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Abstract 
 

The increasing prevalence of mosquito – borne diseases has prompted intensified 

efforts in the prevention of being bitten by the vector. Among the various strategies 

of vector control, the application of repellents provides instant and effective 

protection from mosquitoes. However, emerging concerns regarding the safety of 

the widely used repellent, DEET, has led to initiatives to explore natural alternatives. 

In order to fully realize the potential of natural repellents, focusing on the discovery 

of natural compounds eliciting repellency is of paramount importance. In this paper, 

machine learning was utilized to establish association between the mosquito 

repellent activity of 33 natural compounds using 20 chemical descriptors. 

Individually, the descriptors had insignificant monotonic relationship with the 

response variable. But when optimized, the formulated model through boosted trees 

regression exhibited reliable predictive ability (r2
 train = 0.93, r2 test = 0.66, r2 overall = 

0.87). The findings presented have also introduced new descriptors that exhibited 

association with repellency through ensemble learning such as heat capacity, Log P, 

entropy, enthalpy, Gibb’s free energy, energy, and zero-point energy. 

 University of SS. Cyril and Methodius in Trnava

 

 

 

Introduction 
 

Vector – borne diseases are serious health burdens, 

which account for one – sixth of the illnesses 

suffered by the global population (WHO 2014).  

In particular, mosquitoes are carriers of dreaded 

diseases such as malaria, dengue, zika,  

and chikungunya. Aside from being a health 

concern, mosquito – borne diseases are also 

associated in aggravating poverty (Suaya et al. 

2009). Considering the negative multi-faceted 

impact of these diseases, the prevention of being 

bitten by the vector is of paramount importance. 

Among the various strategies available to prevent 

being bitten by mosquitoes, the application  

of repellents is considered safe, and provides 

instant   and  effective  protection.  Repellents   also  

serve as the first line of defense in cases where 

the mosquito-borne disease, such as zika, has 

no established therapies and personal protection is 

the best approach to alleviate the disease burden 

(Gulland 2016; Wong et al. 2016). Repellents exert 

their effect by preventing the binding of attractant 

odors to Odorant – Binding Proteins (OBPs), that 

leads to the disruption of signal transduction 

pathways related to odor recognition (Pellegrino et 

al. 2011). OBPs play a critical role in odor 

perception given that they act as carriers  

to the bound odor across the mucus barrier to 

initiate the physiological olfactory response (Pelosi 

1994). In addition, repellents have also been shown 

to block the electrophysiological responses 

of sensory neurons of mosquitoes toward attractive 

odors (Ditzen et al. 2008).  
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The synthetic repellent, N-N-diethyl-meta- 

toluamide (DEET) is a widely used insect repellent, 

and is considered to be the most - broad spectrum 

(Katz et al. 2008). However, issues concerning  

the toxicity of DEET to humans (Diaz 2016)  

as well as being a pollutant to the environment 

(Dsikowitzky et al. 2014) have led to initiatives to 

explore natural repellents as alternatives. However, 

most natural repellents come in the form of crude 

botanical extracts, such as lemongrass (Oyedele et 

al. 2002), and thyme (Park et al. 2005).  

It is therefore evident that identification  

of the compounds eliciting repellency can 

significantly enhance the formulation and efficacy 

of repellents. A good example is citronellal, which 

is a major component of several botanical 

repellents (Trongtokit et al. 2005). When tested 

individually, citronellal exhibited promising 

repellency dose (RD50) against the malaria vector 

Anopheles gambiae, which is comparable with 

DEET (Omolo et al. 2004). Thus, natural 

compound screening is crucial in the discovery of 

more nature-derived mosquito repellents.  

Economic and practical considerations are major 

impediments in compound screening, since testing 

each compound within a botanical extract  

for repellency is tedious, and entails serious  

financial  support.  A  viable  strategy  in increasing 

 the efficiency of drug discovery activities involves 

computation – driven approaches. Doing so can 

help identify promising leads, group together 

compounds with similar mechanisms of action,  

or provide other relevant information (Miszta et al. 

2013). However, data – driven studies about 

mosquito repellents have mostly been confined  

to DEET and DEET-like compounds (Katritzky et 

al. 2006; Natarajan et al. 2008; Katritzky et al. 

