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Abstract

Opioid abuse is a growing global problem. Current therapies for opioid abuse target withdrawal symptoms and have several
adverse side effects. There are no treatments to address opioid-induced neural adaptations associated with abuse and addiction.
Preclinical research demonstrates interactions between the endogenous opioid and cannabinoid systems, suggesting that
cannabinoids may be used to treat opioid addiction and dependence. The aim of this review is to assess how cannabinoids affect
behavioural and molecular measures of opioid dependence and addiction-like behaviour in animal models. It appears that
cannabidiol and cannabinoid receptor 1 (CB1R) antagonists have potential for treating drug-craving and drug-seeking
behaviour, based on evidence from preclinical animal models. Ligands which inhibit the action of cannabinoid degradation
enzymes also show promise in reducing opioid withdrawal symptoms and opioid self-administration in rodents. Agonists of
CB1R could be useful for treating symptoms of opioid withdrawal; however, the clinical utility of these drugs is limited by side
effects, the potential for cannabinoid addiction and an increase in opiate tolerance induced by cannabinoid consumption. The
mechanisms by which cannabinoids reduce opioid addiction-relevant behaviours include modulation of cannabinoid, serotonin,
and dopamine receptors, as well as signalling cascades involving ERK-CREB-BDNF and peroxisome proliferator-activated
receptor-a. Identifying the receptors involved and their mechanism of action remains a critical area of future research.
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Introduction

There has been a growing trend of opioid dependence and abuse
in Australia [1], and globally there were an estimated 26.8 mil-
lion people with opioid abuse disorder in 2016 [2]. Long-term opi-
oid use is associated with opioid tolerance and toxicity, as well as
sleep disorders, endocrinopathies and cognitive impairment [3].
Withdrawal from opioid dependence can induce symptoms such
as increased heart rate, blood pressure, perspiration, fluctuating
body temperature as well as joint and muscle aches [4]. Long-
term management of opioid dependence largely depends on re-
placement therapy with the opioid agonists such as buprenorphine
or methadone [5]. These replacement therapies can reduce with-
drawal and relapse [6]. However, treatment with opioid agonists
can have similar side effects to long-term opioid use [7, 8], and
these agonists do not alter neural adaptations which increase re-
lapse propensity (e.g. altered activity of dopaminergic VTA neu-
rons in response to morphine [9, 10]). Thus, there is an urgency
to uncover other strategies to manage opioid dependence and ad-
diction.

Clinical evidence suggests cannabinoids, which are com-
pounds found in the Cannabis sativa plant that bind to endogenous
cannabinoid receptors, may present an effective therapeutic op-
tion for managing opioid addiction. Some individuals who use

cannabis while undergoing opioid withdrawal perceive an allevia-
tion of some opioid withdrawal symptoms [11], and there is a nega-
tive correlation between reported cannabis use and injected opioid
drug use (i.e. increased cannabis use corresponds with decreased
opioid use) [12]. Supporting this, some American states have re-
ported decreased opioid use after cannabis legalisation [13]. These
results are perhaps not surprising, considering well-established
interactions between the endogenous opioid and the endogenous
cannabinoid (endocannabinoid) systems, with both systems be-
ing involved in pain relief, and opioid and cannabinoid receptors
are expressed in neural pathways and brain regions associated
with addiction [14-17].

In this narrative mini-review we will examine the therapeu-
tic potential of cannabinoids for opioid dependence and addiction-
like behaviour, using data from preclinical animal models. We will
first outline the endogenous opioid and endocannabinoid systems
as well as interactions between them. We will then detail reduc-
tions in addiction-like behaviour by cannabinoid compounds in
animal models of opioid addiction-relevant behaviour, and in clin-
ical trials, where this data is available.
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The Endogenous Opioid System

The endogenous opioid system is composed of receptors and pep-
tide chains found in the central, peripheral, and enteric nervous
systems. The endogenous opioid peptides are B-endorphin, met-
andleu-enkephalin, dynorphins, and neo-endorphins [18]. There
are also three identified precursors to these peptides: proopiome-
lanocortin, proenkephalin, and prodynorphin [18]. Opioid recep-
tors, u- (MOR), 5- (DOR) and x- (KOR) are G-protein coupled re-
ceptors that inhibit adenylyl cyclase activity, block calcium chan-
nels, and activate potassium channels [19]. Importantly, opioid
receptors are highly expressed in brain regions associated with re-
ward (see Table 1 for definitions), including the ventral tegmental
area (VTA), nucleus accumbens (NAc), hypothalamus and amyg-
dala [17]. Opioid reward, tolerance and relapse-like behaviour
are associated with MOR activation [20-22], while DOR appear in-
volved in the maintenance of opioid reward and dysphoric aspects
of opioids, including depression and anxiety [21-23]. KOR modu-
lates drug consumption as well as anxiety and depressive-like be-
haviours [21, 22]. MOR can mediate glutamatergic activity in the
NAc and chronic MOR activation can lead to glutamate dysfunc-
tion (e.g. decreased GluR1 surface expression following chronic
morphine) [24]. Importantly, glutamate dysfunction is associated
with the development of compulsive behaviour for abused drugs
and plays a significant role in substance use disorder [25], provid-
ing a potential mechanism for how MOR activation can result in
addiction-relevant behaviour.

