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Introduction

Thermally driven passage from the low-spin
electronic state to the high-spin one is usually
termed the spin crossover though also spin
transition, spin conversion, and spin equilibrium is
frequently used in this content and confused in their
meaning. This phenomenon can be considered as
a kind of unimolecular reaction where
the conversion from L (low-spin) to H (high-spin)
states is an process driven by entropy. For such
a case AS > 0 and AH ~ keT > 0 hold true so that
there exists a critical temperature given by the ratio
T2 = AH/AS; above Ti2 the change in Gibbs
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Fig. 1. Schematic representation of the spin crossover as
entropy driven unimolecular reaction.
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energy alters to AG < 0 so that the conversion
progresses spontaneously. Thermal development
of the high-spin mole fraction x+ can be used
in monitoring conversion degree; the equilibrium
constant is expressed as K = xn/(1 — xn). In an ideal
case the InK vs 1/T dependence is a straight line
(Fig. 1).

The spin conversion is often explained using
the orbital diagram, as presented in Fig. 2 for
mononuclear Fe(ll) and Fe(lll) complexes.
Electrons promoted from the non-bonding orbitals
t2g into the antibonding orbitals eg cause a softening
of the adiabatic potential E = f(R) (force constants
k(H) < k(L) with its minimum lying at higher
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Fig. 2. Orbital diagram showing a difference between
the low-spin and high-spin complexes Fe(ll) and Fe(lll)
in an octahedral geometry.


mailto:roman.boca@ucm.sk

Nova Biotechnol Chim (2020) 19(2): 138-153

LSY HS

Energy

Distance

Fig. 3. Interrelation of the adiabatic potentials for the low-
spin and high-spin states.

metal-ligand distances, Ro(H) > Ro(L) (Fig. 3).

The electronic contribution to the transition entropy
is given by the spin multiplicities as follows ASel =
RIN[(2Sk+1)/(2SL+1)]; this amounts to 9.1 and 13.4
J K1 mol! for Fe(lll) and Fe(ll) complexes,
respectively. A softer adiabatic potential for the HS
state implies denser vibrational energy levels which
enhances the vibrational contribution to
the transition entropy: Svib(H) > Svin(L).

Generalized crystal field theory

In explaining the spin crossover phenomenon often
an orbital picture is utilized. However, this simple
approach abstracts from the mutual repulsion
of energy and also the spin-orbit coupling.
Therefore, there is a need of a more sophisticated
approach to the spin crossover by using quantum-
chemical calculations. Herein the generalized
crystal field theory (GCF) has been applied
for such a purpose with numerical outputs (Boca
2006).

The interelectron repulsion is involved by
considering the set of atomic terms labelled by
the orbital and spin quantum numbers, i.e.
|a,L,S,M_,M). A passage to the complex
belonging to a point group G requires considering
a set of crystal-field (CF) terms |a,77,7,S,My)

(like 2T2g, ®Aig, etc.) where g is the component
of the multidimensional irreducible representation
G. The spin-orbit interaction (SOI) splits the CF-
terms into a set of crystal-field multiplets

|a,I",y"); they need be classified using the
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irreducible representations of the respective double
group (I'1 through I's for O’ in Bethe notation).

In terms of the GCF, a theoretical modelling has
been done for Fe(lll) [and Fe(Il)] systems
by involving the interelectron repulsion via Racah
parameters B = 1,122 [897] cm? and C = 4.2 B,
crystal-field poles for individual ligands F4(L), spin
orbit interaction with the coupling constant £ = 460
[400] cm™, orbital-Zeeman and spin-Zeeman
interactions (Boca and Herchel 2015). The overall
interaction matrix (Eg. 1):

{V*(B,C)+V(F,)+V* (&) +V™(B)+V¥(B)}
diagonalization E. (B)

is diagonalized and the calculated Zeeman levels

Ei(B) form the partition function (Eq. 2):

Z(B,T)=> exp[E (B)/ksT] (2)

Finally, the formulae of the statistical thermo-
dynamics can be utilized in order to calculate
magnetization and magnetic susceptibility (Eq. 3
and 4):

1)

JoF oinz
M, (8.7) - 25 |-r7( 2R ) ®
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Zmol(T)_:uo( OB ]B (4)

Since the mapping of E;(B,) proceeds for discrete

field values Bk, numerical derivatives are required
that, in fact, are provided after a parabolic fit

(Eq. 5).
Z(B,;T,) =c) +c AB, +¢.2 AB? (5)

Effective magnetic moment constructed from
the magnetic susceptibility displays a thermal
development that strongly depends upon the crystal
field strengths — see Fig. 4 for an octahedral Fe(ll1)
system. In a narrow interval of the crystal-field
strengths the spin crossover occurs: for the pole
strength F4 = 17,700 cm, the ground state is high-
spin ®Aug but for F4 = 18,200 cm™ it is low-spin
2TZg.

