
Mathematical Problems of Computer Science 39, 54--65, 2013.

54

A Combinative Approach to Generalization of
Meanings

Karen S. Khachatryan

State Engineering University of Armenia
e-mail: khkarens@gmail.com

Abstract

We gain new meanings through the acquisition of communities, the revelation
from experience and the creation of new meanings by combining the existing ones.
We refine meanings by abstract classes combined by be-, have-, do- categories of
relationships [1, 3, 7]. In the paper we present a novel combinative algorithm
constructing new meanings by generalization of the given sets of meanings.

Keywords: meanings, meaning processing, combinative generalization.

1. Introduction

One way of new meaning extraction is the combination of available ones. Particularly, the
computation of a (or the) least generalization of two or more meanings helps to build a meaning
expressing their general properties. It is a fundamental problem in inductive inference occurring
particularly in machine learning [2, 6]. It may help to start from a set of descriptions assumed to
be examples of the same meaning and consider their least generalization as a working basis. The
operation can also be used to organize a large set of descriptions in a hierarchical structure.

Generalization and specialization problems have been studied for different knowledge
representation models. [6] summarizes and distinguishes the methods of generalization into two
categories: a generalization by features and a structural logical (or conceptual) generalization.
The first methods usually solve the problems of classification and formation of meanings. [6, 13,
15] review and analyze the methods of generalization by features. These include a method of
potential function as a function for the class K which is built to have the maximal value on
the set of objects ∈ [16]; and a generalization by features using either the voting method
proposed in [13, 14] or the covering technique [17]: first it prepares the input training data for
building of base classifiers by perturbing the original training data, and builds base classifiers on
the perturbed data, then the proximity measure is determined for the object s to each of the
classes by comparing the values of features of the object s from the specified subsets with the
appropriate values of features of etalon objects.

A wide set of generalization/specialization techniques have also been developed for
conceptual graphs which are well studied language of knowledge representation and reasoning
[2, 10]. These include techniques like the evaluation of the least upper bound (the least
generalization) H as an irredundant form of the categorical product of two basic conceptual
graphs (BG) B and G: = × ; the maximum join operation between two BGs G and H as a
composition of the following steps: first it merges a concept node in G and a concept node in H,

K. Khachatryan 55

and then continues merging as far as possible neighbors of previously merged nodes [12]; and
the extended join operation which generalizes maximal join operations by using the properties of
compatible partitions of the concept node set of a BG [11].

In the Solver of SSRGT class problems (problems, where Space of Solutions can be
represented by Reproducible Game Trees) [1, 3, 7], the task of finding the least generalization in
its basic form takes two meanings, say A and B, and asks for a least generalization of A and B,
i.e., a meaning K such that ≽ (K is a generalization of A) and ≽ and for all meanings
K', if ′ ≽ and ′ ≽ then ′ ≽ . In other words, given two acquired meanings A and B,
extract a new meaning K which will represent the general characteristics of both A and B, while
taking as a criterion of the generalization the most specific meaning which can be extracted.

Further in the paper we give the definition of the skeleton of a meaning as a sub-graph which
is necessary to compose and correctly activate the meaning from sub-meanings [5] and define
the elementary generalization and specialization operations for it. Next we define the
generalization (specialization) as a sequence of elementary generalization (specialization)
operations and finally propose an algorithm of evaluating a least generalization of two meanings.
We represent the strategy of selecting the generalizable sub-meanings from two meanings and
detail the generalization procedure. We show that the algorithm is able to

- find common parts of two meanings, i.e., if there are meanings "Two Pawns" and "Two
Knights", then it extracts a new meaning "Two Figures" etc.,

- dynamically generate and integrate a new meaning between the be connection chain, for
example, it extracts and integrates "FieldUnderCheckOfPawn" new meaning between
"FieldUnderCheck", "FieldUnderCheckOfPawnAtPos1" and "FieldUnderCheckOfPawnAtPos2"
meanings,

- extract a common Interface (pattern), the algorithm is able to extract "FieldUnderCheck"
meaning by analyzing the list of "FieldUnderCheck of Specific Figure" meanings.

In the conclusion we summarize the main findings of the research.

2. The Skeleton of a Meaning

[3] discusses the means of meanings acquisition and the algorithm of their integration into
the internal graph of abstracts. Within the graph, each meaning is represented as a sub-graph
centered in the meaning node and having other nodes as sub-meaning while edges as one of be-,
have- or do connections [1, 3, 5]. Note that all edges are bidirectional, in other words, if there is
a be connection between the nodes A and B indicating that A is a base type of (subsumes) B then
also a reverse connection is built between B and A indicating that B is a sub type of (subsumed
by) A. Similarly, the reversed connections are built also for have and do edges. Therefore, when
referring to these bidirectional edges, we distinguish the roles for nodes as sources and
destinations. We call a node source for be connection if it is the sub type, consequently, the base
type becomes a destination. Similarly, a source for have connection is the node that has the other
node as an attribute. And, finally, for do connection the precondition node serves as a source
while the action itself becomes a destination. What follows is that the above definition of
meanings is quite wide and assuming that all meanings are using the same set of nucleus
meanings and taking the allowed distance of a sub-meaning from the central node as big as we
want, we can end up having almost the whole connected component (even a graph of abstracts
itself) as a representation of a single meaning (regardless what meaning we pick). Therefore, we
define the skeleton of a meaning as a sub-graph which is necessary to compose and correctly
activate [5] the meaning from sub-meanings. It is constructed from the meaning's graph by
recursively traversing only the following set of edges and connected nodes:

1. If the node is a nucleus then stop further processing.

A Combinative Approach to Generalization of Meanings56

2. If the node is neither a virtual nor a usage then as a next layer of the skeleton select
only Have connections where the role of the node is a source. This means, that none of Be,
Do connections or Have connections, where the node is a destination, will be considered.
3. If the node is a virtual or a usage then only Be edges, where the node is a destination,
must be selected for further processing. For virtual nodes, this includes the set of all
specifications of the node. For the usage nodes, this is basically the base virtual node (it is
being selected because of the reverse Be connection)
And, finally, applying steps 1 to 3 recursively on each new node will result in a complete

skeleton of the meaning.