The Endocannabinoid System

The endocannabinoid system is composed of endogenous recep-
tors (e.g. cannabinoid receptor 1 and 2, CB1R and CB2R re-
spectively), ligands [e.g. 2-arachidonoylglycerol (2-AG) and
N-arachidonoylethanolamine (anandamide)] and enzymes for
the synthesis and degradation of cannabinoid compounds [e.g.
fatty acid amide hydrolase (FAAH), diacylglycerol lipase alpha
(DAGL«), monoacylglycerol lipase (MAGL), and «/g-hydrolase
domain-containing 6 (ABHD6)] [26, 27]. In the central nervous
system, CB1R are predominantly expressed on neuronal terminals,
and are more highly expressed than CB2R, which are expressed on
dopamine neurons in the VTA [28]. Like opioid receptors, CBiR
is a G-protein coupled receptor, and regulates activity of cyclic
adenosine monophosphate (CAMP), dopamine, y-aminobutyric
acid (GABA) and glutamate [29]. CB1R is highly expressed in re-
gions of the brain associated with reward and learning, with high
levels of receptor expression in the cortex, striatum, hippocam-
pus, thalamus, hypothalamus, substantia nigra pars reticulata and
cerebellum [30, 31]. The endocannabinoid system alters plastic-
ity in brain areas responsible for emotional responses and mem-
ory formation, modulating hippocampal synaptic strength, regu-
lating VTA-NAc pathways and reducing glutamatergic activity in
the dorsal and ventral striatum [32]. Considering both the endoge-
nous opioid and endocannabinoid systems are involved in pro-
cesses associated with addiction, it is necessary to consider how
these systems interact.

Endogenous opioid and endocannabinoid inter-
actions

The endogenous opioid and endocannabinoid systems interact
anatomically and functionally. Anatomically, there is an overlap
in the distribution of MOR and CB1R in the limbic system [17, 19].
Agonists for both receptors produce antinociception, sedation, hy-
potension, motor depression and mediate signalling pathways as-
sociated with drug tolerance, dependence and substance use disor-
der [14].

Table 1. Technical Terms

Term Definition

Acquisition Initial learning of drug reward associations
or drug reinforcement behaviours.

Dislike of a drug/drug cues/drug context;
evidenced by staying away from a
drug-associated context or cessation of
drug self-administration.

Compounds from the Cannabis Sativa
plant which bind to endogenous
cannabinoid receptors.

Cessation of drug-taking behaviours
and/or decreased strength of
drug-cue/context associations.
Substances that act on opioid receptors,
and can produce effects such as pain relief
and reward.

A chemical substance that changes
nervous system function and results in
alterations in perception, mood,
consciousness, cognition, or behaviour.
An experience which is subjectively
pleasurable. In preclinical models, reward
refers to associations between an
unconditioned stimulus, for example a
drug, and a discrete cue/context.
Rewarding stimuli can elicit approach
behaviour in an attempt to experience the
rewarding stimulus again.

Strengthening the stimulus-response
relationship between a behaviour and drug.
Drug cues, stress or a low dose drug prime
can cause the return of drug-seeking
behaviours or approach of a
drug-associated environment.
Behavioural paradigm in rodents, where
animals learn to infuse or consume drugs
of abuse via an operant response e.g. nose
poke, lever press.

Physiological effects following cessation of
drug use.

Aversion

Cannabinoids

Extinction

Opioids

Psychoactive

Reward

Reinforcement

Reinstatement

Self-administration

Withdrawal

Cannabinoid treatment can influence endogenous opioid sig-
nalling and function. Acute exposure to CB1R agonists, A9-
tetrahydrocannabinol (THC) and CP55,940, increases the activ-
ity of endogenous opioid peptides (33, 34], while chronic expo-
sure to the CB1R agonists THC, R-methanandamide (AM356) and
CP55,940 increases levels of endogenous opioid precursors (e.g.
dynorphin B) [33]. Chronic exposure to CB1R agonists can cause
cellular tolerance to opioids and desensitisation of MOR [35]. CB1R
agonists can increase the antinociceptive effects of opioids, by sev-
eral mechanisms including increasing the release of the endoge-
nous opioid dynorphin A [36]. Cannabinoids such as THC and
cannabidiol (CBD) can allosterically modulate MOR and DOR, alter-
ing the ability of opioid ligands to bind to and remain at the bind-
ing site [37]. FAAH inhibitors, in conjunction with anandamide,
produce antinociceptive effects via CB1R and KOR [38]. This data
indicates several cannabinoid agonists and enzyme inhibitors can
modulate opioid receptor signalling and binding.

These interactions are reciprocal, with opioids affecting the
function of the endocannabinoid system. Activation of opioid re-
ceptors can cause tolerance and downregulation of cannabinoid re-
ceptors [16]. Acute morphine administration reduces the expres-
sion of CB1R in the dorsal caudate putamen, NAc and septum; how-
ever, chronic morphine increases CB1R expression in the caudate
putamen, cortex and midbrain [39, 40]. In addition, MOR and
KOR can mediate rewarding properties of cannabinoids, with MOR
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Figure 1. Components of the addiction cycle as modelled in rodents using opiate withdrawal. The addiction cycle, described by Piazza and Deroche-Gamonet [139], includes
A) sustained drug use (at least 5 days via mini-pump or repeated injections), B) spontaneous withdrawal in home cage or novel environment or C) opiate-induced withdrawal.

Withdrawal symptoms are assessed by a trained observer in D).

being necessary for THC reward in conditioned place preference
(CPP) [41]. Naloxone, a MOR antagonist, can induce cannabinoid
withdrawal symptoms and inhibit the self-administration of CB1R
agonists WIN55,212-2 and HU-210 in rats [39], suggesting nalox-
one can partially substitute for CB1R antagonists. MOR and DOR
double knock out mice display decreased THC-induced hypother-
mia, slower development of tolerance and reduced expression of
withdrawal to THC [42], indicating MOR and DOR act together
to modulate addiction-relevant behaviour for THC. These studies
suggest the endogenous opioid and endocannabinoid systems in-
teract to regulate addiction-relevant behavioural and neural pro-
cesses.

