
Mathematical Problems of Computer Science 59, 45–56, 2023.

doi: 10.51408/1963-0101

UDC 004.891.3

Expert Knowledge-Based RGT Solvers for Software

Testing

Mane P. Buniatyan1, Sedrak V. Grigoryan2 and Emma H. Danielyan3

1Synopsys Armenia, Yerevan, Armenia
2Institute for Informatics and Automation Problems of NAS RA,Yerevan, Armenia

3EPAM Systems Inc., Yerevan, Armenia

e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma danielyan@yahoo.com

Abstract

Program testing is a way of assessing the quality of software and reducing the risk
of software failure in operation [1]. Quality issues can cause as financial loss as well as
harm to human lives (e.g., when the bug is in medical instruments, cars, etc.). So, it
is very hard to underestimate the importance of testing.

There are multiple testing techniques, which are split into 3 major categories.
One of them includes experience-based techniques. Test cases and scenarios used in
experience-based testing are derived from the tester’s knowledge and intuition, as well
as their experience with similar applications and technologies. These techniques can
be helpful in identifying tests that are not identified easily by other more system-
atic techniques. Depending on the tester’s approach and experience, experience-based
techniques may achieve widely varying degrees of coverage and effectiveness [1].

We propose a method for automation of experience-based testing via a class of
combinatorial problems (RGT class). A Solver is developed for the class. It acquires
expert knowledge and elaborates effective strategies for RGT problems [2]. The pro-
posed method generates test cases dynamically based on the response of the program.
The adequacy of the method is being experimented for ”blender” open-source appli-
cation, which has Python API allowing to experiment with testing and analyze test
results.
Keywords: RGT class, RGT Solver, Software testing, Expert systems.
Article info: Received 25 September 2022; sent for review 11 October 2022; accepted
07 February 2023.
Acknowledgement: The authors express their deep gratitude to Dr. Edward Pogos-
sian for his contribution and constructive comments to the work.

1. Introduction

Software Testing is an approach to assess the quality of software and to reduce the risk of
its failure in operation [1].

45

46 Expert Knowledge-Based RGT Solvers for Software Testing

In [1], testing techniques are divided into 3 groups: black-box, white-box and experience-
based techniques. In the case of the last one, test cases are based on the testers’ knowledge
and intuition, on experience with similar applications and technologies. These techniques are
efficient in identifying tests that are not identified easily by other more systematic techniques
as well as when there is a limited testing time or incomplete specifications [1].

According to the World Quality Report 2021-2022 [3], one of the current trends in quality
assurance and software testing is test automation. Test automation has the following benefits
[1]:

• saves time by reducing repetitive manual work

• provides greater consistency and repeatability

• allows to evaluate the situation more objectively based on static measures, coverage
reports, etc.

• provides more accurate information about the current state of testing based on gathered
statistics, test progress, defect rates and performance.

There is a way to automate test case generation, known as the model-based testing
(MBT). MBT is a technique for generating a test suite from requirements [4]. Instead of
individual tests creation, testers create models that allow generating test cases automatically.
These methods can be used in regression testing and are especially useful when the system
changes frequently. In this case, the test suite can be regenerated easily by adjusting the
model instead of readjusting each test case separately.

MBT has three important components [4]:

• a model (requirement, information, workflow, architectural, behavioral, configuration,
deployment, performance, risk, environment, and usage models [5])

• a test-generation algorithm

• tools generating a supporting infrastructure (including the expected output).

MBT tools are meant to generate test suites by manipulating either with input data or
behavior without handling both simultaneously. Generated test cases do not provide ways
to test the system dynamically (the choice of modules to testing depends on the previous
test results).

Software Testing can be considered as a combinatorial problem between a tester and states
of a program. Hence, testing can be also considered as a representative of Reproducible Game
Tree (RGT) class problems. RGT is a class of combinatorial problems, for which the space
of solutions is a reproducible game tree. These problems meet the following requirements
[6]:

• there are interacting actors (players, competitors, etc.) performing identified types of
actions in specified moments of time and specified types of situations

• there are identified benefits for each actor

• there are descriptions of situations in which actors act in and are transformed after
actions.

