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Abstract 
 

A simple method for classifying juniper-flavoured spirit drinks is proposed based on 
the ratio of fluorescence intensity values in synchronous fluorescence spectra. 
Receiver operating curves (ROC) and linear discriminant analysis (LDA) were used 
to compute the performance of the classification. Significant differences in the 
fluorescence intensity ratios (I316/I287 and I324/I287) observed in the spectra recorded 
using wavelength difference 10 nm were evaluated by ROC analysis to identify cut-
off values that gave ideal AUCs equal to one, thus allowing for 100% correct 
classification of the samples according to producer criteria. LDA showed that drinks 
of different producers could be distinguished (100% correct classification) on the 
basis of their differences in the fluorescence intensity ratios (I323/I287, I324/I287, 
I316/I287 and I325/I287). These results show that complete synchronous spectra are not 
required to discriminate between producers. Instead of them, fluorescence intensity 
could be measured at selected wavelengths.  
 
 University of SS. Cyril and Methodius in Trnava

  

Introduction 
 
Juniper-flavoured spirit drinks are spirit drinks 
produced by flavouring ethyl alcohol of agricultural 
origin with juniper (Juniperus communis L. and/or 
Juniperus oxicedrus L.) berries. The minimum 
alcoholic strength by volume of juniper-flavoured 
spirit drinks shall be 30%. For a process without 
fermentation juniper berries are first slightly 
squeezed and then prepared with 30% drinkable 
alcohol. After a resting period the distillation is 
initiated. In enterprises where juniper mashes are 
still fermented the production of the brandy is done 
in a two-step distillation. A gas chromatograph 
coupled with a mass spectrometer is a 
configuration often used in the analysis of alcoholic 
beverages (Vichi et al. 2008). Automated 
sequential multidimensional GC/MS is a technique 

capable of producing matrix-specific libraries of 
complex products. Spectral deconvolution of 
GC/MS data based on these libraries provides  
a reliable, unambiguous means of tracking  
the genealogy of juniper berry content from raw 
materials to final products (gins) and provides 
a more rationale means for detecting adulterants 
(Robbat et al. 2011). However multidimensional 
GC/MS method is relatively expensive,  
time-consuming and requires highly skilled 
operators. Up to date, several simple and rapid 
methods such as ultraviolet (UV), visible (VIS), 
infrared (IR)and fluorescence spectroscopies have 
been tried for determining the origin of beverages 
(Shen et al. 2012; Azcarate et al. 2013; Martelo-
Vidal et al. 2013). The last technique is particularly 
attractive because of its high sensitivity and 
excellent  specificity.   By  combining  fluorescence  
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spectroscopy and chemometric method 
discrimination of red wines according to grape 
variety (Airado-Rodríguez et al. 2011; Saad et al.  
2016; Silvestri et al. 2014; Yin et al. 2009), 
typicality (Dufour et al. 2006; Yin et al. 2009), 
manufactures (Yin et al. 2009) and geographical 
origin (Dufour et al. 2006) or reliable classification 
of white wines according to grape variety (Azcarate 
et al. 2015) can be successfully achieved. 
Furthermore, adulterations of brandy can be 
identified and determined by using chemometric 
methods even if slight fluorescent spectral 
variations are observed for the samples 
(Markechová et al. 2014). The combination  
of fluorescence spectroscopic data with UV/VIS 
and near IR data has improved the grouping 
of single-malt whiskies according to their 
geographic origin (Mignani et al. 2012). In our 
previous study, we applied general discriminant 
analysis and support vector machine  
to synchronous fluorescence spectra of juniper-
flavoured spirit drinks from different producers, 
thereby obtaining 100% correct classification  
of juniper-flavoured spirit drinksof three producers 
(Uríčková et al. 2015).  
In this paper, a simplified method for classifying 
juniper-flavoured spirit drinks is proposed based 
on the ratio of fluorescence intensity values  
in synchronous fluorescence spectra. Receiver 
operating curves (ROC) and linear discriminant 
analysis (LDA) were used to compute the 
performance of the classification.  
 