A delicate situation exists for the intermediate
crystal field (Fig. 5): with Fs4 = 18,000 cm?
the ground CF-term is high-spin Ay so that
the spin crossover would not apply. However,
the close-lying excited CF-term 2T2g(x6) is split
due to the spin-orbit interaction by a rather high
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Fig. 4. Calculated temperature evolution of the effective
magnetic moment for octahedral Fe(lll) systems having
various crystal-field strengths F. = 6(Dq).

amount (Asor = 690 cm™?) that overcomes the inter-
term gap (Ao = 425 cmt). Consequently, the ground
crystal-field multiplet is the component I'7(x2) «—
2Tyg that it is doubly degenerate: g(I'7) = 2. Thus,
the change of the electronic entropy (Eq. 6):

AS =RIn[g(A,,)/ 9(T;)]=RIn[6/2]>0 (6)

is positive so that the spin crossover develops
according to the bold curve drawn in Fig. 4.

For Fe(ll) systems the situation is different in
several aspects (Fig. 6). With a weaker crystal field
strength F4 = 12,800 cm™? (10Dq = 7,680 cm™),
the effective magnetic moment corresponds to
the high-spin state with a typical course passing
through a round maximum on heating. With
a bit higher crystal field of Fs = 12,870 cm¥,
the ground state is low-spin and on heating
the effective magnetic moment increases from zero
to the value geff ~ 5.0 us at the room temperature.

A typical spin-crossover behaviour proceeds
at F4 = 12,900 cm®. For Fs = 13,000 cm!
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Fig. 5. Left — energies of the lowest crystal-field terms and
crystal-field multiplets for F, = 18,000 cm™ in Fe(l11); right —
for F, = 12,900 cm™ in Fe(Il); calculations involve SOI.
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Fig. 6. Calculated temperature evolution of the effective
magnetic moment for octahedral Fe(ll) complexes having
various crystal-field strengths F, = 6(Dq).

the spin conversion is apparently incomplete
(it continues to the completeness at the much
higher temperature). With F4 = 14,000 cm? t
he spin transition occurs far above the room
temperature and only a “temperature-independent
paramagnetism” is visible until T = 400 K.

The excited crystal-field term °Tzg is split due
to the spin-orbit interaction into three groups
of the crystal-field multiplets I's, {I's + T's} and {T"1
+ T4 + TIs}. This means that four groups
of energy levels are involved in the spin crossover
of an octahedral Fe(ll) system (Fig. 6).

In octahedral systems the electron repulsion and the
crystal field strength are interrelated by the Tanabe-
Sugano (TS) diagrams where the term energy (not
involving SOI) is plotted versus Dg/B parameter
(4 =10Dq = (10/6)F4) — Fig. 7. These diagrams are
helpful in identifying the critical ratio when
the high-spin complex turns to the low-spin one.
For Fe(ll) systems, the crossover of the terms
STog > LA1g exists at the ratio Dg/B = 2.38; this
implies Dg = 2,135 cm™ and Fs = 12,809 cm™.
The last value matches the “observed” on-set
of the spin transition. Analogously for Fe(lll),
the crossover ®Aig <> 2T2g appears at Dg/B = 2.70
giving rise Dg = 3,029 cm™ and Fs = 18,176 cm™™;
this again matches the region in which the spin
crossover is observed.

The octahedral geometry, however, is rather
hypothetical for real spin crossover systems and
at least tetragonal and/or trigonal distortions would
be more close to the reality. A two-dimensional
map of the lowest crystal field terms is presented
in Fig. 8 and it can be considered as a generalized
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Fig. 7. Tanabe-Sugano diagrams for octahedral Fe(lll) and Fe(ll) complexes (experimental B and C parameters were used
in calculations).
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Fig. 8. Generalized Tanabe-Sugano diagrams showing three lowest energy levels for [FeL7"L% ] bipyramidal complex: top —

d®, bottom — d® system; left panel — ground state, centre (right) — first (second) excited state or a component of the degenerate
state. Solid line passes through the octahedral arrangement and separates the elongated and compressed tetragonal bipyramid.