M. Buniatyan, S. Grigoryan and E. Danielyan 47

For such problems with a given arbitrary situation x and an actor A, who is going to act
in x, we can generate a corresponding game tree GT(x, A) comprising all the games started
from x. Games represent all possible sequences of legal actions for players and situations
that they can create from the given initial, or the root situation x. In our consideration, the
games are finite and end with one of the goal situations of the problem [6].

Assuming that A plays according to a deterministic program, a strategy, the GT(x, A)
represents, in fact, all possible performance trees of the strategies from x. In that sense, the
GT(x, A) determines the space of all possible solutions from the situation x. With the given
criterion K to evaluate the quality of strategies, we can define the best strategy S*(x, A)
and the corresponding best action of A from x [6].

RGT class includes important problems like computer networks intrusion protection, op-
timal management and marketing strategy elaboration in competitive environments, testing
of programs, defense of military units from various types of attacks, communication prob-
lems, certain types of teaching, chess and chess-like games [2].

One of the advantages of RGT class is that these problems are reducible to the standard
kernel problems K. K- methodology multiplies the achievements for particular problems
of this class. Distributed development of this methodology is possible. K-methodology en-
hances the effectiveness of RGT Solvers providing answers to urgent RGT questions including
the following ones [2]:

• measurement of the effectiveness of Solvers

• analysis and typification of combating knowledge

• construction of knowledge-based Solvers

• regular acquisition of RGT expert knowledge and enhancing the effectiveness of Solvers.

The validity of K-methodology was proved for certain RGT problems including Chess,
Network Intrusion Protection, Navy Defense from Attacks, Management, Marketing etc. [2].

RGT Solver is a software that acquires expert knowledge and elaborates effective strate-
gies for RGT problems [2]. It is a universal tool for solving RGT-class problems.

Strategy searching and game tree. As already mentioned, the space of solutions for
RGT problems is a reproducible game tree, and with the given criteria, we can evaluate and
choose the best possible actions in given situations for the given actor.

As the combinatorial complexity of the mentioned problems is huge, we need to reduce
the game tree. Otherwise, the computer’s computational resources (memory and storage)
will not be enough to solve them. C. Shannon suggested reducing the tree by building it
until the resources are expired. It is not an effective way because we waste our resources to
compute steps that will not improve the current situation. Another approach, suggested by
M. Botvinnik, is to consider only those steps that have potential benefit in the current case,
i.e., we should not examine the steps that have no meaning. We can evaluate the possible
usefulness of an action with the knowledge (without reviewing the opponent’s answers) and
choose the most profitable one. Then, by checking the opponent’s potential actions, we can
build the game tree and choose the best move in a given situation [7].

The Solver builds the game tree, evaluates situations with the knowledge, then chooses
the best action using the minimax algorithm.

48 Expert Knowledge-Based RGT Solvers for Software Testing

The purpose of this paper: Testing of programs can be considered as an RGT prob-
lem, and RGT Solver can be used for experience-based testing as an expert system when the
corresponding knowledge is available.

In this work, we aim to provide a definition of testing problems as RGT problems, a way of
formulating knowledge, and an approach for proper assessment of tested programs, which also
covers the drawbacks of model-based testing approaches (in particular, combining different
behaviors and input data, running both functional and non-functional tests at the same
time, and generating tests dynamically). Thus, the following open questions are addressed:

1. What kind of knowledge are we going to use, who are the actors as well as what are
their possible actions?

2. How to evaluate each situation, what kind of goals each actor has, etc.?

Overall, this leads to proposing a model for representing an experience-based testing as
an RGT problem.

2. Reduction of Program Testing to RGT Class

In RGT problems, it is essential to define the situations, the actors, the actions, and benefits
for each of them. Let’s define these terms for program testing.

The actors in software testing are the system under test (i.e., the program) and the
tester. Note, that unlike some other problems in the RGT class (e.g., like chess), where the
opponent tries to make counteraction, in testing the program just responds to the tester’s
actions.