Effects of cannabinoids on opioid withdrawal,

dependence and addiction-like behaviour: A9-
tetrahydrocannabinol (THC)

THC is the major psychoactive cannabinoid found in cannabis
sativa and primarily mediates its psychoactive effects through
CB1R, of which it is a partial agonist [43]. THC also allosterically
modulates MOR [37].

Initial investigations into THC as a treatment for opioid de-
pendence focused on its effects on opioid withdrawal (see Fig-
ure 1 for brief methods). THC attenuates naloxone-induced with-
drawal symptoms in rats [44-46], without inducing morphine
withdrawal itself [44], initially suggesting THC could be use-
ful in preventing morphine withdrawal. Overall, THC reduces
the intensity of some morphine withdrawal symptoms, includ-
ing defecation and diarrhoea but not wet dog shakes and ear
blanching [44]. THC treatment also increases the dose of nalox-
one required to induce morphine withdrawal [45, 47], suggest-
ing protection from naloxone-precipitated morphine withdrawal
by THC and potential activation of MOR by THC. Similar effects
on naloxone-precipitated withdrawal are reported for THC ana-
logues, such as A8-tetrahydrocannabinol and 11-hydroxy- A8-

tetrahydrocannabinol [47-49]. These early studies suggested that
THC or THC-induced mechanisms could be relevant in treating
opioid withdrawal. Early clinical studies appeared to support this
hypothesis. A reduction in opioid withdrawal by the synthetic THC
stereoisomer dronabinol was reported in humans [50, 51]. An ini-
tial study showed that 30 mg of dronabinol reduced opioid with-
drawal symptoms during an early detoxification period before ad-
ministration of the extended release MOR antagonist naltrexone
[50]. There were no differences between the dronabinol and the
control group in retention and medication compliance following
initial detoxification [50]. Interestingly, patients in this study who
smoked marijuana were more likely to remain in treatment and
had less difficulty with insomnia and anxiety, irrespective of dron-
abinol treatment, suggesting therapeutic utility of marijuana and
possibly THC in withdrawal symptom management [50]. Sim-
ilarly, 20 and 30 mg dronabinol can supress opiate withdrawal
symptoms in opioid-dependent patients [51]. Despite promising
effects of dronabinol in reducing initial opioid withdrawal, doses
of dronabinol over 20 mg during opioid withdrawal can increase
the risk of tachycardia, sedation and perceived drug high, raising
safety concerns about its use and limiting the potential of dron-
abinol in clinical settings [51, 52]. These later clinical studies in-
dicate that despite initial promise, THC does not appear a viable
treatment for opioid withdrawal.

However, THC could be used to treat other aspects of opioid ad-
diction. Some studies indicate that acute THC can reduce the re-
warding effects of opiate (i.e. eliciting approach behaviour, such
as in conditioned place preference [53]; see Figure 2 for brief meth-
ods) and reinforcing effects of opiates (i.e. strengthening the
stimulus-response relationship between a behaviour and drug in-
fusion, such as in self-administration [53], see Figure 3 for brief
methods). In a self-administration paradigm in rhesus monkeys,
acute and repeated THC dose dependently reduces heroin self-
administration, suggesting a reduction in heroin reinforcement
when THC is present [54, 55]. Similarly, in Sprague-Dawley rats,
THC also reduces fixed ratio operant responding for heroin [56],
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Figure 2. Components of the addiction cycle as modelled in rodents using conditioned place preference. The addiction cycle, described by Piazza and Deroche-Gamonet
[139], includes A,B) recreational / sporadic drug use, C) extinction / abstinence, and D) relapse. These are modelled in rodents via A) drug-environment Conditioning
sessions (recreational / sporadic drug use) B) the establishment of drug-environment preference at Test (recreational / sporadic drug use), C) extinction training or home
cage abstinence (extinction / abstinence), and D) drug-primed reinstatement (relapse).

suggesting THC can reduce the reinforcing properties of heroin.
However, some studies show opposite effects, indicating THC can
increase opiate reward and reinforcement. One study demon-
strated that low dose THC can increase motivation for heroin on
a progressive ratio schedule in Sprague-Dawley rats, but this ef-
fect was only evident when response requirements for heroin were
low [56], and the THC dose used in this study was lower than that
used in fixed ratio studies. Recently, it was shown that ventral
hippocampal THC infusions can increase reward for subthresh-
old morphine in a place preference paradigm in rats [57]. In this
experiment, THC increased frequency and bursting rates of VTA
dopaminergic neurons, which may account for the increase in the
rewarding properties of THC combined with subthreshold mor-
phine [57]. Earlier research did not identify a neural locus of effect
when demonstrating that systemic THC can reduce opiate reward
and reinforcement (e.g. [54-56]), and it is possible that the site
where THC acts in the brain can modulate whether THC enhances
or impedes opiate reward. Overall, systemic THC appears to reduce
opiate reinforcement, but there may also be dose- and location-
dependent effects of THC on opiate-induced reinforcement.

Despite this, THC does not appear to strongly modulate opi-
ate extinction or reinstatement. Low dose THC does not reinstate
heroin-seeking behaviour in rats, in the absence of heroin cues,
a heroin prime or a stressor [58]. Similarly, in rhesus monkeys,
daily THC does not affect extinction of heroin-seeking or resump-
tion of heroin self-administration after extinction [55]. While

there is limited preclinical research on this topic, the data available
suggests THC affects opiate reward and reinforcement, but not ex-
tinction and reinstatement processes.