2008). Thus, employing data science and statistical 

strategies to examine natural repellents will 

accelerate and promote discovery and development 

for these natural compounds. In this study,  

a predictive model for mosquito repellency against 

Anopheles gambiae of natural compounds was 

established though ensemble learning. The results 

presented may help accelerate the identification  

of repellent leads from natural sources, and provide 

novel insights regarding their biological activities. 

 

Experimental 
 

The repellent activities (RD50) against A. gambiae 

of the natural compounds examined in this study 

were taken from Omolo et al. (2004). RD50 refers 

to the minimum concentration of the compounds 

 

Table 1. Summary of transformations carried out on selected variables in order to minimize variations due to scale. 

Variable Transformation Range of Values 

RD50 (response variable) Log (1/RD50) 2.23 to 5.00 

Energy [kJ/mol] Log (-Energy) 6.01 to  6.24 

HOMO [eV] none -6.90 to -5.23  

LUMO [eV] none -1.86 to 1.60 

Chemical Potential [eV] none -4.22 to -2.19 

Hardness [eV] none 2.49 to 4.30 

Electrophilicity [au] none 0.59 to 3.40 

Dipole [debye] none 0.05 to 4.34 

Solvation [kJ/mol] none -17.13 to 11.12 

Weight [g/mol] Log (Weight) 2.13 to 2.34 

Area [A2] Log (Area) 2.26 to 2.44 

Volume [A3] Log (Volume) 1.25 to 2.42 

Polar Surface Area, PSA [A2] Log (PSA+1) 0 to 1.40 

Ovality none 1.24 to 1.47 

Log P none 1.71 to 4.28 

Polarizability [kJ/mol] Log (Polarizability) 1.73 to 1.79 

Zero Point Energy, ZPE Log (ZPE) 2.71 to 2.98 

Enthalpy, H Log (-H) 2.59 to 2.82 

Heat Capacity, Cv Log (Cv) 2.21 to 2.44 

Entropy, S Log (S) 2.57 to 2.69 

Gibb’s Free Energy, G Log (-G) 2.59 to 2.82 

 

Bereitgestellt von  Slovenská poľnohospodárska knižnica | Heruntergeladen  28.02.20 09:23   UTC



Nova Biotechnol Chim (2018) 17(1): 58-65 

60 

needed to elicit repellency to half of the mosquito 

population. Thus lower RD50 values indicate better 

repellency. The most stable conformers of the 33 

compounds of the library were determined using 

the Merck Molecular Force Field (MMFF)  

in Spartan ’10 (Wavefunction, Inc.). After the most 

stable conformers were identified, the optimum 

geometries, and molecular descriptors were 

obtained through Density Functional Theory 

B3LYP / 6-311++G**. The 33 compounds are: 

camphene, beta-pinene, p-cymene, alpha-terpinene, 

gamma-terpinene, alpha-terpinolene, alphe-pinene, 

perillyl alcohol, cis-verbenol, cis-carveol, geraniol, 

alpha-terpineol, eugenol, terpinen-4-ol, linalool, 

citronellal, perillaldehyde, camphor, verbenone, 

fenchone, carvone, caryophyllene oxide, limonene 

oxide, 1,8-cineole, alpha-fenchyl alcohol, borneol, 

myrtenol, geranyl acetate, thujone, myrtenal, 

aromadendrene, 4-isopropylbenzaldehyde.  

The molecular descriptors energy, HOMO energy, 

LUMO energy, dipole moment, solvation energy, 

molecular weight, area, volume, polar surface area, 

ovality, Log P, polarizability, zero-point energy 

(ZPE), constant volume heat capacity at 298 K 

(Cv), enthalpy, entropy, and Gibb’s free energy 

were directly obtained from the DFT calculations. 

The quantum chemical descriptors of chemical 

potential, electronegativity, chemical hardness, 

chemical softness, and electrophilicity were 

calculated using various reactivity equations 

founded on DFT, as reviewed by Kaya and Kaya 

(2015). 

The calculated descriptors were transformed  

in order to minimize their variations in terms of 

scale and magnitude. The transformations carried 

out are summarized in Table 1 (raw 

and transformed datasets are available  

in the Supporting Information).  

The transformed descriptors were then subjected  

to correlation analysis using R version 3.5.0  

(R Core Team 2018). All transformed descriptors, 

including the response variable were tested 

for normality of distribution using the Shapiro-

Wilk test. Following this test, isotonic relationships 

that may exist between the transformed descriptors 

and the response variable, were evaluated using  

the appropriate correlation function. After 

correlation analysis, the transformed descriptors 

were used to formulate a predictive model for 

mosquito repellent activity using machine learning.  