The actions are any valid elementary operations that can be performed with the program.
While building the ”game” tree, the Solver dynamically combines these actions, creates test
cases and executes them depending on the response of the program. Note, that not all
combinations of the elementary operations are meaningful from the perspective of the user
(e.g., actions that have no effect or are not connected with each other). That is why we need
to find a way to control these combinations. The actions of the program are actually only
responses to the tester’s actions.

The situations are the current states of the program. We can estimate the current
situations with [0;1] numbers, where 0 means that no bugs are found, 1- that the program
is in a critical state and is not usable. The numbers in-between 0 and 1 are intermediate
values, and situations with values closer to 1 are worse than situations with values closer
to 0. We suggest the following criteria for evaluating the current state of programs (these
criteria can be expanded later):

• Existence of bugs (difference between expected and observed results): different bugs
have different importance; when the main functionalities of the program do not work
as expected, the program becomes useless (e.g., if the user is not able to log into a
social network, save the result of the accomplished job, do a transfer in the banking
system, etc.).

• Performance degradation: we all would like to have fast, high performing programs,
but unfortunately it is not always possible. Performance degradation in a part of the
program that is used frequently will cause to slowdown the work, but if it is in a part

M. Buniatyan, S. Grigoryan and E. Danielyan 49

that can be done without human interaction and/or is performing rarely, then it can
be acceptable.

• Security: this is essential for some programs (e.g., banking system, strategic informa-
tion storing, transfers, etc.).

• Crashes and hangovers: this is always bad, and in some cases, they can even cause to
a fatal problem, like losing the whole work performed. In most situations, this is not
acceptable.

We need to take into account the number of problems, as well as their severity and
importance, the sequence of actions causing the problem (i.e., how frequently the problem
occurs in ”real life”). A bug in a very important functionality is worse than a crash that
users might not even encounter, but, on the other hand, having lots of ”minor” issues in
the program is also not acceptable. When one of the main functionalities does not meet the
requirements mentioned above, the program is in a critical state, and it cannot be delivered
to customers. The importance of each functionality is considered as a multiplier for the
appropriate criterion.

The current state of the program can be measured with the following evaluation function:

st = mc ∗ c+mb ∗ b+mp ∗ p+ms ∗ s {1},

where mc,mb,mp,ms ∈ [0; 1], c, b, p, s = {0 | 1}. C, b, p and s are Boolean variables,
that show the existence of crashes/hangovers, bugs, performance degradations or security
problems respectively (1 if the mentioned problems occurred, otherwise - 0). Mc, mb, mp
and ms are multipliers for the occurred problems (they show the importance of the broken
functionality). Any occurred problem is counted only once, so if, for example, a crash occurs,
even if it relates to a security problem or it is a bug (obviously, it is not an expected result)
we will consider c = 1, b = 0, s = 0 and p = 0. If the current state of the program is bigger
than 1, we consider it as 1.

3. RGT Expert Knowledge Formatting for Testing

Error guessing, exploratory testing and checklist-based testing are representatives of
experience-based techniques [1].

Considering the characteristics of each of these techniques, we propose the following usage
of the Solver: by reviewing issues occurred before, the usage of the program and its main
functionalities, we create checklists. In the Solver, checklists are represented as plans, and
the checklists’ actions as goals. Based on the coverage reports, the source files responsible
for each action can be defined. These connections help to prioritize the created checklists.
The user can also define priorities depending on the module he/she is most interested in.

Checklists lead to the creation of a game tree. Each branch in the tree is a test case.
It is important to mention that actions in the checklists are general, i.e., many elementary
actions can correspond to one action in the checklist. It allows you to combine multiple
actions and build a tree. Checklists define if it still needs to proceed to the next steps or not
in case of a defect occurrences in the current step.