3. Elementary Generalization/Specialization Operations

We consider the generalization of meanings as a generalization of their skeletons. Hereafter
saying a meaning we refer to the skeleton of a meaning: we will use an entire meaning notation
to refer to the meaning with the original definition.

Let us describe the generalization of a single meaning before considering the computation of
a least generalization of two or more meanings. A partial order is interpreted as a generalization
or a relation: ≽ means that the meaning is a generalization of the meaning (or
is a specialization of , subsumes or every entry having a meaning has also a
meaning).

A generalization is a "unary" operation, i.e. it has a meaning as an input and a meaning as an
output. We define the following elementary generalization operations:

Increase. Increase the type of a sub-meaning. More precisely, given a meaning A, a sub-
meaning x of A, and a type ≽ increase (A, x, T) is the meaning obtained from the A by
increasing the type of x up to T. Within our meaning representation model the increase operation
means replacing the sub-meaning with one of the meanings in its be connection chain Fig. 1 a).
Similarly, the Increase operation is defined for the relations of sub-meanings. Given a meaning
A and a relation r for a sub-meaning x of A, and a relation ∈ , then increase(A, x, r, R) is the
meaning obtained from the A by changing the relation r of x up to the relation R. The increase
condition of a relation indicated that the new relation R should enclose the value range defined
by the relation r.

Substract. Given a meaning A, and a set of sub-meanings , , … , of A, then(, , , … ,) is the meaning obtained from A by deleting , , … , sub
meanings and any relation which has a reference to them (the result can be the empty meaning).
Similarly, the substract operation for relations is defined as follows: given a meaning A, and a
set of relations , , … , for the sub-meanings , , … , , then(, , , … , , , , … ,) is the meaning obtained from A by dropping the
relations , , … , Fig. 1 b).

The elementary specialization operations are defined as inverse operations of the elementary
generalization operations. They are as follows:

Restrict. Given a meaning A, a sub-meaning x of A, and a type ≼ restrict(A, x, T) is the
meaning obtained from A by decreasing the type of x to T. Within our meaning representation
model the restrict operation means replacing the sub-meaning with one of the meanings in its
reverse be connection chain Fig. 1 c). Similarly, the restrict operation is defined for relations of
sub-meanings. Given a meaning A and a relation r for a sub-meaning x of A, and a relation∈ , then restrict(A, x, r, R) is the meaning obtained from the A by changing the relation r of x
down to the relation R. The restrict operation indicated that the relation r should embrace the
relation R.

K. Khachatryan 57

Disjoint Sum. Given two disjoint meanings A and B, A+B is the union of A and B that is
the meaning which has A and B as sub meanings. Similarly, for relations, a new relation R can be
defined for sub meanings Fig. 1 c).

We define a generalization/specialization relation (or subsumption) by a sequence of
elementary operations

Definition. A meaning A is a generalization of a meaning B if there is a sequence of
meanings = , , … , = (), and, for all = 1,… , , is obtained from by a
generalization operation.

su
b-

m
ea

ni
ng

s
an

d
re

la
ti

on
s

Restrict

sub-m
eanings

and
relations

Generalize

Increase

su
b-

m
ea

ni
ng

s

Knight

Y.Coord. In [1,8]

X Coord. In [1,8]

Color In [1,2]

Figure T. = 3 (Knight)

sub-m
eanings

Figure

Y.Coord. In [1,8]

X Coord. In [1,8]

Color In [1,2]

Figure T. In [1,6] (Fig)

a)

Generalize

Substract

Neighbor Pawns

p2 is Pawn

p1 is Pawn

p1.y = p2.y

p1.x = p2.x+1

Pawns on Same Vertical

p2 is Pawn

p1 is Pawn

p1.y = p2.y

b)

sub-m
eanings

and relations

Specialize

Disjoint
Sum

su
b-

m
ea

ni
ng

s Figure and Knight

k1 is Knight

f1 is Figure

Knights on Same Vertical

k1 is Knight

f1 is Knight

f1.y = k1.y

c)

Fig. 1. Elementary generalization and specialization operations. a) Generalization of Figure
meaning from Knight meaning by an elementary Increase operation applied on Figure Type sub-
meaning. b) Generalization of Pawns on Same Vertical meaning from Neighbor Pawns by
applying Substract elementary operation on 1. = 2. + 1 relations. c) Specialization of
Figure and Knight meaning to Knight on Same Vertical by applying Restrict elementary
specialization operation on f1:Figure sub-meaning and Disjoint Sum operation to add new
relation between f1 and k1 sub-meanings: 1. = 1. .

A Combinative Approach to Generalization of Meanings58

From the definitions it follows that B can have extra sub-meanings and relations which don't
exist in A.

4. The Generalization of Two Meanings

Finding a (or the) least generalization of two meanings A and B is to find a meaning K such
that ≽ and ≽ and for all meanings K', if ′ ≽ and ′ ≽ , then ′ ≽ . In other
words, the algorithm has to traverse both meanings (abstracts in the meaning graph) and
compose a new abstract from the least generalizations of their sub-meaning pairs and relations.
The latter one can be either memorized or dropped based on some post processing algorithm: for
example, if we deal with interactive expert systems, then the system would rather ask the expert
for further analysis. Alternately, it can maintain a weighted graph of abstracts and evaluate
durables during the time [1], however, the consideration of the post-processing algorithms is out
of the scope of this paper, therefore, we suppose that an expert can be asked to approve or reject
the new evaluated meaning.

The paper aims to answer the following major questions which arise during the processing
of the algorithm:

- how to select the pairs of sub-meanings (abstract's attributes) to be generalized into the
new meanings?

- how to generalize them?
- how to verify/extract the relations (dependencies) between sub-meanings?

4.1. Select the Attribute Pairs to Generalize
In this section we will describe the algorithm which extracts the sets of attribute pairs to

compose least generalizations form user/expert defined meanings. Note, that there can be more
than one least generalization when considering both sub-meanings and relations. For example,
let’s suppose there are a meaning A and a meaning B where A is composed of sub-meanings: , : and : (t:T notation means that t is a type of T) and there is a
relation . = . + 1 defined for and attributes. On the other hand, B has two sub-
meanings : and : with a relation . = . + 1. Let’s also suppose
that ≻ (strictly subsumes). What follows is that the algorithm can
either specialize the relation and extract a least generalization composed of two Pawns, or
specialize the sub-meaning and extract a new meaning composed of Figure and Pawn by
keeping the relation defined between them.