Adolescent cannabis use is associated with increased suscep-
tibility for developing later substance use disorder [59], and un-
derstanding the persistent effects of THC exposure in adoles-
cence may help explain the involvement of prior cannabinoid
use on opioid addiction. Despite adult THC treatment mostly
reducing heroin use in rodents, adolescent THC exposure ap-
pears to increase susceptibility to addiction-like behaviour and
brain changes in adulthood. Chronic adolescent THC treatment
increases heroin self-administration in adult rats at moderate
heroin doses (i.e. 50 — 85 ug/kg/infusion [60, 61]), but not low
heroin doses (i.e. 20 pg/kg/infusion [62]). Adolescent THC in-
creases preproenkephalin mRNA expression and MOR guanosine
triphosphate-coupling in the NAc shell in adulthood [60], and
MOR function in the NAc shell is correlated with heroin intake
[60]. Adolescent THC exposure also increases stress-induced re-
instatement for heroin in adult rats [62], suggesting adolescent
THC can increase opiate relapse propensity. Strain dependent ef-
fects of adolescent THC have also been reported: In Lewis rats, a
strain that more readily acquires psychostimulant and opiate self-
administration than other outbred rat strains such as Fisher 344
rats [63], adolescent THC has no effect on acquisition of heroin
CPP, but potentiates heroin-primed reinstatement of CPP, and
increases self-administration and motivation for heroin [64, 65].



However, in Fischer 344 rats, a strain that displays resistance to
opiate self-administration [63] , THC exposure increases heroin
CPP and increases cue-induced reinstatement of heroin-seeking,
but has no effect on self-administration and motivation for heroin
[64, 65]. This suggests that THC can increase susceptibility to
opiate abuse-like behaviours, irrespective of genetic susceptibil-
ity or resistance to opiate self-administration. Together, this data
suggests adolescent THC treatment can increase susceptibility to
adult heroin addiction-like behaviour.

Despite this, opposing effects have been reported for the highly
selective MOR agonist oxycodone, whereby chronic adolescent
THC can reduce oxycodone self-administration in adult rats in a
dose dependent manner [66, 67]. These effects are observed only
under extended access conditions, and are blocked by administra-
tion of the CB1R antagonist SR141716 [66, 67], suggesting the de-
creased susceptibility to oxycodone by THC is mediated by CB1R.
The reasons for different effects of adolescent THC on subsequent
heroin and oxycodone administration are yet to be resolved, but
may result from methodological differences (e.g. extended access
conditions [67]) and pharmacokinetic differences between heroin
and oxycodone (e.g. heroin has a higher affinity for the MOR than
oxycodone).

In conclusion, while adolescent THC appears to increase sub-
sequent opioid susceptibility, THC treatment in adulthood can re-
duce the rewarding and reinforcing effects of opioids. This ef-
fect may be mediated through THC-induced activation of CB1R
[67]. While the side effect profile and abuse potential of THC can
limit its application in the clinic, understanding THC’s mecha-
nisms of action in reducing opioid reward could lead to the devel-
opment of novel compounds targeting these mechanisms. Further
research into the receptors and/or proteins THC acts on alter opiate
addiction-relevant behaviours is strongly warranted.

CB1R agonists

Considering the reduction in opioid withdrawal by THC appears
mediated by CB1R, other CB1R agonists have been investigated
for their potential to limit opioid withdrawal and addiction-like
behaviours. Administration of CB1R agonists can reduce opioid
withdrawal symptoms. The CB1R agonist WIN 55,212-2 decreases
the intensity of morphine withdrawal-induced contractions in
guinea-pig ileum cells [68]. Smooth muscle activity, as seen
in the ileum, is associated with opioid-induced constipation and
withdrawal-associated diarrhea [4]. Administration of the en-
dogenous CB1R agonist 2-AG or the CB1R agonist HU-210 reduces
naloxone-precipitated morphine withdrawal in morphine depen-
dent mice [49]. This is consistent with studies showing THC, a
partial CB1R agonist, attenuates opioid withdrawal symptoms [44-
46] and further supports the theory that opioid withdrawal may be
mediated by CB1R.

While CB1R agonists appear to reduce opiate withdrawal symp-
toms, several studies indicate they can also increase the abuse
potential of opiates. Systemic [69] and intra-basolateral amyg-
dala [70] WIN 55,212-2 administration increases morphine reward
in mice and rats, and this effect is dependent on CBIR, as it is
blocked by co-administration of CB1R antagonist SR141716A [69].
In rats, chronic pretreatment with the CB1R agonist CP 55,940
increases subsequent morphine self-administration and locomo-
tor sensitization [71], while acute WIN 55,212-2 increases heroin
self-administration in Sprague-Dawley rats [72]. In monkeys self-
administering heroin, CP 55,940 and WIN 55,212-2 reduce heroin
self-administration [73]. However, the doses used in this study
also decrease responding for a food reinforcer [73], which may
suggest CP 55,940 and WIN 55,212-2 reduce locomotor activity in
general, and confound the interpretation that these agonists limit
heroin self-administration. These results indicate that CB1R ago-
nists often increase opioid reward.

It seems enhancing effects of CB1R agonists on opiate reward
and reinforcement can be dose-dependent. Co-administration of
maximally reinforcing doses of CP 55,940 and heroin decreases
lever responding for the combination of both drugs, suggesting
CP55,940 can substitute for heroin [74]. Similarly, in a place
preference paradigm, CP 55,940 treatment during acquisition of
heroin CPP does not enhance the rewarding effects of heroin, yet
the doses of CP 55,940 and heroin in this study already were re-
warding in CPP, suggesting cannabinoid agonists can enhance opi-
oid reward when subthreshold doses are used [75]. Indeed, this
interpretation was recently confirmed — WIN 55,212-2 combined
with subthreshold morphine dose-dependently causes a condi-
tioned place aversion (CPA), while supra-threshold doses of mor-
phine combined with WIN 55,212-2 shift morphine CPP to a CPA
[76]. Together, these studies suggest that CB1R agonists mostly
increase opioid sensitivity and reward, limiting their suitability
for opioid addiction treatment. However, there are indications that
this increase in opioid reward is only evident in rodents (e.g. [73]),
and further research on the interactions between CB1R and opioid
reward in primates is warranted.