Multipliers in formula {1} are also given as knowledge for the Solver. They show the
importance of user action. Note, that multipliers should be defined for both elementary

50 Expert Knowledge-Based RGT Solvers for Software Testing

and checklist actions. The same elementary action in different situations can have different
importance, e.g., if the user tries to save a text file it is more important to save the text
than the style. We multiply both multipliers to get one for the action. Imagine that in the
example below, mb = 0.8 for the elementary action “save” and for the following checklists
of actions ”open the program, add text, save”, “open an existing text file, change the style,
save”. Let’s say we have mb = 1 for the “save” in the checklist1 and mb = 0.6 for the
“save” in the checklist2. In this case, if the program is not able to save the text, we will
have mb=1*0.8=0.8 and for the second case: mb=0.6*0.8 = 0.48. Thus, the first case will
be considered worse than the second one.

In the case of performance degradation, we need to multiply mp with the coefficient
showing how many times the performance was slowed down or how much longer it takes to
perform the same action. E.g., if the performance is 2x slower than expected, we need to
multiply mp with 2.

The testing continues until a. the given time is expired, b. all/chosen checklists are
checked or c. if the program gets into a critical state.

4. RGT Solver Experiments in Program Testing

We have chosen the Blender program as a system under test. It is an open-source 3D model-
ing program with a Python interface that can be used for testing. In order to understand how
the program testing Solver works and how the knowledge and checklists can be represented,
let’s study an example.

To understand how the knowledge and checklists can be represented, let us review an
example.

The checklist below checks some of the main functionalities of the program:

Fig. 1. Checklist Example

To keep it simple, we just added a few basic operations, but this list can be enlarged if
needed. The operations in this checklist can be independent, like lines 6 and 7. But if this
was a checklist based on the previous failures or a user story, then all steps would depend on
each other. This checklist could be used if we had limited testing time and could only check
the main operations to make sure that there were no critical issues (like a smoke test). The
first line of the checklist (i.e., the comment) represents the name of the checklist and the
source file which is associated with the checklist (here, as we don’t know the corresponding

M. Buniatyan, S. Grigoryan and E. Danielyan 51

source file, we put x.cpp just to show the structure of the checklist. The source file is not
mandatory). If some multipliers are absent in the checklist, we assign 0 to them (e.g., ms=0
for all actions in checklist below, because they could not lead to security problems). The
variable nextStep is used to determine whether the next step should be performed or not in
case of bug in the current step (e.g., if the user is not able to move the 3D cursor it is still
somewhere in the scene and the user can add objects). In line 3 we open the program. If it
crashes it is a critical state for the program, thus mc=1.

Next to mp there is the expected time the operation should take (mp/5s/). If it takes 25
seconds, we multiply mp by 5. As this operation is not repeatable and happens only once,
when the work starts, its performance is not very important, but yet the user cannot wait
for about 10 minutes to start working. As the performance depends on the users’ computer,
the performance parameters are defined for minimum system requirements of the program.
In the example above, we just used values based on local resources.

In line 4, we need to move the 3D cursor. 3D cursor position defines where the object is
being added. It can also be used as a 3D view orientation to define where to move objects,
to move the pivot point to the 3D cursor, as the rotation point in the spin tool, etc. So, it
is a quite important feature, but in case it does not work users can still find workarounds.
Note that there is no expected time next to mp for this action. It is because this action
should work simultaneously with the click (i.e., should not take noticeable time). Like other
actions in the checklist, this is one of the basic operations, so crash is unacceptable here,
thus mc = 0.9. Note that all the multipliers here are conditional and this is just an example.
In real world example, probably, multipliers should be chosen more thoroughly. nextStep is
1 here, because even if the 3D cursor cannot be moved, we are still able to add an object.
To perform this step using the Python API we do the following:

Fig. 2. Elementary Operation: Move 3D Cursor

52 Expert Knowledge-Based RGT Solvers for Software Testing

This is an elementary operation for moving the 3D cursor. The first line comment shows
the corresponding general operation (in the checklist) and the multiplier. As in this case
only 1 elementary operation corresponds to the checklist operation, its multiplier is 1. Note
that the case is not always the same (the coordinates are randomly generated) and the test
also checks if the operation was performed successfully or not.

