X[2]] ...,X[n]].

For the second stage of DFA matrix garbling we generate an n X 2 size matrix of random k-bit
keys K and an (n + 1) x |Q| size matrix of k'-bit pads PAD; where for each state g, and for
each i;1 < i < n the PAD[i, q] is a random k'-bit string and PAD[n + 1,q] = 00 ...0. Here by
kl
k' we denote k — [log,|Q|]. For garbling the permuted DFA matrix we also need some
CSPRNG (cryptographically secure pseudo-random number generator) PRG: {0,1}¢" — {0,1}2.
Since the PRG receives a k’-bit string as an input and returns 2k-bit string as an output by
PRG(Y,0) we denote the first k-bits of PRG(Y) and by PRG(Y, 1) we denote the second k-bits
of PRG(Y). Having all these, we create the garbled DFA matrix GM such that
GMc[i,q,b] = (PMc[i,q,b] | PAD[i + 1,PMc[i,q,b]]) ® K[i, b] @® PRG(PADi, q, b)
foreach i; 1 < i < n, letter b and state q.

G. Khachatryan, M. Hovsepyan, A.Jivanyan

Accepted

|

n|(0,0) | (1,0)

0 1 1| (2,3) E4)

Non-Accepting

State . '
Start 0
1 " //
21(2,3) | (5,4)] ...
Accepting State —=
112,3)] 5,4
1 2 = Ql
SlartX =01..00
(@) A general binary DFAT (b) M (DFA Matrix of I')
Accepted
) (0, 0) (1,0
1..1,—1 | I, =PER[n, 1] | I, +1..],—1| J, =PER[n,2] |]n +1..1Q]
1 Uns --) — (..., ...)
1.0, 4 —1|lh-1=PERn11)|lhs +1..[n 1 —1Jn_s =PER[n—12]|] , +1..|Q]|
\.
) UJs, ...) (.....)~
1..1,—1 | I, =PER[21] |l +1..J,—1| J, = PER[2,2] |], +1..]Q|
N Uar 1) —— ()
1.1, -1 | L =PER[11] |I,+1..];,—1| J1=PER[L2] |], +1..]|0Q|

Start X = 01...00
(c) Permuted DFA Matrix P My

Fig. 1. DFAT, DFA matrix M, Permuted DFA matrix PMr.

82 Two-Party Regular Expression Matching Protocol without Asymmetric Cryptography Operations

Step c): Having the garbled DFA matrix GMr and K|[i, X[i]] for each i;1 < i < n the server will
be able to calculate I'(X) (we will see that in step €). Hence, here for each letter X[i] of its input
string the server generates an OT query token OTgy,.ry[i] and along with OT initialization info
OT;pie Sends them to the client. For the details of OT initialization info and OT query token
generation see [2].

Step d): For each OT query the token OTyyery[i] (1 < i < n) the client, using OT initialization
info OT;,;r generates an OT response token OTresponcei] Which carries sufficient info to invoke
K[i,X[i]] (see [2]). Then the client sends those response tokens, garbled DFA matrix GMr,
PER[1,s,] and PAD[1, PER[1, s,]] to the server.

Step e): At this step first the server for each i; 1 < i < n invokes K[i,X[i]] key stored in the
corresponding response token OTgesponceli] (s€€ [2]). Then having the keys, garbled DFA
matrix GMr, PER[1,s;] and PAD[1, PER[1,s,]], it runs the following algorithm to calculate
Ir'(X):

Evaluation of garbled DFA matrix

cur_state_id := PER[1, s4];
cur_pad := PAD|[1, cur_state_id];
foreachrowi =1tondo
cur_state_id|cur_pad := GMp [i, cursmtel.d,X[i]] <) K[i,X[i]] <)
PRG(cur_pad, X[i]);
end for
return cur_state_id

The step by step construction of the garbled DFA matrix implies that this algorithm will give the
same result as evaluation of the initial DFA matrix, so no additional proof is required here.

These were all steps of the protocol for binary DFAs, now let us move to the case where there is
no restriction on the input alphabet of the DFA.

4. Case of Non-Binary DFAs

Here again the protocol consists of 5 steps and they are almost the same as in the case of binary
DFAs, the main difference is that the size of the third dimension of My, PMr and GM matrixes
is |2] instead of 2.