CB1R agonists can alter the reinstatement of opiate seeking,
but whether CB1R agonists facilitate or inhibit reinstatement can
depend on the brain region targeted. Systemic administration of
HU-210, as well as CP 55,940 and WIN 55,212-2 reinstates drug-
primed heroin-seeking in a self-administration paradigm in rats
[58, 77]. However, when WIN 55,212-2 is administered directly
into the NAc, it reduces drug-primed reinstatement of morphine
CPP in rats [78], and this is associated with elevated NAc and VTA
c-fos activation [79]. Discrepancies between systemic and intra-
NAc CB1R agonist administration may arise due to the role of the
NAc in reinstatement. WIN 55,212-2 prior to reinstatement in-
hibits glutamate inputs to the NAc [80], and glutamatergic activity
in the NAc modulates opiate reinstatement [81, 821;[83]. It is pos-
sible that while CB1R activation in the NAc alone can reduce drug-
primed reinstatement, systemic CB1R agonist administration may
also affect other structures critical for reinstatement, for exam-
ple CB1R on cortical glutamatergic afferents regulates dopamine
release in the NAc and could increase reinstatement propensity
[83]. Despite effects of WIN on reinstatement, intra-NAc WIN
given during extinction does not affect extinction or reinstatement
of morphine CPP [78], despite WIN increasing NAc neuronal activ-
ity when administered during extinction [80], and reducing the
PCREB/CREB ratio in the NAc [79]. Thus, while CB1R agonists can
modulate relapse-like behaviour for opiates, further research is re-
quired to clarify effects of CB1R agonists on extinction of opiates.

Cannabidiol (CBD)

CBD is a non-intoxicating cannabis constituent with several phar-
macological mechanisms, including being a weak negative al-
losteric modulator of CB1R, a serotoninergic 5-HT1A receptor ago-
nist, and a vanilloid TrpV1 agonist [84-88]. CBD can also alloster-
ically modulate opioid receptors and accelerate MOR agonist dis-
sociation from the binding site, thus reducing MOR activity [37].
CBD is associated with increased endocannabinoid activity by in-
hibition of FAAH and subsequent increased levels of anandamide
by a reduction in the hydrolysis rate [89]. Preclinical research in-
dicates a limited role for CBD in reducing opioid withdrawal symp-
toms. CBD can reduce naloxone-induced withdrawal symptoms
[45], but is less effective than other cannabinoids in this effect, for
example THC. THC produces a 3- to 6-fold increase in the effec-
tive dose of naloxone for precipitating withdrawal, whereas CBD
only produces a 2-fold increase in the effective dose of naloxone
[45]. CBDalso has a limited effect on the expression of opiate with-
drawal, modestly decreasing jumping behaviour, but no other be-
haviours, compared to vehicle controls [45]. While CBD combined
with THC increases THC’s attenuation of morphine withdrawal,
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Figure 3. Components of the addiction cycle as modelled in rodents using intravenous self-administration. The addiction cycle, described by Piazza and Deroche-Gamonet
[139], includes A) recreational/sporadic drug use, B) escalation of use, C) extinction / abstinence, and D) relapse. These are modelled in rodents via A) self-administration,

B) progressive ratio responding, C) extinction training or home cage abstinence, and D) reinstatement (stress / drug-primed / cue-induced).

this combination also increases THC-induced rotational behaviour
in rats, potentially limiting the use of THC-CBD combinations for
morphine withdrawal [90]. Thus, CBD does not appear to show
potential as a treatment for opioid withdrawal.

However, there is some evidence suggesting CBD attenuates
opiate reward. Co-administration of CBD with morphine dose-
dependently increases the intracranial self-stimulation (ICSS)
threshold in the medial forebrain bundle in rats, indicating a
reduction in brain reward threshold [91]. CBD’s reduction in
morphine-induced ICSS was reversed by pretreatment with the
serotonergic (5-HT) 1A receptor antagonist and potent dopamine
D4 receptor (D4R) agonist, WAY-100635, indicating CBD medi-
ates morphine reward via stimulation of 5-HT1A or inhibition of
D4R [91]. CBD alone also dose-dependently reduces brain reward
thresholds [91]. While infusions of CBD alone into the ventral hip-
pocampus do not affect subthreshold morphine CPP, infusions of
CBD in the ventral hippocampus reverse THC’s enhancement of
subthreshold morphine reward, and these effects are mediated by

modulation of extracellular signal-regulated kinase (ERK) phos-
phorylation [57]. This suggests CBD may reduce THC’s enhance-
ment of morphine reward via ERK signalling in the ventral hip-
pocampus [57]. These results indicate that CBD can reduce the re-
warding effects of opioids, and these effects can be mediated by
5-HT1A and/or D4 receptors.