141



TS-diagram (SOl not involved) allowing
a bordering of the spin crossover. When the pole
strengths Fa(z) = Fa(xy), the diagram collapses
to the TS one.

In the TS diagram the crossover point refers to
a situation when the LS and the HS state are
accidentally degenerate. According
to Fig. 3, the metal-ligand distances obey
rc < ru. In Fe(ll) complexes, these typically are
r.~1.96 - 2.00 A and AriL=ru - r. ~ 0.16 - 0.21 A.
This shift manifest itself into the ligand field
strengths owing to the relationship
R= (10Dg“/10Dg") = (ru/rL)°. This ratio amounts
to R ~ (2.2/2.0)° = 1.6 so that on passing from HS
to LS, the ligand strength increases approximately
by a factor of 2 and vice versa. In the TS diagram
of iron(ll) spin crossover compounds 10Dg™ will
be situated at the left and 10Dg- to the right
of the crossover point.

It must be emphasized that the above modelling
refers to electronic factors only and they
completely ignore the important contribution of the
molecular vibrations to the spin crossover.
Also, vertical excitations in electronic transitions
are assumed instead of the adiabatic ones.

The spin crossover can appear also for Mn(lll)
systems (S = 0 to Su = 2 transition) as well as
Co(Il) complexes (S. = 1/2 to S = 3/2 crossover).

Master equation

For description of the spin crossover, a number
of different theoretical models have been developed
so far (Wajnflasz 1970; Bari and Sivardiére 1972;
Slitcher and Drickamer 1972; Sorai and Seki 1974;
Zimmermann and Konig 1977; Rao et al. 1981,
Spiering et al. 1982; Adler et al. 1987; Bousseksou
et al. 1995; Cantin et al. 1999; Boca et al. 2003).
Their attempt is to simulate a development
of the high-spin mole fraction x+ under the thermal
propagation: x1 = f(T). One of these models is
the regular solution & domain model based upon
general principles of thermodynamics.

The first step in the regular solution model
is consideration of mixing entropy Smix; this results
from the distribution of the LS and HS molecules
within the system of N molecules that is simplified
by exploiting the Stirling formula for factorials

(Eq. 7):
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N!
mix kB In
(XN)I[@—x)NT!
=—kgN{xInx+(1—-x)In(L—x)}
Here, we utilized that XN molecules are in the HS
state and (1 — x)N in the LS one.
Let us consider domains of like spin and of uniform

size. Then the number of molecules per domain
is n=N/D and the mixing entropy alters to

(Eq. 8):
S

> @)

D!
mix — kB In
(xD)![1-x)D]!
= —k,D{xInx+(1-x)In(1- x)}

The molar mixing entropy becomes expressed as
follows (Eq. 9):

(8)

S.ix = —(R/Mm)}{xInx+@-x)In(L—x)} 9)
where R =N k; is the ideal gas constant.
The second contribution in the play is

intermolecular interactions with energy E,,

constituted as follows (Eqg. 10):

E,, = E. X +2E,XQ1-Xx)+E,, (1-x)’ 10)
=J,+ I X+ J,%°

where E,,,E , E, are the interaction energies

between HS-HS, LS-HS and LS-LS pairs,
respectively. To this end, a rearrangement offers
(Eq. 11):

Jo=E.
J,=2(E,-E,)
J, =By + By —2E,

(11)

The molar Gibbs energy adopts the form (Eq. 12):
Gx = XGH + (1_ X)GL _Tsmix + Eint (12)
where G, and G, refer to the molar Gibbs

energies for the LS and HS units, respectively.
The equilibrium condition requires (Eq. 13):

(%Xj =GH—GL+(R/n)Tln(L)
X )i, 1-x

(13)
+J,+2J3,x=0

which yields the equation for the mole fraction
of the high-spin species (Eq. 14):

x={L+exp[n(AH ~TAS +J,+2J,)/RT]}" (14)
An alternative expression is (Eq. 15):
142



Nova Biotechnol Chim (2020) 19(2): 138-153

x=1/[1+ f (x)] (15)
with the factor (Eq. 16):
f(x) =exp{[(AH +J,)-TAS +2J,x]n/RT} (16)

Such an implicit equation
by an iterative procedure.