Let us look at these steps in detail.

Step a): Create a DFA matrix M of size n x |Q| x |Z| such that for each state q and letter b € X
Mrli,q,b] = Alg,b] Vi;1 <i <n—1and Mr[n,q,b] is equal to 1 if A[g, b] is a final state and
it is 0, otherwise. In such notation I'(X) is equal to

M [n o My [2, Mr[l,sl,X[l]],X[Z]] ...,X[n]].

Figure 2 (a, b) bellow illustrates an example of DFA with its DFA matrix.

Step b): Here again we create n random permutations of the DFA states Q and fill by them n
rows of an n X |Q| permutations matrix PER, then we create permuted DFA matrix PM of size
n X |Q| x |Z| such that for each state q and letter b € £

G. Khachatryan, M. Hovsepyan, A.Jivanyan 83
PMr[i, PER[i, q],b] = PER[i + 1, Mr[i, q, b]],
foreachi;1<i<n-1and

PMr[n, PER[n,q],b] = Mr[n,q, b]
Figure 2 (c) bellow illustrates an example of a PM matrix. In terms of PM matrix I'(X) is equal
to

PM; [n . PMp [2, PMF[l,PER[1,51],X[1]],X[2]] ...,X[n]].

Then we create an n X |Z| size matrix of random k-bit keys K and an (n + 1) X |Q| size matrix

of k'-bit pads PAD; here again for each state q, and for each i;1 < i < n the PADJi,q] is a

random k’-bit string and PAD[n+ 1,q] = (&_9 where k' is k — [log,|Q|]. We also need

kl

some CSPRNG PRG:{0,1}*" - {0,1}¥'®!_ and by PRG(Y, j) we denote the j-th k-bits of

PRG(Y) foreach j; 1 <j < |Z|. After all, we create the garbled DFA matrix G M such that
GMc[i,q,b] = (PMc[i,q,b] | PAD[i + 1,PMc[i,q,b]]) ® K[i, b] @® PRG(PADi, q, b)

foreach i;1 <i < n, letter b € ¥ and state q € Q.

Step ¢): And again having the garbled DFA matrix GMr and K[i,X[i]] foreach i;1 <i < nthe

server will be able to calculate I'(X). So here we start OT phase between the client and the server

for transferring the corresponding keys and GMr.

For each letter X[i] of its input string the server generates an OT query token OTgyry[i] and

along with OT initialization info OT;,;; sends them to the client [2].

Step d): For each OT query the token OTgyyery[i] (1 < i < n) the client, using OT initialization

info OT}y,;r generates an OT response token OTresponce[i] Which carries sufficient info to invoke

K[i, X[i]] [2]. Then the client sends those response tokens, garbled DFA matrix GMr, PER[1, s4]

and PAD[1, PER[1, s,]] to the server.

Step e): At this step firstly the server invokes K [i,X [i]] keys stored in the corresponding

response token OTgesponceli] for each i;1 < i <n [2]. Then having the keys, garbled DFA

matrix GMy, PER[1,s,] and PAD[1, PER[1,s,]], it runs the following algorithm to calculate

r'(x):

Evaluation of garbled DFA matrix

cur_state_id := PER[1,s,];
cur_pad := PAD[1, cur_state_id];
foreachrowi = 1tondo

cur_state_id|cur_pad := GMp [i, cursmtel.d,X[i]] <) K[i,X[i]] <)
PRG(cur_pad, X[i]);
end for
return cur_state_id

Here again the step by step construction of the garbled DFA matrix implies that this algorithm
will give the same result as evaluation of the initial DFA matrix.

84

Two-Party Regular Expression Matching Protocol without Asymmetric Cryptography Operations