In order to find the compatible pairs of sub-meanings, let us recall the structure of graph of
abstracts and the semantic connections existing between the abstracts (the semantics of be, have
and do connections). As defined in [3], there are the following types of GA nodes: nucleus -
smallest representation units of meanings, ar1 - abstracts having only nucleus attributes (there
can be at most one attribute of a given nucleus type), sets - representing a group of abstracts with
similar characteristics, composite abstracts - a complex form of abstract representation, they can
have any kind of attributes, virtual abstracts - composite abstracts with attributes having
undefined relations, and actions - representing the action meanings. Considering these categories
of GA nodes, as a first step, the algorithm segregates attributes into different compatible groups
and evaluates the pair extraction between the groups containing nodes having the same type.

4.2. Generalization of Nucleus Abstracts
Property. Two nucleus abstracts are generalizable if and only if they have the same type.
The proof simply follows from the definition of nucleus abstracts: they represent different

nucleus characteristics, hence, cannot be generalized further.

K. Khachatryan 59

We shall recall the structure of a nucleus abstract: it has a single attribute and value range
defined for that attribute. For the generalization we shall assume one of the following operations:

- union of regulations
- finding the closest base type which covers both sets defined by regulations.
Both of these have a practical sense, however, we first try to find a common base nucleus

type by traversing their be connection chain in order to avoid the expansion of new nucleus
abstracts by unifying different nucleus values (this can lead to a creation of new types for all
possible combinations of nucleus values).

4.1.Generalization of AR1 Abstracts
According to the definition of ar1, it contains at most one element of a given nucleus type

(Fig. 2). Therefore:
Property. The attributes of two ar1s can be

generalized only if they have the same nucleus types,
moreover, there is at most one possible pair for a given
attribute.

Table 1 represents the mapping between A and B
ar1s' attributes. As
we see A.r1, B.s2 and

B.p2 attributes do not have pairs, consequently, they are
ignored in the generalized abstract and a new ar1 is constructed
by generalizing the paired nucleus attributes (1: 2 →, 1: 2 → and 1: 2 → in this example). The asset of
ar1s is that there is no dependency defined between the
attributes. The only dependency (belonging to the same id
group) is implied in [3].

4.2. Generalization of Set Abstracts and Actions
The generalization of Sets is done by generalizing the

composite element of the Set and uniting the min-max ranges
of source Sets.

Here actions' generalization is discussed only by their
preconditions, which in their turn, are composites.

4.3. Generalization of Composite Abstracts
The least generalization of two meanings is, basically, the least generalization of two

composite abstracts. Intuitively, the effect of the least generalization is to find the biggest
subgraphs of two meanings which can be merged into one. In this section we will present some
general ideas behind the operation and will give the algorithm adopted for Solver's meaning
representation.

Definition. Let A and B be two disjoint meanings and c and d - two sub-meanings in A and
B, respectively. A generalization of A and B is a least generalization of c and d sub-meanings.

A way of extending a generalization of c in A and d in B consists of searching the neighbors
(sub-meanings connected with them through relations) of c and d, then to check if these nodes
can be generalized and so on. In other words, starting from a pair of generalizable sub-meanings,
the idea is to search, in a greedy way, generalizable neighbors of previously identified
generalizable nodes. The resulted least generalization is, thus, locally "maximal".

In order to specify a least generalization operation, one has to define not only the conditions
for generalization of sub-meanings and relations but also a strategy for exploring the meaning

Table 1. The mapping table of
AR1s attributes.

A Nucleus
Types

B

x1 x x2

y1 y y2

r1 r -

z1 z z2

- s s2

- p p2

Fig. 2. A and B ar1s.

A

x1 y1 r1 z1

B

x2 s2 y2

K. Khachatryan 59

We shall recall the structure of a nucleus abstract: it has a single attribute and value range
defined for that attribute. For the generalization we shall assume one of the following operations:

- union of regulations
- finding the closest base type which covers both sets defined by regulations.
Both of these have a practical sense, however, we first try to find a common base nucleus

type by traversing their be connection chain in order to avoid the expansion of new nucleus
abstracts by unifying different nucleus values (this can lead to a creation of new types for all
possible combinations of nucleus values).

4.1.Generalization of AR1 Abstracts
According to the definition of ar1, it contains at most one element of a given nucleus type

(Fig. 2). Therefore:
Property. The attributes of two ar1s can be

generalized only if they have the same nucleus types,
moreover, there is at most one possible pair for a given
attribute.

Table 1 represents the mapping between A and B
ar1s' attributes. As
we see A.r1, B.s2 and

B.p2 attributes do not have pairs, consequently, they are
ignored in the generalized abstract and a new ar1 is constructed
by generalizing the paired nucleus attributes (1: 2 →, 1: 2 → and 1: 2 → in this example). The asset of
ar1s is that there is no dependency defined between the
attributes. The only dependency (belonging to the same id
group) is implied in [3].

4.2. Generalization of Set Abstracts and Actions
The generalization of Sets is done by generalizing the

composite element of the Set and uniting the min-max ranges
of source Sets.

Here actions' generalization is discussed only by their
preconditions, which in their turn, are composites.

4.3. Generalization of Composite Abstracts
The least generalization of two meanings is, basically, the least generalization of two

composite abstracts. Intuitively, the effect of the least generalization is to find the biggest
subgraphs of two meanings which can be merged into one. In this section we will present some
general ideas behind the operation and will give the algorithm adopted for Solver's meaning
representation.

Definition. Let A and B be two disjoint meanings and c and d - two sub-meanings in A and
B, respectively. A generalization of A and B is a least generalization of c and d sub-meanings.