CBD may also reduce addiction-relevant behaviour via persis-
tent effects on opiate memory. While CBD does not reduce heroin
self-administration or extinction of heroin self-administration in
rats, it can reduce cue-induced heroin reinstatement [92]. Effects
of CBD on cue-induced reinstatement are persistent, lasting for
2 weeks after CBD treatment, suggesting long-lasting effects of
CBD on opiate-associated cue memory [92]. Similarly, CBD inter-
rupts reconsolidation of morphine CPP memory for up to 14 days
after CBD treatment in a rat model, and this does not return upon
drug- or stress-primed reinstatement following extinction, again
indicating that CBD can impair drug-memory [93]. CBD prior
to memory reactivation also suppresses naltrexone-precipitated



place aversion in the CPP context [93], demonstrating that CBD
can limit recall of a drug-associated environment. CBD treatment
normalises heroin-induced upregulation of CB1R RNA and protein
levels in the NAc core and shell, and downregulates GluR1 protein
in the NAc core and shell [92] , suggesting that CBD may ame-
liorate drug-induced neural adaptations. Together, this suggests
CBD can impair opiate-based memory in rodents, potentially by
interrupting reconsolidation, and this can occur via modulation of
GluR1 and CB1R in the NAc. Recent clinical trials also suggest CBD
can reduce opiate craving and the willingness to use opioids. In
humans, CBD reduces heroin cue-induced craving and anxiety in
heroin abstinent individuals [94]. This effect was observed 24 hr
after a single CBD treatment, and persisted for one week follow-
ing 3 days of CBD treatment [94]. CBD also reduced physiological
measures of stress, such as heart rate and salivary cortisol levels,
compared to placebo-treated controls, suggesting CBD may reduce
physiological responses to stress in order to reduce cue-induced
craving for heroin [94]. In addition, a prospective cohort study of
patients with chronic pain on long-term opioid treatment demon-
strated a trend for CBD treatment to increase willingness to cease
opioid medication [95]. In this study, 50 of 94 participants reduced
their opioid dose over the eight weeks, and patients indicated re-
luctance to cease opioid use due to perceived risk of refusal to re-
new future opioid treatment [95], suggesting that patients may
have reduced their opiate use further if they were guaranteed fu-
ture access to opiates if necessary. Together, this suggests CBD
may reduce opiate craving and use in humans, but further research
is required to confirm these conclusions.

Cannabinoid enzyme inhibitors: FAAH in-

hibitors

FAAH inhibitors limit the degradation of, and thus increase the
concentration of the fatty amide family of lipid transmitters, in-
cluding the most widely studied endocannabinoid, anandamide.
It is hypothesised that FAAH inhibitors can increase anandamide
availability, which elevates cannabinoid receptor stimulation and
thus reduces the rewarding and relapse-inducing effects of abused
drugs, including opiates [96].

FAAH inhibitors show potential in reducing opioid withdrawal.
FAAH inhibitors, including URB-597 and PF-3845, reduce with-
drawal symptoms in morphine-dependent mice and rats [46,
97, 98]. Recently, N-oleoylglycine (OlGly), a fatty acid amide
which appears to act as a FAAH inhibitor and a peroxisome
proliferator-activated receptor alpha (PPAR«) agonist, limited
naloxone-precipitated morphine withdrawal symptoms in male
rats, including abdominal contractions, lying on belly, diarrhoea
and mouthing movements [99]. The effects of OlGly on mor-
phine withdrawal were mediated by CB1R and PPAR« [99], indi-
cating that increasing endogenous cannabinoid levels could be a
potential treatment option for opioid dependence. Furthermore,
monomethylated oleoyl glycine (HU595), which has improved sta-
bility compared to oleoyl glycine and inhibits FAAH and activates
PPARu in vitro, reduces somatic and aversive effects of naloxone-
precipitated morphine withdrawal [100], again suggesting poten-
tial as a treatment for opioid withdrawal. Effects of HU595 on mor-
phine withdrawal were prevented by both a PPAR« antagonist and
a CB1R antagonist [100], indicating HU595 may reduce naloxone-
precipitated morphine withdrawal by increasing activity of PPAR«
and CB1R. HU595 also does not produce rewarding or aversive ef-
fects on its own and does not modify locomotor activity, support-
ing its therapeutic utility [(100]. Together, these studies demon-
strate that FAAH inhibitors may act via increasing CB1R and PPAR«
signalling to limit opioid withdrawal behaviours in rodents.

Some, but not all FAAH inhibitors limit morphine withdrawal-
induced place aversion. The FAAH inhibitor URB-597 facili-
tates extinction of naloxone-precipitated morphine withdrawal-

induced conditioned aversion [101], but does not limit morphine-
induced reinstatement of CPA [102]. This suggests URB-597 can
facilitate extinction memory processes, which can be relevant
to reducing morphine use. Similarly, OlGly has been shown to
also block the aversive effects of morphine withdrawal in a place
aversion paradigm [103], suggesting OlGly can reduce morphine
withdrawal effects. However, the FAAH inhibitor PF-3845 does
not limit morphine withdrawal-induced CPA [46], and URB597
and PF-3845 have no effect on the establishment or reinstate-
ment of CPA [104]. Despite this, a combination of a low-dose
MAGL inhibitor JZL184 and high dose FAAH inhibitor PF-3845, as
well as a dual FAAH-MAGL inhibitor SA-57, reduces withdrawal
symptoms in morphine-dependent mice [105], but does not pre-
vent naloxone-precipitated withdrawal CPA in mice [46]. While
some FAAH inhibitors appear effective in reducing morphine with-
drawal symptoms, it appears a dose-dependent combination of
FAAH and MAGL inhibition may sometimes be required to reduce
morphine withdrawal-induced CPA.

There is limited research into the effects of FAAH inhibitors on
addiction-like behaviours for opiates. Administration of AM404,
which inhibits anandamide reuptake, reduces motivation for
heroin in a self-administration paradigm in rats [56]. Subthresh-
old doses of AM/04 combined with the FAAH inhibitor URB-597
also reduce heroin motivation in a self-administration paradigm
inrats [56]. While AM404 is self-administered by rhesus monkeys
[106], it is not rewarding in a place preference paradigm in rats
[107], and does not enhance BSR in rats [108]. Despite promising
findings with AM404, administration of the FAAH inhibitor URB-
597 does not promote extinction of morphine CPP, or limit sub-
sequent drug-primed reinstatement of morphine CPP [101, 102].
Similarly, OlGly does not limit formation of morphine CPP or pre-
vent reinstatement of morphine CPP [103]. This suggests FAAH
inhibitors may reduce motivation for, but not extinction or rein-
statement of opiates in rodents.