The entropic term contains two contributions:
electronic and vibrational (Eq. 17). The partition
function of a set of m = 3N — 6 harmonic oscillators
(m = 15 for a hexacoordinate complex) is

m o exp(=hv_; /2k;T)

requires solution

Z . =
Vbt 1:1[1—exp(—hvu/kBT) 17)
m m 1
=ex hv, . [2k.T
p[;( i )}Hl—exp(—thyi/kBT)
and analogously for the HS state. Then,

in the approximation of an averaged (Einstein)
modes hv, and hv,, the entropic term becomes

(Eq. 18):
2,27,

AS = ASel + ASVib = R IH(MJ
ZeI,LZvib,L

N (18)
_RINn 2S,, +1| 1—exp(hv, /k;T)
2S, +1| 1-exp(hv, /k,T)
and the enthalpic one is (Eq. 19):
AH = AE, + m(hi7, —hi ¢)/2 (19)

Now the Egs. 15 — 16 need be solved
by an iterative process starting with a trial set

of parameters n, AH + Ji, hv, hi,
and J2 for each temperature point. Finally,
the equilibrium constant is expressed as
(Eq. 20):

X
InK =In—*

1-x, (20)

=—[(AH +J,)-TAS +2J,x,In/RT

The effect of the individual parameters to

the conversion curve and/or equilibrium constant is
presented in Fig. 9.

The condition for the equilibrium (Eq. 13), defines
the transition temperature Ti2 at which the high-
spin and low-spin mole fractions are equal,
or X, =0.5 (Eq. 21):

G,-G +J,+J,=0_ =0

T=Ty/2

(21)
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Fig. 9. Conversion curves modelled by the master equation:
a) change of the enthalpy AH/R = 100 K (short dashed),
500 K (long dashed) and 1000 K (solid) for fixed Ty, =
AH/AS = 150 K and J = 0; b) effect of the domain size n =1
(solid), 5 (long dashed), 50 (short dashed) for fixed AH/R =
500 K and T12 = 150 K — steepness of the transition; c) effect
of the solid-state cooperativeness J/R = 0 (solid), 100 K (long
dashed), 300 K (short dashed) for fixed AH/R = 500 K
and AS/R =5 — deviations from the linearity in the van’t Hoff
plot; d) effect of molecular vibrations hv,/k; = 140 K

(solid), 160 K (dashed), 180 K (dot-dashed) for fixed
Vis =15V, gas / gEs =5, and 4o/ks = 600 K.

The transition temperature (Eq. 22):
T, =(AH+J,+J,)/AS (22)
includes also two  cooperativity factors;

a cancellation of W =J, +J, can be assumed in the

theoretical model. One can overcome the two-body
interactions (Koudriavisev 1999) by considering

there-body ones producing a third-order term J.x,

in Eq. 10; this yields an additional term
AT, =(3/4)J,/AS in Eq. 22.

Cooperativeness

Within the regular solution model, the interaction
term involves the solid-state cooperativity factor —
cooperativeness y through the expression (Eg. 23):

Ei = 7X1-X) (23)



This formula originates in the intercentre
interaction (Eq. 24):
E,, =J,+JX+J,X° (24)

= ELL + 2(ELH - ELL)X+(ELL + EHH _2ELH)X2

which yields the relationship valid for the regular
solution&domain model (Eq. 25):

i _ J +23,x=(J;+J,)-J,(1-2x)
X

(25)
=W +y(1-2x)
The remainder (Eq. 26):
W=J+J,=E,—-E, (26)

can be absorbed into the effective parameter
of the site formation, or it is omitted (Eq. 27):

Ag =AH +J, +7, (27)

Then the factor entering the iteration process
(Eq. 14) relaxes to (Eq. 28):

f(x) =exp{[44 —~TAS + y(1-2x)In/RT} (28)

Finally, the cooperativeness becomes expressed
in the form (Eq. 29):

y=-J,=2E,-E, -E (29)

This expresses a tendency for molecules
of one type to interact effectively with molecules
of the same spin.