In the 5th line of the checklist, we have the ”Add object” operation. Many elementary
operations correspond to this operation (see Fig. 3): there are lots of groups of objects, and
each group itself contains various objects.

Fig. 3. Add Object

The Python code below is an example of the “Add object” operation. It adds a cube
in the current location of the cursor. As all objects can be used for creating different 3D
models, and their importance is dependent on what exactly the user tries to create m=1 for
all objects. Note that if the object is not added then we cannot perform the next action,
i.e., we cannot change its geometry.

The last command in the checklist is “Change geometry”. First of all, the user should
switch to the edit mode in order to change the object’s geometry, i.e., move the object’s
vertices, edges and faces, and then perform the corresponding operations. For this general
action, there are 3 possible elementary actions (move vertices, edges, faces). All of them are
important while creating a 3D model, but considering the fact that if a user is not able to
move the edge, he/she can choose vertices of the edge and move them together (so that the
edge will be moved), or choose all edges/vertices of a face and move it. The most important
one in those operations is moving vertices, and then edges, then surfaces. Thus, in this case,

M. Buniatyan, S. Grigoryan and E. Danielyan 53

Fig. 4. Elementary Operation: Add Object

the multiplier for each operation will be different:

Fig. 5. Elementary Operation: Change Geometry

For the given example, the Solver moves the 3D cursor to different positions, adds different
objects, changes their geometry, and makes sure that these operations work as expected for
different objects (i.e., checks that the Python tests are passing). To check how the Solver
behaves if the operation does not work, we can simply use assertNotEqual function instead
of assertEqual (e.g., instead of “assertEqual(bpy.context.scene.cursor.location.x, x)” we can
write “assertNotEqual(bpy.context.scene.cursor.location.x, x)”). The Solver will combine
different elementary tests together, create test cases and run them.

To run tests, we use the following command:

In order to use the Solver for different programs, we use a configuration file, which defines
how to run tests (e.g., paths to test cases, checklists and elementary operations).

54 Expert Knowledge-Based RGT Solvers for Software Testing

Fig. 6. Command For Running a Test

5. Conclusion

We propose a new approach for test automation and test results evaluation considering the
testing of programs as a RGT-class problem. In this work:

1. tools defining the types of knowledge for testing the target application are described.
The described knowledge is being integrated into RGT Solver and being used to run
test cases, test scenarios with later evaluation of test results.

2. An approach for evaluating the state of the program during the testing is proposed.

3. The adequacy of the proposed approach is being experimented with the open-source
Blender application.

4. The proposed approach solves drawbacks of the model-based testing approach, namely,
allows to generate test cases dynamically.

The described solution is generic for the RGT Solver and can be used for testing various
applications.

References

[1] K. Olsen and M. Posthuma and S. Ulrich, “ Certified Tester Foundation Level Syllal-
bus”, International Software Testing Qualifications Board, pp. 56–62, 2019.

[2] E. Pogossian, Constructing Models of Being by Cognizing. Yerevan, pp. 150–159, 2020.

[3] World Quality Report, Capgemini, Sogeti, Micro Focus, pp 16–37, 2021

[4] D. Rakhi, J. Ashish, N. Karunanithi, J. Leaton, C. Lott, G. Patton and B. Horowitz,
“Model-based testing in practice”, Proceedings of the 1999 International Conference
on Software Engineering (IEEE Cat. No.99CB37002), Los Angeles, CA, USA, 1999,
pp. 285-294, doi: 10.1145/302405.302640.

[5] I. Schieferdecker and A. Hoffmann, Model-Based Testing, IEEE Software 29.1, pp.
14–18, 2012.

[6] E. Pogossian, V. Vahradyan A. Grigoryan, On competing agents consistent with ex-
pert knowledge, Proceedings of Second International Workshop, AIS-ADM 2007,Au-
tonomous Intelligent Systems: Multi-Agents and Data Mining, St. Petersburg, Russia,
pp. 229–241, 2007.

[7] M. Botvinnik, Computers in Chess: Solving Inexact Search Problems, Springer-Verlag,
New York, 1983.