For support vector machine (SVM) regression, 

the radial basis function (RBF) kernel was utilized.  

As a result, the best gamma and C parameters were 

automatically selected. 75 % of the data set was  

Table 2. Correlation analysis summary between the transformed response variable and the transformed descriptors. 

Descriptor correlated with RD50 
Shapiro-Wilk 

(p-value) 
Spearman’s rho p-value Kendall’s tau p-value 

Energy <0.01 0.189 0.293 0.154 0.209 

HOMO 0.014 -0.368 0.035 -0.240 0.052 

LUMO 0.033 -0.202 0.259 -0.130 0.292 

Chemical Potential <0.01 -0.327 0.063 -0.226 0.065 

Hardness 0.071 – – – – 

Electrophilicity <0.01 0.236 0.187 0.163 0.183 

Dipole 0.253 – – – – 

Solvation 0.079 – – – – 

Weight <0.01 0.217 0.236 0.187 0.153 

Area <0.01 0.246 0.167 0.171 0.163 

Volume <0.01 0.228 0.203 0.1444877 0.239 

PSA <0.01 – – – – 

Ovality <0.01 – – – – 

Log P 0.069 – – – – 

Polarizability <0.01 0.231 0.196 0.156 0.204 

ZPE <0.01 0.038 0.833 0.030 0.804 

H <0.01 0.190 0.290 0.156 0.204 

Cv <0.01 0.254 0.154 0.190 0.121 

S <0.01 0.276 0.120 0.205 0.094 

G <0.01 0.189 0.292 0.152 0.215 
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used for training, while the remaining 25 % served 

as the test set. The results were validated  

by applying a 10-fold cross validation. For random 

forest regression, the random test data proportion 

was set to 0.30, and 0.5 for the subsample 

proportion. The stopping parameters were set  

as follows: minimum n cases = 5, maximum  

n cases = 10, minimum n child in node = 5, 

maximum n of nodes = 100. For the boosted trees 

regression, the learning rate was set to 0.1, with the 

following conditions: number of additive terms = 

200, random test data proportion = 0.30, subsample 

proportion = 0.50. The stopping parameters were 

set as follows: minimum n of cases = 5, maximum 

n of levels = 10, minimum n in child node = 1, 

maximum n of nodes = 3. For both the random 

forest, and boosted trees regression, 60 %  

of the data was dedicated to train the algorithm 

while the remaining 40 % was used for model 

testing. The predictive ability of the models was 

assessed based on the goodness of fit between  

the observed and predicted values of the RD50  

for the compounds. 

 
Results and Discussion 
 
Predictive modelling is an important component  

of drug design and discovery. Predictive models 

establish association with the response variable, 

usually the biological activity, with a set  

of molecular properties or descriptors using 

statistical tools. Common statistical methods used 

in establishing association is multiple linear 

regression, but the utilization of machine learning 

has recently gained traction due to its versatility 

and effectivity in establishing predictive models 

(Gertrudes et al. 2012). Correlation analysis was 

used to aid in the selection of transformed 

descriptor to be included in the formulation  

of the predictive models. A prerequisite to 

correlation analysis is the test for normality 

distribution, which was done through the Shapiro-

Wilk test. In this test, a p-value greater than 

significance level of 0.05 indicates a normal 

distribution of the data. The transformed response 

variable had a p-value of 1.16e-5, indicating  

a non-normal distribution. This means that  

the usual Pearson correlation is not applicable  

for   analysing    isotonic    relationships    with   the  

response variable. The Shapiro-Wilk test was 

further conducted for the transformed variables, 

and the results are shown in Table 2.  

The descriptors hardness, dipole, solvation had  

p-values greater than 0.05, indicating a normal 

distribution, while the other descriptors had  

non-normal distribution. Thus, hardness, dipole, 

and solvation were excluded in the succeeding 

correlation analysis using Spearman, and Kendall. 