A way of extending a generalization of c in A and d in B consists of searching the neighbors
(sub-meanings connected with them through relations) of c and d, then to check if these nodes
can be generalized and so on. In other words, starting from a pair of generalizable sub-meanings,
the idea is to search, in a greedy way, generalizable neighbors of previously identified
generalizable nodes. The resulted least generalization is, thus, locally "maximal".

In order to specify a least generalization operation, one has to define not only the conditions
for generalization of sub-meanings and relations but also a strategy for exploring the meaning

Table 1. The mapping table of
AR1s attributes.

A Nucleus
Types

B

x1 x x2

y1 y y2

r1 r -

z1 z z2

- s s2

- p p2

Fig. 2. A and B ar1s.

y2 z2 p2

K. Khachatryan 59

We shall recall the structure of a nucleus abstract: it has a single attribute and value range
defined for that attribute. For the generalization we shall assume one of the following operations:

- union of regulations
- finding the closest base type which covers both sets defined by regulations.
Both of these have a practical sense, however, we first try to find a common base nucleus

type by traversing their be connection chain in order to avoid the expansion of new nucleus
abstracts by unifying different nucleus values (this can lead to a creation of new types for all
possible combinations of nucleus values).

4.1.Generalization of AR1 Abstracts
According to the definition of ar1, it contains at most one element of a given nucleus type

(Fig. 2). Therefore:
Property. The attributes of two ar1s can be

generalized only if they have the same nucleus types,
moreover, there is at most one possible pair for a given
attribute.

Table 1 represents the mapping between A and B
ar1s' attributes. As
we see A.r1, B.s2 and

B.p2 attributes do not have pairs, consequently, they are
ignored in the generalized abstract and a new ar1 is constructed
by generalizing the paired nucleus attributes (1: 2 →, 1: 2 → and 1: 2 → in this example). The asset of
ar1s is that there is no dependency defined between the
attributes. The only dependency (belonging to the same id
group) is implied in [3].

4.2. Generalization of Set Abstracts and Actions
The generalization of Sets is done by generalizing the

composite element of the Set and uniting the min-max ranges
of source Sets.

Here actions' generalization is discussed only by their
preconditions, which in their turn, are composites.

4.3. Generalization of Composite Abstracts
The least generalization of two meanings is, basically, the least generalization of two

composite abstracts. Intuitively, the effect of the least generalization is to find the biggest
subgraphs of two meanings which can be merged into one. In this section we will present some
general ideas behind the operation and will give the algorithm adopted for Solver's meaning
representation.

Definition. Let A and B be two disjoint meanings and c and d - two sub-meanings in A and
B, respectively. A generalization of A and B is a least generalization of c and d sub-meanings.

A way of extending a generalization of c in A and d in B consists of searching the neighbors
(sub-meanings connected with them through relations) of c and d, then to check if these nodes
can be generalized and so on. In other words, starting from a pair of generalizable sub-meanings,
the idea is to search, in a greedy way, generalizable neighbors of previously identified
generalizable nodes. The resulted least generalization is, thus, locally "maximal".

In order to specify a least generalization operation, one has to define not only the conditions
for generalization of sub-meanings and relations but also a strategy for exploring the meaning

Table 1. The mapping table of
AR1s attributes.

A Nucleus
Types

B

x1 x x2

y1 y y2

r1 r -

z1 z z2

- s s2

- p p2

Fig. 2. A and B ar1s.

A Combinative Approach to Generalization of Meanings60

graphs. Given two generalizable meaning nodes as a starting point, there may be several least
generalizations, but computing one of
them can be done in polynomial time,
whereas computing the least
generalization with a maximum number
of nodes is NP-hard (indeed it admits the
homomorphism or injective
homomorphism as a special case) [2].

In order to improve a least
generalization obtained by a greedy
approach, we propose a strategy for
picking the starting nodes and exploring
meanings' graphs. In the strategy we are
excessively using the structure of the meanings' graph and particularly, the semantics of be
connections (as we did in ar1s).

Definition. Two abstracts are strongly compatible if they have a common node in the chain
of their be connections.

The be connection is one of the major
relations defined between the abstracts (during
the acquisition procedure). Therefore the
existence of a common base type indicates the
importance of the connection between two
abstracts. On the other hand, the lack of a
common base type means that they had not
strong connections during the acquisition
procedure. It could also be possible that the
post processing algorithm or an expert
discarded evaluated generalizations for these
abstracts, thus taking into account that the sub
types have to satisfy also the restrictions
defined in the base types, it can indicate that
there is no acceptable generalization for these
abstracts.

Property. The closest is the common node
the more strongly compatible are abstracts.

Proof of the property follows from the
semantics of be connection. In this connection
there are two components, namely, base type
and sub type. The sub type is constructed from
the base type by inheriting from it and possibly
adding more restrictions. However, any instance of the sub type will also satisfy the regularities

defined in the base type, hence, the closest
base type contains the most common
characteristics.

Using this property we propose a
substructure for the meanings' graph
exploration strategy to pick attribute pairs
standing closest in the be connection chain.

Let's suppose we have the hierarchy

Fig. 3. The type hierarchy.

Table 2. The initial mapping list.

Left Container List Right Container

a1121, a1121 -

a1121 a112 -

a1121 a11 a111

a1121, a12 a1 a111, a13, a1

a1121, a12, a21 a a111,a211,a13, a1

a12 a12 -

b1 b1 -

b1 b -

c2 c2 -

c2 c c1

a21 a21 a211

a21 a2 a211

- c1 c1

- a111 a111

- a211 a211

- a13 a13

Fig. 4. A and B composite abstracts.

A

a1121 a12 b1 c2 a21

B

c1 a111 a1 a13

A Combinative Approach to Generalization of Meanings60

graphs. Given two generalizable meaning nodes as a starting point, there may be several least
generalizations, but computing one of
them can be done in polynomial time,
whereas computing the least
generalization with a maximum number
of nodes is NP-hard (indeed it admits the
homomorphism or injective
homomorphism as a special case) [2].

In order to improve a least
generalization obtained by a greedy
approach, we propose a strategy for
picking the starting nodes and exploring
meanings' graphs. In the strategy we are
excessively using the structure of the meanings' graph and particularly, the semantics of be
connections (as we did in ar1s).