M. Buniatyan, S. Grigoryan and E. Danielyan 5 5

öáñÓ³·Çï³Ï³Ý ·Çï»ÉÇùÝ»ñÇ íñ³ ÑÇÙÝí³Í RGT SOLVER-Ç
ÏÇñ³éáõÙÁ Íñ³·ñ³ÛÇÝ ³å³ÑáíÙ³Ý Ã»ëï³íáñÙ³Ý ËÝ¹ñáõÙ

Ø³Ý» ä. ´áõÝÇ³ÃÛ³Ý1, ê»¹ñ³Ï ì. ¶ñÇ·áñÛ³Ý 2 ¨ ¾ÙÙ³ Ð. ¸³ÝÇ»ÉÛ³Ý3

1Synopsys Ð³Û³ëï³Ý, ºñ¨³Ý
2ÐÐ ¶²² ÆÝýáñÙ³ïÇÏ³ÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï, ºñ¨³Ý, Ð³Û³ëï³Ý

3 EPAM Ð³Û³ëï³Ý, ºñ¨³Ý

e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma danielyan@yahoo.com

²Ù÷á÷áõÙ

Â»ëï³íáñáõÙÁ Íñ³·ñÇ áñ³ÏÁ ·Ý³Ñ³ï»Éáõ ¨ ß³Ñ³·áñÍÙ³Ý Ù»ç Íñ³·ñ³ÛÇÝ
³å³ÑáíÙ³Ý Ó³ËáÕÙ³Ý éÇëÏ»ñÁ Ýí³½»óÝ»Éáõ ÙÇçáó ¿: Ìñ³·ñáõÙ ëË³ÉÝ»ñÇ
³éÏ³ÛáõÃÛáõÝÁ Ï³ñáÕ ¿ µ»ñ»É ÇÝãå»ë ýÇÝ³Ýë³Ï³Ý ÏáñáõëïÝ»ñÇ, ³ÛÝå»ë ¿É Ù³ñ¹Ï³ÛÇÝ
½áÑ»ñÇ (ûñÇÝ³Ï, µÅßÏ³Ï³Ý ë³ñù³íáñáõÙÝ»ñÇ Ï³Ù Ù»ù»Ý³Ý»ñáõÙ ³éÏ³ ëË³ÉÝ»ñÁ):
²ÛëåÇëáí, µ³ñ¹ ¿ Ã»ñ³·Ý³Ñ³ï»É Ã»ëï³íáñÙ³Ý Ï³ñ¨áñáõÃÛáõÝÁ: Â»ëï³íáñÙ³Ý
Ùáï»óáõÙÝ»ñÁ Ï³ñ»ÉÇ ¿ µ³Å³Ý»É 3 ÑÇÙÝ³Ï³Ý ËÙµ»ñÇ, áñáÝóÇó Ù»ÏÁ ÷áñÓÇ íñ³
ÑÇÙÝí³Í (experience-based) Ã»ëï³íáñáõÙÝ ¿: ²Ûë å³ñ³·³ÛáõÙ Ã»ëï»ñÁ ëï»ÕÍíáõÙ
»Ý‘ ÑÇÙÝí»Éáí Ã»ëï³íáñáÕÇ ·Ç»ÉÇùÝ»ñÇ ¨ ÇÝïáõÇóÇ³Ç, ÇÝãå»ë Ý³¨ Ý³ËÏÇÝáõÙ
ÝÙ³Ý³ïÇå Íñ³·ñ»ñÇ Ñ»ï áõÝ»ó³Í ÷áñÓÇ íñ³: öáñÓÇ íñ³ ÑÇÙÝí³Í Ùáï»óáõÙÝ»ñÝ
û·ÝáõÙ »Ý µ³ó³Ñ³Ûï»É ³ÛÝåÇëÇ ëË³ÉÝ»ñ, áñáÝù ß³ï µ³ñ¹ ¿ Ñ³ÛïÝ³µ»ñ»É ³í»ÉÇ
Ñ³Ù³Ï³ñ·í³Í Ùáï»óáõÙÝ»ñáí: ²Ûë ³ßË³ï³ÝùáõÙ Ù»Ýù ³é³ç³ñÏáõÙ »Ýù ÷áñÓÇ
íñ³ ÑÇÙÝí³Í Ã»ëï³íáñÙ³Ý ³íïáÙ³ï³óáõÙ` û·ï³·áñÍ»Éáí ÏáÙµÇÝ³ïáñ ËÝ¹ÇñÝ»ñÇ
RGT ¹³ëÁ: RGT ¹³ëÇ ËÝ¹ÇñÝ»ñÇ ÉáõÍÙ³Ý Ñ³Ù³ñ Ùß³ÏíáõÙ ¿RGT Solver-Áª Íñ³·ñ³ÛÇÝ
÷³Ã»Ã, áñÁ Ïáõï³ÏáõÙ ¿ ÷áñÓ³·Çï³Ï³Ý ·Çï»ÉÇùÝ»ñ ¨ ëï»ÕÍáõÙ ¿ ³ñ¹ÛáõÝ³í»ï
é³½Ù³í³ñáõÃÛáõÝÝ»ñ RGT ¹³ëÇ ËÝ¹ÇñÝ»ñÇ ÉáõÍÙ³Ý Ñ³Ù³ñ: ²é³ç³ñÏáõÙ »Ýù
RGT Solver-Ý û·ï³·áñÍ»É Íñ³·ñ»ñÇ Ã»ëï³íáñÙ³Ý ËÝ¹ñáõÙ: Solver-Á ëï»ÕÍáõÙ ¿
Ã»ëï³ÛÇÝ Çñí³Ç×³ÏÝ»ñ` Ï³Ëí³Í Íñ³·ñÇ ³ñÓ³·³ÝùÇó/å³ï³ëË³ÝÇó ¨ ·Ý³Ñ³ïáõÙ
¿ ¹ñ³Ýù Áëï Ý³Ë³å»ë ë³ÑÙ³Ýí³Í ã³÷³ÝÇßÝ»ñÇ: ²Ûë Ùáï»óÙ³Ý ³¹»Ïí³ïáõÃÛáõÝÁ
÷áñÓ³ñÏíáõÙ ¿ »é³ã³÷ Ùá¹»É³íáñÙ³Ý »Blender» Íñ³·ñÇ ÙÇçáóáí:

´³Ý³ÉÇ µ³é»ñ` RGT ¹³ë, RGT Solver, Íñ³·ñ³ÛÇÝ ³å³ÑáíÙ³Ý Ã»ëï³íáñáõÙ,
÷áñÓ³·Çï³Ï³Ý Ñ³Ù³Ï³ñ·»ñ:

5 6 Expert Knowledge-Based RGT Solvers for Software Testing

RGT SOLVER íà îñíîâå ýêñïåðòíûõ çíàíèé äëÿ
òåñòèðîâàíèÿ ïðîãðàììíîãî îáåñïå÷åíèÿ

Ìàíå Ï. Áóíèàòÿí1, Ñåäðàê Â. Ãðèãîðÿí2 è Åììà Ã. Äàíèåëÿí3

1Synopsys Àðìåíèÿ, Åðåâàí
2Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ

3EPAM Àðìåíèÿ, Åðåâàí
e-mail: buniatyanmane@gmail.com, addressforsd@gmail.com, emma danielyan@yahoo.com

Àííîòàöèÿ

Òåñòèðîâàíèå ïðîãðàìì-ýòî ñïîñîá îöåíêè êà÷åñòâà ïðîãðàììíîãî îáåñïå-
÷åíèÿ è ñíèæåíèÿ ðèñêà îòêàçà ïðîãðàììíîãî îáåñïå÷åíèÿ â ðàáîòå. Î÷åíü
òðóäíî íåäîîöåíèòü âàæíîñòü òåñòèðîâàíèÿ: ïðîáëåìû ñ êà÷åñòâîì ïðîãðàìì
ìîãóò ïðèâåñòè êàê ê ôèíàíñîâûì ïîòåðÿì, òàê è íàíåñòè óùåðá çäîðîâüþ ëþäåé
(íàïðèìåð, êîãäà îøèáêà íàõîäèòñÿ â ìåäèöèíñêèõ ïðèáîðàõ, àâòîìîáèëÿõ è ò.
ä.).