Experimental 
 
Samples 
 
A total of thirty-two commercially available 
samples from three Slovak producers (code S1–S3) 
were collected in 2015 – 2016. Different products 
from the same producer and four bottles of the 
same product were sampled: 16 samples [Klasik 
Slovenská borovička, Klasik Inovecká borovička, 
Klasik borovička jemná, Borovička Borec (S1)],  
12 samples [Trenčianska Juniperus borovička, 
Juniperus borovička, Koniferum borovička (S2)] 
and 4 samples [Borovička Zlatá (S3)]. The 
alcoholic degree ranged within 35 – 42% ethanol. 
The samples were stored at room temperature and 
analyzed without any prior treatment. 

Fluorescence spectroscopy 
 
The acquisition of fluorescence spectra was 
performed using a Perkin-Elmer LS 50 
Luminescence spectrometer equipped with a Xenon 
lamp, a 10 mm x 10 mm x 45 mm quartz cell and 
FL Data Manager Software for spectral acquisition 
and data processing. The slits of monochromators, 
scan speed, acquisition interval and integration 
time were set at 5 nm, 200 nm min-1, 1 nm and 
0.1 s, respectively. Synchronous fluorescence (SF) 
spectra were collected by simultaneously scanning 
the excitation and emission monochromators in the 
excitation wavelength range from 200 to 450 nm, 
with constant wavelength differences Δλ between 
them. The values of Δλ were varied  
from 10 to 100 nm, in steps of 10 nm. SF spectrum 
was a plot of the variations in fluorescence 
intensity as a function of the excitation wavelength 
for a fixed Δλ. Three spectra were recorded for 
each sample and the average of the three replicates 
was used for further analysis. Fluorescence 
intensities were plotted as a function of the 
excitation wavelength. 
 
Software 
 
Data were exported to ASCII and processed with 
the Microsoft Office Excel 2010 software. 
STATISTICA version 7.0 (StatSoft, USA, 2004) 
was used for LDA. Univariate ROC curve analysis 
available on MetaboAnalyst home page 
http://www.metaboanalyst.ca was used (Xia and 
Wishart 2016). 
 
Results and Discussion 
 
Synchronous fluorescence spectra 
 
In SF, a signal is observed only when ∆λ is in 
accord with the interval between one excitation 
band and one emission band. Thus, the shape and 
intensity of the SF spectra depend on the ∆λ value 
used. Fig. 1 shows the averaged SF spectra of 
samples from the three producers recorded  
at ∆λ = 10 nm, 20 nm, 30 nm and 40 nm. 
Regarding ∆λ = 10 nm (Fig. 1A), SF spectrum of 
the S1 brands showed two overlapping bands in the 
wavelength   range   from  308 nm to  330 nm  with 
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Fig. 1. Averaged synchronous fluorescence spectra recorded at (a) ∆λ = 10 nm, (b) ∆λ = 20 nm, (c) ∆λ = 30 nm and (d) ∆λ = 
40 nm. 

 
Table 1. The ratio of fluorescence intensity (I) values for spirits of different producers. 

Parameter Producer Mean Standard 
deviation 

Minimum Median Maximum 

I316/I287  (  10 nm) S1 1.290 0.407 0.890 1.131 2.028 
 S2 0.415 0.124 0.261 0.424 0.634 
 S3 0.176 0.006 0.170 0.175 0.183 
I324/I287 (  10 nm) S1 1.197 0.347 0.879 1.024 1.920 
 S2 0.438 0.135 0.260 0.470 0.640 
 S3 0.156 0.006 0.148 0.156 0.161 
I306/I282 (  20 nm) S1 1.200 0.437 0.818 1.033 1.978 
 S2 0.354 0.031 0.316 0.364 0.406 
 S3 0.209 0.005 0.203 0.210 0.214 
I298/I280 (  30 nm) S1 1.839 0.615 1.378 1.545 2.953 
 S2 0.697 0.076 0.601 0.705 0.816 
 S3 0.408 0.008 0.401 0.408 0.418 
 

 
maxima at 316 and 324 nm as well as two 
overlapping less intense bands in the wavelength 
range from 260 nm to 290 nm with maxima at 
about 274 and 281 nm. SF spectrum of the S2 
brands showed a maximum at about 286 nm, 
a shoulder at 273 nm and less intense band in the 
wavelengths from 310 nm to 330 nm with slightly 

observable maxima at about 315 and 324 nm. SF 
spectrum of the S3 brand showed the highest 
fluorescence of all the samples with a maximum  
at about 287 nm and two less intense overlapping 
bands with maxima at 314 and 324 nm. Regarding 
∆λ = 20 nm (Fig. 1B), broadening in spectral 
bands, increasing fluorescence intensity of all 
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Table 2. Area under the ROC curve and cut-off value for discriminating different producers using fluorescence intensity ratios. 