Definition. Two abstracts are strongly compatible if they have a common node in the chain
of their be connections.

The be connection is one of the major
relations defined between the abstracts (during
the acquisition procedure). Therefore the
existence of a common base type indicates the
importance of the connection between two
abstracts. On the other hand, the lack of a
common base type means that they had not
strong connections during the acquisition
procedure. It could also be possible that the
post processing algorithm or an expert
discarded evaluated generalizations for these
abstracts, thus taking into account that the sub
types have to satisfy also the restrictions
defined in the base types, it can indicate that
there is no acceptable generalization for these
abstracts.

Property. The closest is the common node
the more strongly compatible are abstracts.

Proof of the property follows from the
semantics of be connection. In this connection
there are two components, namely, base type
and sub type. The sub type is constructed from
the base type by inheriting from it and possibly
adding more restrictions. However, any instance of the sub type will also satisfy the regularities

defined in the base type, hence, the closest
base type contains the most common
characteristics.

Using this property we propose a
substructure for the meanings' graph
exploration strategy to pick attribute pairs
standing closest in the be connection chain.

Let's suppose we have the hierarchy

Fig. 3. The type hierarchy.

a

a1

a11

a111 a112

a1121

a12

a121

a13

a2

a21

a211 a212 a213

b

b1 c1

Table 2. The initial mapping list.

Left Container List Right Container

a1121, a1121 -

a1121 a112 -

a1121 a11 a111

a1121, a12 a1 a111, a13, a1

a1121, a12, a21 a a111,a211,a13, a1

a12 a12 -

b1 b1 -

b1 b -

c2 c2 -

c2 c c1

a21 a21 a211

a21 a2 a211

- c1 c1

- a111 a111

- a211 a211

- a13 a13

Fig. 4. A and B composite abstracts.

a13 a211

A Combinative Approach to Generalization of Meanings60

graphs. Given two generalizable meaning nodes as a starting point, there may be several least
generalizations, but computing one of
them can be done in polynomial time,
whereas computing the least
generalization with a maximum number
of nodes is NP-hard (indeed it admits the
homomorphism or injective
homomorphism as a special case) [2].

In order to improve a least
generalization obtained by a greedy
approach, we propose a strategy for
picking the starting nodes and exploring
meanings' graphs. In the strategy we are
excessively using the structure of the meanings' graph and particularly, the semantics of be
connections (as we did in ar1s).

Definition. Two abstracts are strongly compatible if they have a common node in the chain
of their be connections.

The be connection is one of the major
relations defined between the abstracts (during
the acquisition procedure). Therefore the
existence of a common base type indicates the
importance of the connection between two
abstracts. On the other hand, the lack of a
common base type means that they had not
strong connections during the acquisition
procedure. It could also be possible that the
post processing algorithm or an expert
discarded evaluated generalizations for these
abstracts, thus taking into account that the sub
types have to satisfy also the restrictions
defined in the base types, it can indicate that
there is no acceptable generalization for these
abstracts.

Property. The closest is the common node
the more strongly compatible are abstracts.

Proof of the property follows from the
semantics of be connection. In this connection
there are two components, namely, base type
and sub type. The sub type is constructed from
the base type by inheriting from it and possibly
adding more restrictions. However, any instance of the sub type will also satisfy the regularities

defined in the base type, hence, the closest
base type contains the most common
characteristics.

Using this property we propose a
substructure for the meanings' graph
exploration strategy to pick attribute pairs
standing closest in the be connection chain.

Let's suppose we have the hierarchy

Fig. 3. The type hierarchy.

c

c1 c2

Table 2. The initial mapping list.

Left Container List Right Container

a1121, a1121 -

a1121 a112 -

a1121 a11 a111

a1121, a12 a1 a111, a13, a1

a1121, a12, a21 a a111,a211,a13, a1

a12 a12 -

b1 b1 -

b1 b -

c2 c2 -

c2 c c1

a21 a21 a211

a21 a2 a211

- c1 c1

- a111 a111

- a211 a211

- a13 a13

Fig. 4. A and B composite abstracts.

K. Khachatryan 61

described in Fig. 3. The Be chain of the abstract a1121 is: 1121 → 112 → 11 → 1 → .
This means that the top type is a, while the closest type is a112. Let's suppose we want to
generalize abstracts A and B from Fig. 4.

We compose the substructure by the
following rules. For the left abstract we

initialize a list of all nodes which appear
in the be connection chain of each attribute
(including itself) and keep reflexive mapping
from the attribute to the base types in a list.
Note, that during the initialization, the most
specific types for a given attribute are
inserted first. If a base type with the similar
id (name in our case) already exists in the
list, then we simply increase the number of
references to that element and add the
pointing attribute to the element's left
container.

Similarly, we iterate over all attributes
of the right abstract and integrate all base
types into the list with a difference that each
attribute is added to the right container of the
base type (Table 2). As a next step we count
the number of elements in the left and right
containers of base types and sort the list in
the increasing order of the cumulative
element count in right and left containers
(Table 3). Meanwhile, if the number of
elements is the same for two entries, we keep

the initial ordering (see 21 → 21 and 21 → 2 mapping in Table 3). From the definition of
the structure it follows that the base types appearing in the upper levels of the hierarchy will have

a bigger number of connected elements. This
is because each attribute from the bottom
levels will increase also the number of
connected elements of base types. Therefore,
we can argue that mappings’ entries appearing
first for the given attribute are the closest base
types and the later the mapping entry appears
the further is the base type.

This leads us to the selection algorithm of
the best matches of attributes in two abstract.
We start iterating over the elements of the
sorted list and remove the mapping entries

which contain only right or left container
(Table 4).

From the remaining set, if there is a one to
one mapping (like 2: 1 → or 21: 211 →21), then these attributes are paired and are
removed from the lists of bottom entries (Table
5). If there is more than one attribute in one of

Table 3. The mapping list after sorting.

Left Container List Right Container

a1121, a1121 -

a1121 a112 -

c2 c2 -

a12 a12 -

- a111 a111

- a211 a211

- a13 a13

b1 b1 -

b1 b -

- c1 c1

c2 c c1

a21 a21 a211

a21 a2 a211

a1121 a11 a111

a1121, a12 a1 a111, a13, a1

a1121,a12, a21 a a111,a211,a13, a1

Table 4. The list without pairless elements.