Parameter distribution model was outlined because
behaviour of the solid-state samples is non-ideal:
a reduction of the cooperativeness can be described
using a statistical distribution. High
cooperativeness leads to the thermal hysteresis
a rectangular shape of the hysteresis loop.
Observed profile of the conversion curves,
however, is often distorted with marked deviations
from the rectangular towards angled shape (Boca et
al. 2001). The parameter distribution model
considers the optimum (maximum) cooperativeness

Jz that drops as follows (Eqg. 30):
‘]Z,i =nJ, (30)

where i is the grid point (e.g. 1/100 of the optimum
value n,, =1). To this end the equation (Eg. 31):

X, =111+ f(x)]
contains the factor (Eq. 32):

31)
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f(x)=exp{[(AH +3,)~TAS +2J, XIn/RT} (32)

This equation need be solved by an iterative
procedure for the trial set of parameters,
for selected temperature, and for each mesh point.
The iteration procedure starts with x®"=0

in the heating direction, and X®* =1 on the

cooling path. The averaged value is given by
the formula (Eq. 33):

using the weights obeying the Gaussian distribution
(Eq. 34):

(33)

2
w; =exp[—(n, —ny,)" /5] (34)
1.0 a) 1.0 b)
5 0.5 1 0.5 +
OO ! | OO 1 1
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T/IK T/IK
5 5
a) b)
4 4
@ 3 | 3 A
<
I 2+ 2
1 - 14
0 : 0 :
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Fig. 10. Parameter distribution model of the spin crossover.
Distribution model width: d = 0.00001 (abrupt step) and 0.1
(gradual step). Used parameters: Do/ks = 2144 K, J/kg =
452 K, ree = 205 and gu = 2.0. Modelled using the program
MIF&FIT (Boca 2016).
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1) 6 ~0 causes a sharp distribution so that
the model collapses to the abrupt step on heating
and cooling, respectively. The conversion curve
displays a hysteresis loop  possessing
the rectangular walls.

2) Increased d causes that the hysteresis loop has
angled walls and a decreased width.

3) With increasing d the conversion curve is less
complete and visibly smoother.

Thermal hysteresis originates in existence of two

minima of the Gibbs energy at different

temperatures so that on the heating/cooling
the system falls into one of them.

Cooperativeness as the chemical/physical
hardness

Let us reconsider pair-wise interactions among
solid-state particles (Eg. 35):

B (Xy) =B (A- XH)2 + 2B, %, (1-X,) + EHHXEI (35)

which can be rearranged into the form of a Taylor
expansion (Eqg. 36):

E..(X,)=Jp + 3%, +3,% (36)

The coefficients of the Taylor series are Eq. 37 —
39 (see Fig. 11):

J,=E, (37)

J1:2ELH—2ELL:(%j:,u>O (38)

H

1( 0°E,

J,=E, +E,, —2E, =E(aTé|”t]=n <0 (39
where m — the chemical potential that equals to
minus absolute electronegativity (Sen and
Jorgensen 1987); n — the Pearson’s chemical
hardness (Sen 1993; Pearson 2005).

The cooperativeness J is then expressed through
an excess of the interaction energy (Eq. 40):

J=-3,/2=E,, - (E,,+E)/2>0 (40)
so that it interrelates to the chemical hardness.

Another cooperative contribution is (Eq. 41):
wW=J+J,=E,,—-E, >0 (42)
and it eventually can be neglected.

Recall some additional definitions according

to Pearson (Pearson 2005).
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Fig. 11. Interrelations of the interaction parameters.
a) Electronic chemical potential (Eq. 42) —
derivative of the energy with the number

of electrons at the constant potential generated
by a system of nuclei:

(5

b) Absolute electronegativity expressed (Eq. 43) as
an average of the ionization energy Ei and electron
affinity Eeg:

(42)

E +E,
X=—Hr— (43)
c¢) Chemical hardness (Eq. 44):
=— : ~ 44
n=3 ( e j n~— (44)

d) Electronegativity shift for two reactants owing to
a transfer of AN electrons from 2 to 1 (Eq. 45 and
46):

=1 +2m, - AN (45)
My = i, =217, - AN (46)
d) Electronegativity  (chemical potential)
equalization g4 =y, yields (Eq. 47):

AN =14 =% (47)

2 (n,+n,)

Electrons move from the site of lower
electronegativity to the site of higher

electronegativity (Eg. 48). This causes an energy
lowering:



1 Zl 752
4 (7, +1,)

e) Bulk modulus B and compressibility x of a solid
is (Eq. 49):

AE = (48)

1 op
—=B= Pa 49
~-5-v(%] . P (49)
f) Physical hardness becomes (Eq. 50):

ou \ ]

- = =BV, =H, [Imol? 50
[ 8Nj 7 0 [ ] (50)
where Vo — molar volume, N — number
of particles.

g) Fluctuations in the number of particles
for a grand canonical ensemble (Eqg. 51):

OoN N’k 1 x 1

b N-—(N)?)=—=— 51
(e e

An ensemble can be crystals of identical volume
but with varying numbers of component atoms,
i.e. crystals which are physically soft (inverse
of hard) possess large fluctuations in N. This set
of equations represents a good starting point
for investigation of the physical and chemical
nature of the solid-state cooperativeness.