  
(nm) 

Ratio of fluorescence 
intensity 

S1 and S2 versus S3  S1 versus S2 and S3 

AUC cut-off  AUC cut-off 

10 I316/I287 1 0.222  1 0.762 
10 I324/I287 1 0.211  1 0.759 
20 I306/I282 0.964 0.265  0.938 0.612 

 
bands and changes in their relative intensities were 
observed. In addition, fluorescence maxima were 
blue-shifted to 262, 274, 306 and 323 nm for S1 
brands; to 263, 282 and 304 nm for S2 brands or  
to 282, 305 and 323 nm for S3 brand. At higher ∆λ 
values, a further increase in fluorescence intensity 
together with broadening or disappearance of the 
bands was observed. Fig. 1 suggests the potential of 
SF spectroscopy to differentiate between juniper-
flavoured spirit drinks from different producers, in 
particular on the basis of SF spectra recorded at 
small ∆λ value. 
A detailed analysis of the spectral features  
of 32 samples obtained at ∆λ = 10 nm showed that 
the ratio of fluorescence intensity values at 316 nm 
and 287 nm (I316/I287) was 1.209 ± 0.407  
(mean ± SD), 0.415 ± 0.124 and 0.176 ± 0.006 for 
S1, S2 and S3 samples, respectively. Other relevant 
differences in the ratio of fluorescence intensity 
values at 324 nm and 287 nm (I324/I287), at 306 nm 
and 282 nm (I306/I282) and at 298 nm and 280 nm 
(I298/I280) were observed in the spectra recorded 
using ∆λ = 10 nm, 20 nm and 30 nm, respectively 
(Table 1). It is noticed that both fluorescence 
intensity ratios calculated from S1 group are 
always higher than those of S2 and S3 groups. 
 
Receiver operator characteristic curve 
 
The main criteria (cut-off) for classifying the 
samples were based on receiver operator 
characteristic (ROC) curves, which are often used 
to determine the cut-off point based on which 
subjects will be classified as either a positive or 
negative outcome (Xia et al. 2013). Univariate 
ROC curve analysis available on MetaboAnalyst 
home page (http://www.metaboanalyst.ca) was 
used (Xia and Wishart 2016). MetaboAnalyst 
accepts a table with the sample values in rows and 
the feature labels in columns. The first column was 
a set of sample labels (S1, S2 and S3), the second 

column was a set of class labels (0 or 1) and next 
four columns was the ratio of fluorescence intensity 
values matrix. To find cut-off point for S1 samples, 
the class label was assigned a value of 0 for S1 
samples and 1 for all other samples. To find cut-off 
point for S3 samples, the class label was assigned a 
value of 0 for S1 and S2 samples and 1 for S3 
samples. The results for distinguishing S1 samples 
from S2 and S3 samples, and for separating S1 and 
S2 samples from S3 samples are shown in Table 2. 
Univariate ROC curve analysis resulted in the areas 
under the curve (AUC) and cut-off values (Table 2) 
with a probability of 0.95. In general, the AUC 
close to 0.5 means poor discrimination, whereas the 
AUC higher than 0.9 indicates excellent separation 
between the two classes. Regarding ROC analysis 
of data based on spectra recorded at ∆λ = 10 nm, 
ideal AUCs equal to one were obtained for I316/I287 
ratio. 
The first cut-off value was 0.222, below which the 
sample was deemed as belonging to S3. Above the 
second cut-off value, 0.762, the sample was 
deemed as belonging to S1. Similar cut-off values 
were obtained for I324/I287 ratio (Table 2) again 
based on ideal AUCs. Regarding ROC analysis of 
data based on spectra recorded at ∆λ = 20 nm, 
slightly smaller AUCs were obtained for I306/I282 
ratio. Based on cut-off values 0.265 and 0.612, one 
sample was incorrectly classified in both cases. 
ROC analysis showed that I298/I280 ratio (∆λ = 30 
nm) was not significant either for distinguishing S1 
samples from S2 and S3 samples or for separating 
S1 and S2 samples from S3 samples. 
 