Left Container List Right Container

c2 c c1

a21 a21 a211

a21 a2 a211

a1121 a11 a111

a1121, a12 a1 a111, a13, a1

a1121,a12, a21 a a111,a211,a13, a1

Table 5. The list after removing one to one
mapping entries.

Left Container List Right Container

a12 a1 a13, a1

a12 a a13, a1

A Combinative Approach to Generalization of Meanings62

containers then we have an uncertainty, therefore new sets of pairs are created for all the possible
combination chains. For the given example, two set of pairs will be generalized:2: 1 → , 21: 211 → 21, 1121: 111 → 11, : → }2: 1 → , 21: 211 → 21, 1121: 111 → 11, : → }

As a result of this procedure we get a list of arrays of attribute pairs. Each element of the
array represents one possible least generalization of two input abstracts. We shall note here that
some of the attributes might be ignored because of not having proper pairs (b1 in A, for
example). The important achievement of this strategy is that we significantly reduced the number
of possible least generalizations. It is only multiplied if there are attributes having the same
types, but mainly, in the definition of a composite abstract the same attribute is not used multiple
times (there are other types, like Sets to be used for such kind of definitions).

4.4. Generalize Paired Attributes

At this point for each array of paired attributes we have to extract their least generalizations
and consider the extraction of relations. Finally, we have to compose a new abstract by putting
together all these "building blocks".

First of all, let us discuss the approaches of extraction least generalization of paired
attributes. The key point here is that they have an evaluated common subsumer (a common base
type). Based on the type of the subsumer, i.e. whether it is a virtual abstract, thereby indicating
the attributes being usage nodes [3], or not, the algorithm adopts different strategies. If the
attributes are usages then the common subsumer is taken as a least generalization and only new
relations are further analyzed for them. This is because the usage nodes do not add any additional
attribute to the base type, rather, they only specify more restrictions. On the other hand, if the
base type is not a virtual then the set of attributes, which exist in the base type, are extracted as a
part of a generalization and the remaining ones are generalized further. More precisely, let
and be paired attributes which have a common base type which is not virtual. In this case
the least generalization contains the set of attributes defined in B merged with the generalization
of / and / .

An interesting property of the new generalized abstract from the pairs having the same base
type is that it is either the base type itself or an abstract holding a place between the base type
and sub types. In other words, from the property of be connection, it follows that there is a
homomorphism from the common base type to the new generalized abstract. This action leads to
the organization of a hierarchical structure between definitions. For example, by generalizing
"FieldIsUnderCheckOfPawnPos1" and "FieldIsUnderCheckOfPawnPos2" meanings the
algorithm can extract a new meaning "FieldIsUnderCheckOfPawn" and integrate it into the be
connection chain between these meanings and their base type - "FieldInUnderCheck" meaning.

Once the paired attributes of each abstract have their
mappings in the generalized one, the algorithm starts
evaluating and extracting relations defined between the
attributes and integrate them into the generalized
abstract.

A relation/regulation between an abstract's attributes
is called a dependency and has form, where attr is the name of the
attribute, ROP is a relational operator (, , , , ,) and expr is an arithmetic expression.
Naturally, the generalization algorithm has to consider the existence and extract the analogical
dependencies from two source abstracts. Thence, the algorithm has to analyze each dependency
and check:

- is it still valid on the generalized abstract?

Fig. 5. Generalization of c1 and c2
paired abstracts.

A Combinative Approach to Generalization of Meanings62

containers then we have an uncertainty, therefore new sets of pairs are created for all the possible
combination chains. For the given example, two set of pairs will be generalized:2: 1 → , 21: 211 → 21, 1121: 111 → 11, : → }2: 1 → , 21: 211 → 21, 1121: 111 → 11, : → }

As a result of this procedure we get a list of arrays of attribute pairs. Each element of the
array represents one possible least generalization of two input abstracts. We shall note here that
some of the attributes might be ignored because of not having proper pairs (b1 in A, for
example). The important achievement of this strategy is that we significantly reduced the number
of possible least generalizations. It is only multiplied if there are attributes having the same
types, but mainly, in the definition of a composite abstract the same attribute is not used multiple
times (there are other types, like Sets to be used for such kind of definitions).

4.4. Generalize Paired Attributes

At this point for each array of paired attributes we have to extract their least generalizations
and consider the extraction of relations. Finally, we have to compose a new abstract by putting
together all these "building blocks".

First of all, let us discuss the approaches of extraction least generalization of paired
attributes. The key point here is that they have an evaluated common subsumer (a common base
type). Based on the type of the subsumer, i.e. whether it is a virtual abstract, thereby indicating
the attributes being usage nodes [3], or not, the algorithm adopts different strategies. If the
attributes are usages then the common subsumer is taken as a least generalization and only new
relations are further analyzed for them. This is because the usage nodes do not add any additional
attribute to the base type, rather, they only specify more restrictions. On the other hand, if the
base type is not a virtual then the set of attributes, which exist in the base type, are extracted as a
part of a generalization and the remaining ones are generalized further. More precisely, let
and be paired attributes which have a common base type which is not virtual. In this case
the least generalization contains the set of attributes defined in B merged with the generalization
of / and / .

An interesting property of the new generalized abstract from the pairs having the same base
type is that it is either the base type itself or an abstract holding a place between the base type
and sub types. In other words, from the property of be connection, it follows that there is a
homomorphism from the common base type to the new generalized abstract. This action leads to
the organization of a hierarchical structure between definitions. For example, by generalizing
"FieldIsUnderCheckOfPawnPos1" and "FieldIsUnderCheckOfPawnPos2" meanings the
algorithm can extract a new meaning "FieldIsUnderCheckOfPawn" and integrate it into the be
connection chain between these meanings and their base type - "FieldInUnderCheck" meaning.

Once the paired attributes of each abstract have their
mappings in the generalized one, the algorithm starts
evaluating and extracting relations defined between the
attributes and integrate them into the generalized
abstract.