These aforementioned correlation tests are used 

for data with a non-normal distribution, wherein 

the data are converted into ranks prior to 

correlation. As a consequence, PSA, ovality,  

and Log P were also excluded from the correlation 

analysis since ties in the rankings of the compounds 

were observed. Hence, the remaining descriptors 

were subjected to both Spearman, and Kendall 

correlation tests. The results of the tests showed 

that the transformed descriptors had insignificant 

isotonic relationship with the response variable,  

as demonstrated by p-values greater than 0.05.  

As a consequence of these results, other approaches 

in selecting relevant descriptors to predict  

the mosquito repellency should be explored, such 

as backward elimination (Dudek et al. 2006). Thus, 

all 20 transformed descriptors were initially used  

to formulate the predictive models. 

The next part of the study involves identifying 

the suitable algorithm for the given data set, since 

the type of machine learning algorithm affects 

the performance of the predictive model. A model  

to predict the repellent activities of the 33 natural 

compounds using the 20 descriptors was 

preliminarily established through boosted trees, 

support vector machine, and random forest.  

The three aforementioned machine learning 

techniques are different supervised predictive 

algorithms, each possessing different 

characteristics. Boosted regression trees is  

a sequential model-building classifier wherein 

weak predictors in the previous model are given 

more weight or boosted, to improve prediction 

performance in the next model. Random forest is  

a bagging algorithm wherein bootstrapped samples 

with replacement are taken from the data set 

and predictions are obtained from each of these 

samples. Final predictions are then obtained from 

the average predictions of these samples. This way, 

the model variance may be improved but not 
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the predictive power. Boosting such as boosted 

regression trees reduces bias and therefore 

improves prediction while bagging such as random 

forest reduces variance. Random forests, unlike 

boosted trees, are less sensitive to outliers. Boosted  

trees has another advantage in terms of speed and
 

Table 3. Comparison of the performance of various machine learning algorithms in predicting the repellent activity of the 33 

natural compounds using all calculated molecular descriptors. 

 

 

Fig. 1. Performance of the predictive models based  

on relative mean squared error (RMSE, top graph)  

and correlation coefficient (bottom graph). The broken line 

represents values for the training set, the dotted line  

for the test set, and the solid line for the overall set. 

 

simplicity over random forests since the former 

performs better with smaller trees than the latter. 

Boosted trees is also insensitive under monotone 

transformations of the predictors such as 

logarithmic transformation. In SVM, optimal 

hyperplanes are constructed in a high-dimensional 

space for classification or regression. For a good 

separation, a hyperplane with the largest distance 

from the nearest training data point is chosen  

in order to achieve a lower error rate. SVM, like 

boosted trees, is also susceptible to overfitting that 

could be avoided by properly tuning its 

hyperparameters. 

The formulated predictive models utilized 

transformed descriptors and response variables 

(Table 1) in order to have a narrower range  

of values among the variables. Various goodness 

of fit measures between the observed and predicted 

repellent activity values were used for model 

diagnostics, as shown in Table 3. It is thus evident 

that boosted trees regression (using gradient 

boosting algorithm) is the ideal algorithm to be 

used for this particular dataset since it had  

the lowest deviations, and strongest correlations 

between the observed and predicted values.  

The adeptness of boosted trees for this particular 

dataset can be possibly rooted in its robustness  

to outliers, irrelevant variables, correlated 

variables, and log-transformed predictors (Hastie et 

al. 2008). 

Model optimization was thus confined to boosted 

tree regression, wherein a stepwise back 

elimination of the predictors was conducted based 

on the calculated predictor importance. This is 

necessary since the results of the correlation 

analysis (Table 2) failed to show strong association 

between the descriptors and the response variable. 

For example, the least important descriptor for the 

full-descriptor model 1 was hardness. Hence  

 Boosted Trees Support Vector Machine Random Forest 

 Train Test Overall Train Test Overall Train Test Overall 

Mean Square Error 0.134 0.133 0.133 0.487 0.271 0.428 0.455 0.244 0.372 

Mean Absolute Error 0.274 0.262 0.269 0.647 0.472 0.599 0.562 0.452 0.519 

Mean Relative Squared Error 0.014 0.014 0.014 0.044 0.024 0.038 0.045 0.024 0.037 

Mean Relative Absolute Error 0.090 0.088 0.089 0.193 0.141 0.179 0.177 0.142 0.164 

Correlation Coefficient 0.862 0.616 0.807 0.431 0.393 0.413 0.508 0.316 0.351 
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in model 2, only 19 descriptors were used  

for the modelling since hardness was removed. 