Calorimetry vs. magnetometry

The classical thermodynamics deals with the
volume work dw=-pdV and defines two heat

capacities (Eqg. 52 and 53):

(NEBNV)) o | 2fdInZ
CV_( T ]V_Rﬂ{T(aTMV 52

c :(aE(s,p)]
p T )

:Ré Tz(ﬁlnzj +T(§Inzj
aT ot ), lomv )|

where Z is the partition function. In the case
of the magnetic work dw= g ,HdM again two

kinds of the heat capacities are distinguished
(Eq. 54, 55):

CM:(ﬁU(S,M)] :Ri[Tz(alan } (54)
T ), oT Tl

(53)
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(aE(s H)j
Ri{Tz(ﬁlnzj +T(alnzj }
T T ), aInM J); |,

(Here, enthalpy is denoted as E, not to be confused
with the magnetic field strength H.) For the solid

state, the appropriate formula for the molar excess-
heat capacity measured in the zero field is (Eq. 56):

gl Tz[ﬁlnz)
ot T Jul,

This allows a comparison of the experimental heat
capacity (measured using adiabatic or differential
scanning calorimeters) with that reconstructed by
the theoretical model of the spin crossover
(e.g. regular solution&domain model).
By substituting the partition function (Eq. 57):

_ S5 +Y
" [L—exp(hi_/KT)I"

x{1+ SH(SH+1)[1—exp(h1jL/kT)} } -

(55)

Co ~C (56)

S, (S, +1) | 1—exp(hi7,, /KT)

exp{-[AE, +(hv_ —hv,)m/2
V(3,4 3,)+ 3,@x-D]/KT

into Eg. 56, explicit expression for the heat
capacity along with its FORTRAN code is obtained
by exploiting capabilities of the MATHEMATICA
package (Wass 1999).

The heat capacity and/or its weighted function then
become a combination of the underlying lattice
vibration functions (taken as polynomials)
and the excess-heat capacity (Eq. 58 and 59):

C,=@-x)(a +bT+cT*+d,T?
+Xy (8 +b T +¢,T?+d, T)+C
(C,/IT)=(1-x)(@ +bT+cT?+d.T?)
+Xy (@ +b T+ T2 +d, T%)+(C/T)

(58)

(59)

where only some polynomial terms need be
considered.

Three complexes under the investigation are
characterized as follows (Fig. 12). Complex 1 —
[Fe(2-pic)s]Cl2-MeOH is a non-cooperative system;
its thermodynamic data were scanned by
the adiabatic calorimetry (Nakamoto et al. 2001).
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Fig. 12. Experimental (open symbols) and fitted (full lines)
thermodynamic functions for 1, 2, and 3.

Complex 2 - [Fe(pybzim)s](ClO4)2 belongs
to a medium-cooperative system. There is
no structural change during the spin crossover as
documented by a continuous increase of the lattice
parameters. DSC technique has been applied for it
(Boca et al. 2003).

Complex 3 — [Fe(phen)2(NCS)2] is a strongly
cooperative system. The effective magnetic
moment increases abruptly near the transition
temperature T2 and the structural changes
accompany the spin transition.

The thermodynamic data were collected by the
adiabatic calorimetry (Sorai and Seki 1974).

The data fitting by the Eqg. 56 — 57 gave the set of
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the spin crossover parameters which are presented
in Table 1.

Table 1. Parameters of the spin crossover for complexes 1
through 3 from fitting the heat capacity.?

Parameter ° Cooperativeness

1-small 2-medium 3 -high
Site format. energy 1370 351 1039
(derilks) 1K
Entropic parameters Feff = hv, Ihc= rerr = 357
7545 454 cm?
hv, =
hv, /1.5
Cooperativeness 20 136 182
(I/ks) /K
AH /kJ mol*? 11.39 2.92 8.64
[8.88] [3.04] [8.60]
AS /Kt mol? 74.2 19.0 48.9
[59.5] [21.0] [48.8]
T, =AH/AS /K 153 153 177
[149] [145] [176]

2 Values in square brackets are the direct calorimetric
determination.
® Simplifications: AS =RInr, ,J=-J,/2,

Ag =AE;+m(hv, —hv, )2+, +J,.