A relation/regulation between an abstract's attributes
is called a dependency and has form, where attr is the name of the
attribute, ROP is a relational operator (, , , , ,) and expr is an arithmetic expression.
Naturally, the generalization algorithm has to consider the existence and extract the analogical
dependencies from two source abstracts. Thence, the algorithm has to analyze each dependency
and check:

- is it still valid on the generalized abstract?

Fig. 5. Generalization of c1 and c2
paired abstracts.

c

p q

c1

p1 q1 r

c2

p2

A Combinative Approach to Generalization of Meanings62

containers then we have an uncertainty, therefore new sets of pairs are created for all the possible
combination chains. For the given example, two set of pairs will be generalized:2: 1 → , 21: 211 → 21, 1121: 111 → 11, : → }2: 1 → , 21: 211 → 21, 1121: 111 → 11, : → }

As a result of this procedure we get a list of arrays of attribute pairs. Each element of the
array represents one possible least generalization of two input abstracts. We shall note here that
some of the attributes might be ignored because of not having proper pairs (b1 in A, for
example). The important achievement of this strategy is that we significantly reduced the number
of possible least generalizations. It is only multiplied if there are attributes having the same
types, but mainly, in the definition of a composite abstract the same attribute is not used multiple
times (there are other types, like Sets to be used for such kind of definitions).

4.4. Generalize Paired Attributes

At this point for each array of paired attributes we have to extract their least generalizations
and consider the extraction of relations. Finally, we have to compose a new abstract by putting
together all these "building blocks".

First of all, let us discuss the approaches of extraction least generalization of paired
attributes. The key point here is that they have an evaluated common subsumer (a common base
type). Based on the type of the subsumer, i.e. whether it is a virtual abstract, thereby indicating
the attributes being usage nodes [3], or not, the algorithm adopts different strategies. If the
attributes are usages then the common subsumer is taken as a least generalization and only new
relations are further analyzed for them. This is because the usage nodes do not add any additional
attribute to the base type, rather, they only specify more restrictions. On the other hand, if the
base type is not a virtual then the set of attributes, which exist in the base type, are extracted as a
part of a generalization and the remaining ones are generalized further. More precisely, let
and be paired attributes which have a common base type which is not virtual. In this case
the least generalization contains the set of attributes defined in B merged with the generalization
of / and / .

An interesting property of the new generalized abstract from the pairs having the same base
type is that it is either the base type itself or an abstract holding a place between the base type
and sub types. In other words, from the property of be connection, it follows that there is a
homomorphism from the common base type to the new generalized abstract. This action leads to
the organization of a hierarchical structure between definitions. For example, by generalizing
"FieldIsUnderCheckOfPawnPos1" and "FieldIsUnderCheckOfPawnPos2" meanings the
algorithm can extract a new meaning "FieldIsUnderCheckOfPawn" and integrate it into the be
connection chain between these meanings and their base type - "FieldInUnderCheck" meaning.

Once the paired attributes of each abstract have their
mappings in the generalized one, the algorithm starts
evaluating and extracting relations defined between the
attributes and integrate them into the generalized
abstract.

A relation/regulation between an abstract's attributes
is called a dependency and has form, where attr is the name of the
attribute, ROP is a relational operator (, , , , ,) and expr is an arithmetic expression.
Naturally, the generalization algorithm has to consider the existence and extract the analogical
dependencies from two source abstracts. Thence, the algorithm has to analyze each dependency
and check:

- is it still valid on the generalized abstract?

Fig. 5. Generalization of c1 and c2
paired abstracts.

c2

p2 q2 s

K. Khachatryan 63

- is there an equivalent dependency in the pair abstract?
First it is necessary to ensure that none of the dependent attributes is excluded to continue

the further verification. This could happen if abstracts contain extra attributes which are missing
in the generalized one. For example, let us suppose c, c1 and c2 have the attributes given in Fig.
5. Moreover, 1. 1 = 1. + 2, 1. 1 = 1. 1 − 2 and 2. 2 = 2. 2 − 2, 2. = 2. 2 −3 are the dependencies defined for them. Let us also suppose that the algorithm picked 1: 2 →

pair for the processing and c is picked as the generalized abstract. Thus, the dependencies1. 1 = 1. + 2 and 2. = 2. 2 − 3 cannot be verified, because s and r attributes do not
exist in the abstract c. Therefore, these dependencies are dropped. The other two are analized
further. The second step is to perform the referred attribute name replacement in dependency
expressions. To do that the experssion is parsed and an expression tree is built. Afterwards, each
reference node is changed to point to the exact node in the generalized abstract: 1. 1 → . ,1. 1 → . , 2. 2 → . , 2. 2 → . , correspondingly.

The final step is to extract the equivalent expressions from the set of dependent expressions.
Note, that we use the term equivalence instead of isomorphism because the free literals are the
same within both expressions. To decide whether two arithmetic expressions are equivalent is an
important problem in computational theory [9]. However, the general problem of equivalence
checking, in digital computers, belongs to the NP Hard class of problems [8]. Even though, there
are different algorithms which are fast enough to be used in practice. From that point of view we
have adopted the algorithm proposed in [4]. Its technique is specifically designed to solve the
problem of equivalence checking of arithmetic expressions obtained from high-level language
descriptions, which consists of regular arithmetic operators (+, -, ×) and logical operators (and,
or, not). The method uses interval analysis [10] to substantially prune the domain space of
arithmetic expressions (and conditional expressions) and limit the evaluation effort to a
sufficiently small number of minimally sized spaces within the domain of the expression. Then,
it is extended to the technique to incorporate the arbitrary use of logic operators and, or, and not
within the arithmetic expressions.

Thus, applying the above technique equivalent dependencies are extracted and integrated
into the generalized abstract.