Accepted
by I
by by |
n(0,0,0,0...0){(1,0,0,0...0)
b, Q e n1(02,3,4,1...1)|(5,4,3,2...2) |-+~
bl h N
b Non-Accepting
by 1 State . .
Start ' .
b, ’ /
by o by U L2341 (64322 T
Accepting State
11(2,3,4,1...1) | (5,4,3,2...2) |"*|"*"
T 2 = Q|
StartX = b1b2 b1b1
(@) A general binary DFAT (b) M (DFA Matrix of I')
Accepted
) (0,0,0,0...0) (1,0,0,0...0)
1..1,—1 | I, =PER[n, 1] | I, +1..], — 1| J, =PER[n,2] | o +1..1Q]
1 Jn, -..) — (..., ...)
Ip_1— 1|1 =PER[n_11][h s+ 1. Jp s — 1))y =PER[n—12]|] _, +1..|0Q|
\.
) UJs, ...) (.....)~
1..,—1 | I, =PER[21] |LL+1..J,—1| J, =PER[2,2] |], +1..]Q|
g . Uzr) ——— (o)
1.1, —1 =PER[1,1] |I,+1..],—1| Ji=PER[L2] |], +1..]0Q]

Start X = byb, ... b1 by
(c) Permuted DFA Matrix P My

Fig. 2. DFAT, DFA matrix My, Permuted DFA matrix P M.

G. Khachatryan, M. Hovsepyan, A.Jivanyan 85
5. Security

In the protocol we use a white-box based 1-out-of-2 OT protocol. Such OT protocol is
considered to be secure if the underlying white-box encryption schema is secure. In our case we
use white-box encryption schema based on SAFER+ encryption schema. White-box scheme can
be considered secure if no computationally bounded adversary is able to extract the master
encryption key from the white-box encryption tables and no computationally bounded adversary
is able to make decryption functionality with the help of only white-box encryption tables. So
white-box scheme is considered to be secure if it is secure against key-recovery and reverse-
engineering attacks.

Taking into account this and security definitions from chapter 2 we see that according to the
theorem 1 from [1] our protocol is fully-secure when only one party is malicious and it is private
when both parties are malicious.

6. Implementation and Benchmarks

6.1 Implementation

A C++ application has been created which implements the protocol. The implementation of the
protocol is parameterized by the security parameter k and by the CSPRNG PRG. The application
acts as both a client and a server. As a server, it receives a text string as an input, and as a client,
its input is a regular expression which it converts to the equivalent DFA using Thompson’s
construction algorithm [8] to create NDFA equivalent to the regular expression, then using the
subset construction algorithm [9] to convert the NDFA to the DFA. After all it runs the steps a) —
e) of the protocol and calculates the result of evaluation of the DFA on the text string. During
calculations it prints out time spent for different parts of computations.

6.2 Benchmarks

Algorithm construction implies that overall number of computations depends on the security
parameter k, the number of the DFA states |Q|, the length of the text string n and the number of
letters in the DFAs input alphabet |Z|. Besides that, in the algorithm we have generation of
random pads and keys, as well as usage of CSPRNG, and depending on the approach used for
generation of random pads and keys and chosen CSPRNG the efficiency of the algorithm may
differ for the same input data (k, |Q|, |Z] and |X]|). We did our benchmarks for k = 128 and
|Z] = 2 on a 64-bit Windows 7 PC with Intel® Core™ 2 Quad Q6600 2.4 GHz processor and

4GB RAM, using SHA-256 as {0,1}*" — {0,1}*'2] CSPRNG and C++ standard library’s rand()
function for random pad/key generation. The method of garbled DFA matrix construction shows
and our benchmarks confirmed that the number of operations, hence the spent time for garbled
DFA matrix creation, is proportional to the |Q]| - |Z| - n multiplication. The first table shows
performance of garbled DFA matrix generation of our implementation on inputs of different
sizes. The table contains averaged results from 10 runs for each pair of inputs.

86 Two-Party Regular Expression Matching Protocol without Asymmetric Cryptography Operations

Table 1. Garbled DFA creation time when (sec).

lg 10 100 1000 10000 100000
10 <0.001 0.002 0.017 0.17 1.7
100 0.002 0.017 0.17 1.7 17
1000 0.017 0.17 1.7 17 >100
10000 0.17 1.7 17 >100 >100
100000 1.7 17 >100 >100 >100
1000000 17 >100 >100 >100 >100

The second table shows the performance of the OT phase of the protocol and performance of the
garbled DFA matrix evaluation by the server.

Table 2. Time spent in OT phase when (sec).