Having the experimental heat capacity curve
and its temperature-weighted function at the
disposal, the numerical integration offers the
enthalpy (Eg. 60) and entropy (Eq. 61) of the spin
transition:

Tmax

TP

AH = [ CidT + [ CrdT (60)
Tiin Tp
TP Tmax

AS= [ (C,/TydT + [ (C,/T)dT (61)

Tmi n Tp

The measured Cp and Cp/T data need be corrected
for the underlying lattice vibrations, for instance,
by subtracting polynomial functions applied below
Tmin and/or above Tmax and the integration limit
contains the peak value of Tp (Fig. 13).

The integration can be improved by utilizing
the conversion curve xu vs T known from
the measurements of the magnetic susceptibility.
This enables a construction of the smooth baseline
between Cmin for the LS and Cmax for the HS; the
excess enthalpy AH(T) (Eq. 62) associated
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with the spin crossover at the given temperature is:

AH(T)= [ [C, —(as+bTT

T

min

: 62)
- I Xis (Cmax _Cmin)dT

T

The excess entropy at the given temperature AS(T)

can be evaluated in an analogous way.

A direct fitting of the magnetic susceptibility data
x(T) is possible by considering three contributions
in the form of a Curie-Weiss law, namely for the
low-spin species, high-spin system, and eventual
paramagnetic impurity (Eq. 63, 64, and 65):

2 =Co07S, (S, +1D)/3(T -0, ) +a, (63)
An= CogliSH Sy +D/3(T-0,) +a, (64)
A = Cog§|SP| (S +D/3(T = 0p)) + (65)

where the reduced Curie constant consists of the
physical constants, C,=N,u,u;/ks. For Fe(ll)
centres (SL = 0, Sn = 2, Spi = 5/2) the appropriate
set of magnetic parameters consists of av, gH, an,
gel = 2, Op1, and api. For Fe(ll1) centres (S. = 1/2,
Su = 5/2) the active set is g., O, a., g4 = 2.0 and
oH. Some of these parameters can be fixed
or omitted in order to avoid an overparametrization.

(C,)I(kI K* mol™)
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| Fig. 13. Heat capacity analysis
.| for [Fe(pybzim)s](ClO,).:
a) raw data; b) data for
| subtraction of underlying lattice
vibrations; ¢) data for numerical
integration yielding AH and AS.
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In addition, there are four parameters of the spin
crossover that enter evaluation of the conversion
curve XH(T), i.e. Zefr, J, hiy, and hv, (the last
again can be fixed). Then the susceptibility is
balanced as follows (Eq. 66):

X(T) = Q= Xy = Xp ) XL+ Xy X + X Xy (66)
and the equilibrium constant (Eq. 67) is:
K=, / Q=X —X5) (67)

The enthalpy of the spin transition (Eq. 68)
is calculated as a temperature—independent
quantity:

AH, =N,Ay =R(4Ag /kg) (68)

which absorbs the site formation energy, zero-point
vibration correction, and eventually the cooperati-
veness parameters (Eq. 69):

Ay = AE, +(h7, —hv, )m/2+ (3, +J,) (69)

The entropy of the transition (Egq. 70) is
a temperature-dependent quantity which at the
1-exp(hv, /kgT,,)

transition temperature is:
(70)
1-exp(hv, /ksT,,)

This can be approximated through an effective
degeneracy ratio (Eq. 71):

25, +1
25, +1

(AS), =R ln{
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Fig. 14. Comparison of magnetic and calorimetric data
for [Fe(pybzim)s](ClO4),. Empty points — experimental data,
lines — fitted.

AS =RInr,, (71)

where resf is subjected to the fitting procedure.

The fitting of the magnetic data and calorimetric
data is compared in Fig. 14 on the common basis —
temperature evolution of the high-spin mole
fraction (left) and the van’t Hoff plot (right).

Statistical analysis

A number of organic species HaL, acting
as pentadentate ligands L?, has been prepared
(Fig. 15) by a Schiff condensation between
the substituted salicylaldehyde (R-sal) and the
asymmetric or symmetric triamine (pet or dpt).
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OH HO OH HO
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TIK

Fig. 16. Magnetic data for [Fe(napet)NCS]: left — temperature
dependence of the effective magnetic moment, right —
a temperature evolution of the calculated high-spin fraction
(right); grey circles — experimental data, solid line — fitted.