Clinical trials have started to examine if FAAH inhibitors may
be relevant for opioid withdrawal symptoms and opioid self-
administration. While a clinical trial for the FAAH inhibitor BIA10-
2474 was discontinued due to severe side effects [109], a compre-
hensive review of safety information relevant to BIA10-2474 sug-
gested other FAAH inhibitors do not pose similar safety risks [110],
and interest in FAAH inhibitors has recently regained traction. Im-
portantly, FAAH inhibitors such as URB-597 have low abuse liabil -
ity as they do not induce place preference [111, 112], they are not
spontaneously self-administered by subjects [113], and have a low
toxicity profile [112]. This suggests FAAH inhibitors may have clin-
ical utility in the management of opioid-abuse.

Cannabinoid enzyme inhibitors: MAGL in-

hibitors

Limited research suggests MAGL inhibitors can limit opioid with-
drawal and addiction-like behaviours. MAGL inhibitors limit the
hydrolysis of 2-AG, increasing endocannabinoid tone. The selec-
tive MAGL inhibitor JZL184, which increases levels of 2-AG but
not anandamide, blocks naloxone-precipitated and also sponta-
neous opioid withdrawal symptoms in opioid-dependent mice [46,
97]. Despite this, JZL184 does not prevent naloxone-precipitated
CPA in mice [46], suggesting JZL184 can limit withdrawal symp-
toms but not withdrawal-environment associations. A differ-
ent MAGL inhibitor, MJN110 prevents acquisition of naloxone-
induced withdrawal CPA in rats, when administered systemically
or by direct infusion to the basolateral amygdala or the intero-
ceptive insular cortex; the latter region is activated during opioid
withdrawal [114]. The dual FAAH-MAGL inhibitor SA-57 reduces
heroin self-administration and heroin-seeking in mice [115], sug-
gesting a combined FAAH-MAGL inhibitor may limit relapse-like
behaviour. Together, this suggests MAGL inhibition can limit opi-
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oid withdrawal, as well as heroin self-administration and heroin-
seeking. New therapeutic options may include combinations of
MAGL and FAAH inhibition [115], particularly for the inhibition of
opioid withdrawal.

CB1R antagonists

CB1R antagonists show potential for the treatment of opioid
withdrawal. While acute administration of the CB1R antag-
onist SR141716A induces morphine withdrawal in morphine-
dependent rats [116], chronic administration of the CB1R antago-
nist SR141716A reduces spontaneous morphine withdrawal symp-
toms, including wet shakes and jumping [117]. Despite this, there
is no effect of acute SR141716A on naloxone-induced withdrawal
[117]. CB1R knockout mice also express reduced withdrawal symp-
toms after naloxone administration [118], suggesting chronic, but
notacute CB1R antagonism may be relevant for reducing morphine
withdrawal.

Acute administration of the CB1R antagonists AM251, AM/113
and AM6527 inhibits morphine withdrawal-induced CPA in rats,
but has no effect on the reinstatement of CPA [104]. Direct in-
fusions of AM251 into the bed nucleus of the stria terminalis and
the central amygdala reduces morphine withdrawal-induced CPA,
suggesting a key role for these regions in morphine withdrawal
CPA [119].

CB1R antagonists also show therapeutic potential for reduc-
ing opiate reward and relapse-like behaviour. Several studies
indicate SR141716A significantly reduces opioid reinforcement:
self-administration and motivation for heroin is significantly re-
duced in rats co-treated with SR141716A [39, 74, 77], while self-
administration of morphine is blocked by SR141716A pretreatment
in mice [39]. SR141716A pretreatment also inhibits acquisition of
morphine CPP in mice [39, 69, 117], suggesting SR141716A can
block morphine reward. SR141716A infusions into the NAc of rats
during morphine withdrawal reduces preference for a morphine-
associated environment [120], suggesting SR141716A can facili-
tate the loss of morphine-environment associations. SR141716A
reduces drug-primed reinstatement of heroin and morphine [69,
771, even after an extended period of abstinence [15], indicating
potential for reducing relapse-like behaviour. Effects of CBi1R
blockade on opiate reinstatement appear mediated by the NAc
core and prefrontal cortex, as SR141716A infused into the NAc
core and prefrontal cortex, but not the basolateral amygdala,
attenuates cue-induced reinstatement of heroin-seeking [121].
However, chronic pretreatment with SR141716A does not reduce
subsequent morphine-induced locomotor stimulation [71], and
higher doses of SR141716A also induce place aversion in opiate-
dependent mice and rats [39, 117], suggesting therapeutic ef-
fects of SR141716A occur within a specific dose range. Further-
more, while SR141716A does not exhibit rewarding properties in
a place preference paradigm [117], it does increase brain stimu-
lation reward thresholds [122] and reduces responding for food-
predictive cues [123], suggesting it may have depressant-like ef-
fects or mood altering properties. Recently, due to side effects asso-
ciated with SR141716A treatment in clinical trials (e.g. anxiety, de-
pression, suicidal thoughts), investigations into other CB1R mod-
ulators have been conducted.