This process was repeated until the remaining 

descriptors had importance scores of greater than  

or equal to 0.90 (The predictors and their 

corresponding importance for each model is 

available in the supporting information).  

The resulting performance of the formulated 

predictive models following this optimization 

method is shown in Fig. 1. 

 
 

Fig. 2. Summary of boosted trees showing the optimum 

number of trees prior to data overfitting. 

 

The best model was judged to be model 14, since 

the remaining descriptors all had importance scores 

of greater than 0.90 (Table 4). Model 14 also 

exhibited the lowest RMSE values, and highest 

correlation coefficients in all sets (training, test, 

and overall sets). Model 14 was found optimal  

in terms of average squared error using 32 trees  

for the test set (Fig 2). The formulated regression 

models were validated using 40 % of the data. 

While no general rule exists regarding the optimum 

division of the data between training and testing 

(Roy et al. 2008), a 60–40 split seems appropriate 

in this case to balance training and validation  

of the relatively small population of the data set. 

The most important chemical descriptor is Log P, 

which relates the hydrophobicity of the molecule. 

This result resonates with the property of OBPs that 

possess a hydrophobic cavity to which odors are 

bound (Murphy et al. 2013). Majority  

of the descriptors are thermodynamic properties  

of the molecules, which are known to heavily 

influence ligand binding to proteins (Bostrom et al. 

1988).  

Table 4. Descriptors of model 14 used to predict the repellent 

activity of 33 natural compounds. All descriptors had 

importance scores of greater than 0.90. 

Transformed Descriptor Predictor Importance Score 

Log P 1.00000 

Log (Cv) 0.991466 

Log (PSA +1) 0.973521 

Log (S) 0.956767 

Log (-Energy) 0.938961 

Log (-H) 0.938961 

Log (-G) 0.938961 

Log (ZPE) 0.927269 

 

Aside from establishing a satisfactory predictive 

model for mosquito repellency, the present findings 

have introduced new descriptors that showed 

association with repellency within the context  

of ensemble learning. Previous quantitative 

structure – activity relationship models reported  

the descriptors of boiling point, molecular surface 

area, total charge of the other substituents on the 

cyclic backbone, and dipole moment were 

correlated with the repellent activity of a set  

of terpenoid compounds (Wang et al. 2008). 

Another model showed that the repellent activity  

of a class of terpenoid compounds showed 

correlation with the LUMO energy, minimum 

valence of the O atom, principal moment of inertia, 

and the shadow area of the repellent (Song et al. 

2013). Molecular topological indices have also 

been demonstrated to exhibit association with 

mosquito repellency (Garcia-Domenech et al. 

2010). It is interesting to note that the present study 

has provided new descriptors in which repellency 

can be predicted, which are heat capacity, Log P, 

entropy, enthalpy, Gibb’s free energy, energy, 

and ZPE. Past studies that attempted to predict 

mosquito repellency mostly applied multiple linear 

regression on a compound library with limited 

diversity. The presented results thus demonstrate 

the utility of machine learning in bioactivity 

predictive modelling. Individually, the descriptors 

had insignificant correlation with repellency.  

But when these descriptors were processed through 

boosted trees, a satisfactory predictive model was 

constructed. It should be noted that further 

validation of the model is still needed. Although 

the algorithm already exhibits reliable predictive 

power, increasing the general applicability 

and robustness of the model requires incorporating
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 more compounds to the data set. However, this can 

be challenging at this point considering that most  

of the reports on A. gambiae repellency focus  

on crude botanical extracts (Odalo et al. 2005; 

Deletre et al. 2013), or use a different metrics  

to measure repellency, such as oviposition activity 

index (Kweka et al. 2010), and % repellency 

(Logan et al. 2010).  

 

Conclusions 
 

A model to predict mosquito repellency of natural 

compounds for the Anopheles gambiae using 

boosted trees regression was established. DFT 

calculated descriptors were used to predict 

repellency, wherein Log P, heat capacity, polar 

surface area, entropy, energy enthalpy, Gibb’s free 

energy, and zero-point energy are new descriptors 

found to be associated with repellency. Overall  

the findings presented are expected to promote  

and accelerate the discovery of natural mosquito 

repellents, as well as to forge a deeper 

understanding on the molecular properties 

responsible for eliciting mosquito repellency. 
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