O GLEIR7 GENE R OT response Garbled DFA
and response . . .
n extraction (server) generation (client) evaluation (server)
10 <0.001 <0.001 <0.001
100 0.002 <0.001 <0.001
1000 0.021 0.007 <0.001
10000 0.21 0.07 0.002
100000 2.1 0.7 0.02
1000000 21 7 0.2

The table shows only the dependency of efficiencies of the operations from n since the number
of OT queries/responses and the number of steps for garbled DFA matrix evaluation is equal to n
and do not depend on structure of DFA.

7. Conclusion

Unlike other protocols for oblivious DFA evaluation published in recent years [3], our protocol
is totally free from public-key operations, and it makes it somewhat unique among others. Table
3 below illustrates complexities of client and server computations and network communication
bandwidth of our and other recent protocols.

It is also worth to note that our protocol allows both parties to learn only I'(X), but in some
applications it may be inconvenient or insufficient. In [1] it is shown that for each of the
following modifications of the problem it is possible to solve it after modifying their protocol a
little, and that those modifications have no security leakage. All those modifications of their
protocol work for our protocol as well.

a) The client wants to hide the answer from the server.

b) The client or both parties want to learn whether the string x has a substring y which
matches T.

c) The client or both parties want to learn positions of all substrings of the string x which
match T.

d) The client or both parties want to learn the number of substrings of the string x which
match T.

G. Khachatryan, M. Hovsepyan, A.Jivanyan

Table 3. Complexity of protocols.

Client Computations

Server Computations

87

Round Network

Complexity | Asymmetric | Symmetric | Asymmetric | Symmetric | Bandwidth

Troncoso [4] 0(n) o(n|Ql) None 0o(n|Ql) o(n|Ql) 0(n|Qlk)

Frikken [5] 2 Om+1QD | OomlQ)) |O0(m+[QD) | OMmQD) | O(n|Qlk)

Gennaro [6] |0(min{|Q|,n| 0(n|Q|) None omn|QD None o(n|Q|k)

Yao [10] 1 O(n) |0(n|QlloglQ] 0(m) |0(nlQ|loglQ| 0(kn?)

Ishai [11] 1 0(n) None on|QD None o(n|Q|k)

Mohassel [1] 1 0o(n) 0o(n) 0(n) on|Q)) o(n|Qlk)

Th'lszlprjtgco' 1 None | o(mlQ]) | None om) | omolk)

References

[1] P. Mohassel, S. Niksefat, S. Sadeghian and B. Sadeghiyan, “An efficient protocol for

[2]

[3]

[4]

[5]
[6]
[7]
[8]
[9]

[10]

oblivious dfa evaluation and applications”, In Proceedings of Cryptographers' Track at
the RSA Conference, pp. 398-415, 2012.

G. Khachatryan and A. Jivanyan, “Efficient oblivious transfer protocols based on
white-box cryptography’, (submitted for publication). see more in
http://cse.aua.am/applied-cryptography-laboratory/.

V. Kolesnikov, A.-R. Sadeghi and T. Schneider, “From Dust to Dawn: Practically
Efficient Two-Party Secure Function Evaluation Protocols and their Modular Design”,
Cryptology ePrint Archive, Report 2010/079 (2010),
https://eprint.iacr.org/2010/079.pdf.

J.R. Troncoso-Pastoriza, S. Katzenbeisser and M. Celik, “Privacy preserving error
resilient DNA searching through oblivious automata”, In Proceedings of the 14th ACM
conference on Computer and communications security, pp. 519-528, 2007.

K. Frikken, “Practical private DNA string searching and matching through efficient
oblivious automata evaluation’, Data and Applications Security XXIII, pp. 81-94, 2009.
R. Gennaro, C. Hazay and J. Sorensen, “Text search protocols with simulation based
security”, Public Key Cryptography—PKC 2010, pp. 332-350, 2010.

C. Hazay and T. Toft, “Computationally secure pattern matching in the presence of
malicious adversaries”, Advances in Cryptology-ASIACRYPT 2010, pp. 195-212, 2010.
K. Thompson, “Programming Techniques: Regular expression search algorithm”,
Communications of the ACM , vol. 11, no. 6, pp. 419-422, 1968.