Recent investigations into other CB1R antagonists indicate
therapeutic potential for opiate addiction-like behaviour. The
CB1R antagonist AM251 impairs acquisition of morphine CPP in
mice, indicating a reduction in morphine reward [124]. Also, the
CB1R neutral antagonist AM4113 dose-dependently inhibits self-
administration of intravenous heroin in rats, with no effect on
brain stimulation reward thresholds [122], suggesting AM113 can
reduce heroin reinforcement. There are mixed reports on whether
AM251 can enhance extinction of morphine CPP: one study demon-
strated that systemic AM251 did not facilitate extinction of mor-

phine CPP in rats [101]. However, intra-NAc AM251 reduces mor-
phine CPP reinstatement following extinction [125], and infusions
of AM251 into the dorsal hippocampus, but not the prefrontal cor-
tex, inhibits drug-primed reinstatement of morphine CPP [126];
suggesting AM251 can limit reinstatement of morphine-seeking,
even if AM251 does not affect extinction. AM251 treatment prior to
reinstatement blocks the morphine-induced upregulation of CB1R
in the NAc and the hippocampus, and reduces activation of the
ERK-CREB-BDNF cascade in the NAc and hippocampus [79, 124].
Considering the involvement of ERK, CREB and BDNF in neural
plasticity, which is critical for drug-associated learning (127, 128],
and how CB1Rs bind to G;;, G-proteins to activate ERK, it is possi-
ble CB1R mediates opiate reinstatement via this cascade.

Interestingly, AM251 can also have synergistic effects with
morphine. Subchronic intra-NAc AM251 in conjunction with sub-
threshold morphine produces morphine place preference [129].
AM251 appears to act at the basolateral amygdala and the prelim-
bic cortex to mediate these synergistic effects with morphine [76,
130]. Effects of AM251 in the prelimbic cortex are blocked by sys-
temic administration of the broad-spectrum dopamine receptor
antagonist «-flupenthixol, suggesting that CB1R in the prefrontal
cortex can mediate a motivational valence switching mechanism
which modulates dopaminergic transmission and alters reward
value [130]. Synergistic effects between AM251 and opiates, and
the potential limitations this could present for the therapeutic util-
ity of CB1R antagonists, requires further investigation.

CB2R agonists

Recent research suggests some CB2R agonists can limit opi-
ate addiction-relevant behaviour. Pretreatment with CB2R ag-
onists e.g. AM1710, AM1241 and LY2828360 reduces naloxone-
precipitated opioid withdrawal in morphine-tolerant mice [131-
134). Co-treatment with CB2R agonist JWHO015 or LY2828360
blocks acquisition of morphine CPP [131, 135], without produc-
ing reward or aversion when administered alone [131]. JWHo015
reduces morphine-induced dopamine release in the NAc shell,
which may explain the inhibition of morphine reward by this CB2R
agonist [135]. This preliminary research supports future investi-
gations into CB2R agonists for the treatment of opiate withdrawal
and reward is warranted, and the mechanisms by which this oc-
curs.

Conclusions

Here we have summarised the therapeutic potential of
cannabinoid-based drugs for managing opioid withdrawal,
dependence and addiction-like behaviour. Interactions between
the endogenous opioid and endocannabinoid systems present
a novel therapeutic target for treating opioid addiction. In
particular, CBD, FAAH and MAGL inhibitors, as well as CB1R
antagonists show potential for treating opiate withdrawal, reward
and relapse-like behaviour. Investigations into the mechanisms
by which these ligands reduce opiate reward and opiate-seeking
behaviour has been limited, but to date include modulation of 5-
HT1AR, D4R, GluR1 and CB1R (relevant to CBD), CB1R and PPAR«
(relevant to FAAH and MAGL inhibitors), and ERK-CREB-BDNF
(relevant to CB1R antagonists). While the literature suggests that
CB1R agonists can reduce opiate withdrawal in rodents, CB1R
agonists can also enhance opiate reward and precipitate opiate
relapse-like behaviour, making these agonists unsuitable in their
current form as therapeutic options for opiate addiction.



Implications and Future Directions

Several cannabinoid ligands show therapeutic promise in animal
models for reducing opiate abuse liability and addiction-like be-
haviour. This presents a significant array of compounds with treat-
ment potential, and may start to change the perception of cannabi-
noids from party drug to potential medicine. However, several lig-
ands have significant side effects which can limit their therapeutic
application (e.g. hallucinogenic effects of THC, suicidal ideation
and anxiety following SR141716A treatment). Also, cannabis use
can exacerbate or increase risk for the development of other men-
tal health conditions (e.g. schizophrenia) [136], and it is possible
that other cannabinoid compounds may also have similar effects,
potentially restricting the use of some cannabinoids in clinical set-
tings.

Nonetheless, research to investigate the mechanisms of action
by which these ligands exert anti-addiction-like effects may pro-
vide more refined and targeted compounds for opiate abuse treat-
ment. For example, investigations into the mechanisms by which
CB1R agonists reduce opiate withdrawal may provide new thera-
peutic opportunities for ligands which can limit withdrawal, with-
out enhancing opiate reward. Indeed, interest in cannabinoid lig-
ands as a potential treatment for opioid abuse is evidenced by the
recent proliferation of research into CB1R antagonists, as well as
cannabinoid enzyme inhibitors. Furthermore, combinations of
some cannabinoid compounds (e.g. FAAH and MAGL inhibitors)
may prove more effective than these compounds individually,
again providing a new host of potential treatment options. While
investigations into CB1R antagonists other than SR141716A and
cannabinoid enzyme inhibitors are fairly recent, and the mecha-
nism of action of these drugs is presently unclear, this is an excit-
ing and novel avenue of research. Finally, the potential of CB2R
modulators to reduce opiate abuse liability has received very lit-
tle attention so far, but considering CB2R can modulate reward
behaviours for other abused drugs (e.g. ethanol and cocaine [137,
138]), investigations into how CB2R modulates opiate addiction-
relevant behaviours are also warranted.
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