4.5. Extraction of a Virtual Abstract

The difference between virtual and non virtual composite abstracts is that the first one has
attributes with undefined relations. Here we will discuss the extraction of a new virtual abstract
by generalizing both from virtual and non virtual abstracts. The major difference of the
procedure, compared to the procedure of extraction of composites, is the handling of the
regulations when generalizing paired attributes. Thus, the initial steps of finding the attribute
pairs and the algorithm of verifying/extracting the relations between the attributes, are replicating
the ones defined for composite abstracts, however, the handling of regulations are defined for an
attribute in the topmost, nucleus, level drags in the peculiarities. Here, if regulations differ then
rather than applying Increase elementary operation (up to a "*" symbol representing all
applicable values) we replace them with a symbol representing an undefined relation: "?". This
leads to a core difference between two generalizations. The first one is like a complete class and
can be used to instantiate an object. However, the property of undefined relation drives the
virtual generalization closer to the Interfaces or abstract classes in OOP languages (Java, etc.). In
other words, as a result of a generalization the algorithm is capable of extracting categorically
new abstracts. For example it is possible to extract "FieldUnderCheck" virtual abstracts by
generalizing "FieldUnderCheckOfKnightPositionPattern1" and "FieldUnderCheckOfQueen
PositionPattern1" abstracts.

A Combinative Approach to Generalization of Meanings64

5. Conclusion

In the paper we discussed the generalization and specialization operations for meanings
within the be-, have-, do- linguistic representation model of SSRGT Solver. Particularly we
defined Increase and Substract (Restrict and Disjoint Sum) elementary operations and
generalization (specialization) operation by means of their sequence.

Next we considered a (or the) least generalization of two acquired meanings and proposed a
strategy for selecting the attribute (sub-meaning) pairs to be generalized into the new meaning.
Moreover, we claimed that the attributes pairs selected by our algorithm are strongly compatible.
In other words, they are the closest pairs in the be connection chain. In order to deal with the
extraction of relations/dependencies between attributes we adopted the algorithm of equivalence
checking of arithmetic expressions from [4].

Further we showed how the generalized meanings were integrated into the meaning
hierarchy and represented the algorithm of extraction of virtual generalizations. Our experiments
showed that the proposed algorithms were able to:

- find common parts of two meanings,
- dynamically generate and integrate a new meaning between the be connection chain,
- extract a common Interface (pattern).

Acknowledgements

The author expresses his gratitude to Professor Edward Pogossian for supervising the work
as well as Sedrak Grigoryan, Sipan Babertsyan and Vahan Margaryan for very valuable
discussions.

References

[1] E. Pogossian, “On modeling cognition”. Computer Science and Information Technologies
(CSIT11), Yerevan, pp 194-198, 2011.

[2] M. Chein and M.-L. Mugnier, Graph-based Knowledge Representation and Reasoning:
Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge
Processing Series, Springer London, 2009.

[3] K. Khachatryan and S. Grigoryan. “Java programs for presentation and acquisition of
meanings In SSRGT games”, Proceedings of SEUA Annual conference, Yerevan, 7p, 2013.

[4] M. A. Ghodrat, “Expression equivalence checking using interval analysis”, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions, vol. 14, no. 8, pp. 830-842, 2006.

[5] K. Khachatryan and S. Grigoryan. “Java programs for matching situations to the meanings of
SSRGT games”, Proceedings of SEUA Annual conference, Yerevan, 5p, 2013.

[6] Искусственный интеллект. - В 3-х кн. Кн. 2. Модели и методы: Спровочник/Под ред. Д.
А. Поспелова - М. Радио и связ, 1990.

[7] E. Pogossian, “Modeling of meaning processing аnd its applications in competition and
combating games”, Proceedings of SEUA Annual conference, Yerevan 12p, 2013.

[8] N. Dershowitz, Rewrite Systems, Handbook of Theoretical Computer Science, Elsevier
Science Publishers, 1990.

[9] P. J. Downey, R. Sethi, and R. E. Tarjan, “Variations on the common subexpression
problem”, Journal of the ACM, vol. 27 no. 4, pp. 758–771, 1980.

[10] R. E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, N. J., 1966.

K. Khachatryan 65

[11] M. Chein and M.-L. Mugnier, “Conceptual graphs: Fundamental notions”, Revue
d’Intelligence Artificielle, vol. 6 no. 4, pp 365–406, 1992.

[12] J. Sowa and E. C.Way, “Inplementing a semantic interpreter using conceptual graphs”, IBM
Journal of Research and Development, vol. 30, no. 1, pp 57–69, 1986.

[13] Ю. И. Журавлев, Об алгевраическом подходе к решению задач распознавания и
классификации. Проблемы кибернетики. Наука, Вып. 33. С. 5-68, 1978.

[14] Ю. И. Журавлев, “Корректные алгебры над множествами некорректных
(эвристических) алгоритмов”, Кибернетика, N. 2, с. 35-43, 1978.

[15] Д. А. Поспелов, Ситуационное управление: теория и практика, Наука, 1986.
[16] М. А. Айзерман, Э. М. Браверман, Л. И. Розоноер, Метод потенциальных функций

в теории обучения машин, Наука, 1970.
[17] Р. Харалик, “Структурное распознавание образов: гомоморфизмы и размещения”,

Кибернетический сборник, Пер. с англ. N 19, с. 170-199, 1982.

Submitted 25.12.2012, accepted 20.02.2013.

Իմաստների ընդհանրացման համակցական մոտեցում

Կ. Խաչատրյան

Ամփոփում

Նոր իմաստները ձեռք են բերվում հանրությունից հարցման, փորձի միջոցով
բացահայտման և առկա իմաստների համակցման միջոցով: Մենք կատարելագործում
ենք իմաստները` ներկայացնելով նրանց աբստրակտ դասերի միջոցով, որոնք
կապված են միմյանց հետ հարաբերությունների լինել-, ունենալ-, անել- (be-, have-, do)
կատեգորիաներով [1, 3, 7]: Տրված իմաստների ընդհանրացման միջոցով հոդվածում
ներկայացնում ենք իմաստների կառուցման նոր համակցված ալգորիթմ:

Комбинационный подход к обобщению смыслов

К. Хачатрян

Аннотация

Мы получаем новые смыслы за счет приобретения из общин, откровения от опыта и
создания новых смыслов путем объединения имеющихся смыслов. Мы уточняем смыслы
с помощью абстрактных классов объединенных быть-, иметь-, делать- категориями
отношений [1, 3, 7]. В статье представляется новый комбинационный алгоритм для
построения нового смысла обобщения данного набора смыслов.