Linear discriminant analysis (LDA) 
 
In the next part, LDA was applied to the ratio of 
fluorescence intensity values I315.5/I287, I316/I287, 
I316.5/I287, I317/I287, I323/I287, I324/I287 and I325/I287 
based on spectra recorded at ∆λ = 10 nm. LDA was 
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Table 3. Stepwise discriminant analysis and raw (standardized) coefficients of discriminant functions. 

Step Variable Wilks' Partial p-level Raw (standardized) coefficients 

  lambda lambda  Root 1 Root 2 

1 I323/I287 0.177 0.634 0.002 37.37 (9.22) -17.09 (-4.22) 
2 I324/I287 0.142 0.791 0.047 -33.71 (-8.88) 23.88 (6.29) 
3 I316/I287 0.160 0.700 0.009 2.65 (0.82) -22.90 (-7.05) 
4 I325/I287 0.123 0.913 0.307 -1.47 (-0.37) 19.62 (4.99) 
    Constant -3.88 -1.46 

 
 
used to determine which variables most significant 
discriminate between three naturally occurring 
groups and in addition to find classification 
functions to predict group membership. To select 
the least number of variables, stepwise LDA was 
performed and Wilks’ lambda was calculated 
at each step. The variable with the smallest Wilks’ 
lambda that improves classification was entered 
into the analysis. The results of the applied LDA, 
according to producer criteria for each step are 
summarized in Table 3. Variables I315/I287, I316.5/I287 
and I317/I287 were excluded by a stepwise method, 
taking into account their lower variability observed 
through the different producer samples. 
The Partial Wilks' Lambda (the smaller the Partial 
Wilks' Lambda, the greater is the contribution  
to the overall discrimination) indicates that variable 
I323/I287 contributes most, variable I316/I287 second 
most, variable I324/I287 third most, and variable 
I325/I287 contributes least to the overall 
discrimination. New two discriminant functions 
(Roots), linear combinations of variables selected, 
were obtained to discriminate the different 
producers. The following two eigenvalues and 
canonic correlations (given in parentheses) were 
calculated: 4.964 (0.912) and 0.492 (0.574) 
explaining about 90.9 % and 100% of the total 
variance, respectively. Raw canonical discriminant 
function coefficients obtained are also reported  
in Table 3.  
A two-dimensional plot of discriminant functions 
derived from the four selected variables is shown  
in Fig. 2. The first discriminant function (Root1) 
mostly discriminates between S1 and the two 
others (S2 and S3). The second function (Root2) 
provides some discrimination between S3 (all show 
negative values) and S2 (which have mostly 
positive values). However, the discrimination is not 
as clear as that provided by the Root1. 

Standardized canonical discriminant function 
coefficients (given in parentheses in Table 3) 
indicate that the first discriminant function is 
marked mostly by variables I323/I287 and I324/I287, 
while the second function is weighted mostly by 
variables I324/I287 and I316/I287 and to a lesser extent 
by the other two variables. 
 

 
Fig.2. Projections of samples according to producer criteria in 
the space formed by the two discriminant functions. 
 
Finally, the two classification functions were used 
for the classification of samples, with the result that 
100% of samples were classified correctly 
according to producer criteria. The performance  
of the LDA model was evaluated using the leave-
one-out-cross-validation approach, which is the 
best alternative for small number of samples  less 
than 50 (Molinaro et al. 2005). In this kind 
of validation, the sample set, itself, was used 
to validate the model. The model was repeatedly  
32 times calculated leaving out a single sample and 
then used to predict the left-out sample. In cross-
validation step, all S1 and S3 samples were again 
classified correctly,  however,  three  of S2 samples 
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were specified as belonging to S3 group, leading to 
90.6 % correct classification 
 
Conclusions 
 
Significant differences in the fluorescence intensity 
ratios (I316/I287 and I324/I287) observed in the spectra 
recorded using ∆λ = 10 nm were evaluated by ROC 
analysis to identify cut-off values that gave ideal 
AUCs equal to one, thus allowing for 100% correct 
classification of the samples according to producer 
criteria. LDA showed that drinks of different 
producers could be distinguished on the basis  
of their differences in the fluorescence intensity 
ratios (I323/I287, I324/I287, I316/I287 and I325/I287). All  
of the 32 samples that were used as input data  
for the analysis were also classified correctly.  
In addition, the results obtained by both ROC and 
LDA were similar. These results show that 
complete synchronous spectra are not required 
to discriminate between producers. Instead of them, 
fluorescence intensity could be measured  
at selected wavelengths. 
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