Ìåòîäû òåñòèðîâàíèÿ ìîæíî ïîäðàçäåëèòü íà 3 îñíîâíûå ãðóïïû. Îäíà èç
íèõ - ýòî ìåòîäû, îñíîâàííûå íà îïûòå. Çäåñü òåñòîâûå ïðèìåðû ñîçäàþòñÿ
íà îñíîâå çíàíèé è èíòóèöèè òåñòèðîâùèêà, à òàêæå íà åãî îïûòå ðàáîòû ñ
àíàëîãè÷íûìè ïðèëîæåíèÿìè è òåõíîëîãèÿìè. Ýòè ìåòîäû ìîãóò áûòü ïîëåçíû
ïðè îïðåäåëåíèè òåñòîâ, êîòîðûå íå ëåãêî èäåíòèôèöèðîâàòü äðóãèìè áîëåå
ñèñòåìàòè÷åñêèìè ïîäõîäàìè ê òåñòèðîâàíèþ. Â çàâèñèìîñòè îò ïîäõîäà
è îïûòà òåñòèðîâùèêà, ýòè ìåòîäû ìîãóò îáåñïå÷èâàòü øèðîêóþ ñòåïåíü
ïîêðûòèÿ è ýôôåêòèâíîñòü òåñòèðîâàíèÿ. Â äàííîé ñòàòüå ìû ïðåäëàãàåì
ìåòîä òåñòèðîâàíèÿ íà îñíîâå îïûòà (àâòîìàòèçàöèÿ òåñòèðîâàíèÿ) ÷åðåç êëàññ
êîìáèíàòîðíûõ çàäà÷ (RGT êëàññ). RGT êëàññ âêëþ÷àåò òàêèå âàæíûå çàäà÷è,
êàê çàùèòà îò âòîðæåíèé â êîìïüþòåðíûå ñåòè, ðàçðàáîòêà îïòèìàëüíîé
ñòðàòåãèè óïðàâëåíèÿ è ìàðêåòèíãà â êîíêóðåíòíîé ñðåäå, òåñòèðîâàíèå
ïðîãðàìì, çàùèòà âîèíñêèõ ÷àñòåé îò ðàçëè÷íûõ òèïîâ àòàê, ïðîáëåìû ñî
ñâÿçüþ, îòäåëüíûå âèäû îáó÷åíèÿ, øàõìàòû è øàõìàòîïîäîáíûå èãðû. RGT
Solver - ýòî ïðîãðàììà, êîòîðàÿ íàêàïëèâàåò ýêñïåðòíûå çíàíèÿ è ðàçðàáàòûâàåò
ýôôåêòèâíûå ñòðàòåãèè äëÿ ðåøåíèÿ çàäà÷ êëàññà RGT. Â êà÷åñòâå ýêñïåðòíîé
ñèñòåìû äëÿ òåñòèðîâàíèÿ, îñíîâàííîãî íà îïûòå, ïðåäëàãàåòñÿ èñïîëüçîâàòü
RGT Solver. Solver ãåíåðèðóåò òåñòîâûå ñèòóàöèè íà îñíîâå îòâåòà/ðåàêöèè
ïðîãðàììû è îöåíèâàåò èõ ïî ðÿäó çàðàíåå îïðåäåëåííûõ êðèòåðèåâ.
Àäåêâàòíîñòü ìåòîäà ïîêàçàíà íà ïðèìåðå ïðèëîæåíèÿ ñ îòêðûòûì èñõîäíûì
êîäîì ”Áëåíäåð”.

Êëþ÷åâûå ñëîâà: RGT êëàññ, RGT Solver, òåñòèðîâàíèå ïðîãðàììíîãî
îáåñïå÷åíèÿ, çíàíèÿ, ýêñïåðòíûå ñèñòåìû.

	05_ՍԵդրակ_59
	05