S. Michael, Introduction to the Theory of Computation, PWS Publishing Company,
1997.

A. C. Yao, “Protocols for secure computations”, In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, Citeseer, pp. 160-164, 1982.

http://en.wikipedia.org/wiki/Michael_Sipser

88 Two-Party Regular Expression Matching Protocol without Asymmetric Cryptography Operations

[11] Y. Ishai, J. Kilian, K. Nissim and E. Petrank, “Extending oblivious transfers
efficiently”, Advances in Cryptology-CRYPTO 2003, pp. 145-161, 2003.

[12] O. Goldreich, Foundations of cryptography: Basic applications, Cambridge Univ Pr,
2004.

Submitted 04.08.2015, accepted 15.02.2016

Unwtig qununbwgqpuuwi wuhdbwnphl] gnpénnnipiniutph
Jhpwndwb juunttwynp wpunnwhwjnnipjut qununth
hwdwyuwwnwupwibgdut tpiinpuwih ypnunnlyng

Q. vwywnpjut, U. Zndubtithwui, U. Qpduiyut
Udthnthnid

Uju hnnuénmd ujupwgpdws E unp Epyynnuwtth wpnwunlng, npp pny) £ vwihu
wowghl Ynnuht Yhkinht, qugubh Yepyny wnmgl], wpynp phpopg Yandh
ubpytiph, dnwnn tqwsé wnnp hwdwywunwupwind £ hp dnn Epws jubntwdnp
wpnwhuwynnipjuip: Mpnuninp twpwnbujws £ juduyuut wyjppkiuputng
juinuwynp wpunwhwynnipnibtiph hwdwp b woppwnmd £ dh thoyny: Ujh
Juwunwpnd £ 0(mn) gopénnnipinit Yihtkunh Ynnudnd b O(mn|Q|) gqnpénnnipinil
utpdtph Ynnunid, hul] gwigny nbknuimpynud £ O(mnk|Q|) puyp hudnpdwughw,
npunbn k-t wpnuninh wbdunuwbgnipjut wwpwdbnpt k. m-p jubnbwynp
wpunwhwjnnipjut wppbtwpuwth munkph pwuwlu L, n-p ukpybph dnn Equs ninnh
Eplupmpniut B wwnkph pwbwlp, hulp [Q-t Ywinbwynp wpnwhujnnipuin
hudwwuwwnwupwing dhuhdwy pbunbpdhthunhy JEkppuynp wdunndwwnh (FU)
Jhdwljubph pwtwlp:

G. Khachatryan, M. Hovsepyan, A.Jivanyan 89

JIByXCTOPOHHUN MTPOTOKOJI TAMHOT'O COMOCTABJICHUS PETYJISPHBIX
BBIPAXKECHUI 0€3 MPUMEHEHUS ONepalfii aCHMMETPUYHOTO MUPPOBAHUS

I'. Xauatpsia, M. OBcensiH, A. J>xuBaHsH
AHHOTaLUA

B »3TOil cTaThe ommcaH BYXCTOPOHHUM MPOTOKOJ, KOTOPBIA IMO3BOJSIET MEPBOM CTOPOHE —
KJIMEHTY, UMEIOIIETO PETyJsipHOE BhIpAXKEHUE, TalHBIM 00pa30M MPOBEPSATH COOTBETCTBYET JIH
CTpOKa MMeIoIIeecs y BTOPOil CTOPOHBI — Y CepBepa, €ro perysipHoMy BelpaxeHnuto. [Iporokon
npeHa3HaueH Ui PETYJSIPHBIX BBIPAXEHUN C MPOM3BOJIBHBIM an(aBUTOM U paboTaeT 3a OJUH
payHI KOMMYHHKAIMH MKy KIHCHTOM U cepBepoM. [Iporokoin Beimonuser 0 (mn) onepanuit
Ha kimenre, O(mn|Q|) onepauuii Ha cepsepe, a Tpaduk cetu O(mnk|Q|) Gaiitos, rae k 310
napameTp 0€30MMacHOCTH MPOTOKOJIA, M KOJIMYECTBO OYKB B ayipaBUTE PETYIISIPHOTO BBIPAKEHUS,
N UIMHA BXOJHOW CTPOKH cepBepa, a |Q| KOJIMYECTBO COCTOSHHNA MHHHUMAIBHOTO
JNETEPMUHUCTUYECKOrO KOHeyHoro asTtomara (JIKA) cooTBETCTByOIIETO0 peryisipHOMY
BBIPAXECHHUIO.