I
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TIK

Analogously, a set of Schiff-base ligands was
obtained using the naphthyl skeleton. They were
complexed  with  Fe(lll) salts yielding
hexacoordinate [Fe'"LX] complexes.

Thermal evolution of the effective magnetic
moment showing spin crossover is exemplified
in Fig. 16 along with the fitted curve based upon
the regular solution model.

In a series of hexacoordinate [Fe''L>X] complexes,
the transition temperature T12 of the spin crossover
can be modified by appropriate coligands X
(Fig. 17) (Salitro§ et al. 2009; Nemec et al. 2011;
Kriiger et al. 2013, 2015; Masarova et al. 2015).
This is affected by the enthalpic and entropic terms
since Ti2 = AH/AS holds true. It is expected that

SR a‘S

Nx =N
OH HO OO g
2anapet O

lanapet

OH HO

Nm NH
Na N
N
OH HO HO
OEt EtO
5Cl-salpet
3EtO-salpet

\

3MeO-saldpt

Fig. 15. Sketch of the related pentadentate ligands H,L5.
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Fig. 17. General form of the [Fe(R-salpet)X] type complexes;
coligands X~ = CI~, N37, NCO~, NCS~, NCSe™, and CN".

the value of AH can be altered by varying
the crystal field strength of involved ligands.
However, the factors influencing the value of AS
are more complex as they include electronic (net
spin), vibrational, and other contributions.

Temperature evolution of the effective magnetic
moment for related complexes is shown in Fig. 18
and 19. It can be concluded that an increase
of the crystal field strength 10Dq of the coligand
X~ causes a switch of the spin states of complexes
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T T T T T
4 4 SC

g

—— [Fe(saldpt)py](BPh,),, SC
—— [Fe(5Cl-saldpt)py]l(BPh,),, SC
—— [Fe(3MeO-saldpt)py]l(BPh,),, SC

'ueﬂ/luB
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crossover in complexes of [Fe''(R-saldpt)py]

o 50 100 300

Fig. 19. Spin
(BPhy), type.

from the high-spin state (X~ = CI-, NCO"), through
the spin crossover (X~ = NCS-, NCSe"), to the low-
spin state (X~ = CN").

In order to unhide latent correlations among
thermodynamic parameters influencing the spin
crossover, modern multivariate methods were
utilized for processing data listed in Table 2:
Pearson correlation (PC), cluster analysis (CA)
and the principal component analysis (PCA)
(Augustin and Boc¢a 2015).

T T T T T

T T T T T

6 HS 1 6 HS 1
5 —— [Fe(Cl-salpet)Cl], HS 4 5 A’ i
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—_— = o
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£ 34 1 =31 1
2 i LS 2 A B
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Fig. 18. Comparison of the spin states in complexes of [Fe"'L5X] type. Top — fixing the Schiff-base ligand and varying
coligand; bottom — varying the Schiff-base ligand and fixing the coligand NCS. HS — high spin, SC — spin crossover,

LS — low spin. For details consult Table 2.
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Table 2. Retrieved thermodynamic parameters for spin
crossover systems.?

Compound Tz AH  AS J
1h [Fe(3EtO-salpet)NCS] 84 09 12 98
82
2 [Fe(5Br- 142 16 11 76
salpet)Ns]-MeOH
3 [Fe(5ClI-salpet)NCS] 280 58 21 180
4  [Fe(5Cl-salpet)NCSe] 293 65 22 197
5 [Fe(5Br-salpet)NCSe] 326 6.0 18 215
6 [Fe(salpet)atz] 416 15 37 284
7" o-[Fe(lanapet)NCS] 44 1.6 4 8
40
8 [Fe(2anapet)NCS] 114 16 14 52
9" [Fe(napet)N3]-MeOH 122 15 11 99
117
10  [Fe(napet)NCS]-MeCN 151 19 12 87
11 [Fe(napet)NCO] 155 25 16 102
12 [Fe(napet)NCSe]-MeC 170 23 13 99
N
13 [Fe(napet)NCS] 186 33 18 150
14 [Fe(5Cl-saldpt)py]BPhs 78 0.4 6 63
15  [Fe(3MeO-saldpt)py] 273 45 17 90
BPh,
16  [Fe(saldpt)py]BPh, 310 54 17 150

2 Spin crossover between S = 1/2 and S = 5/2; " — spin
crossover with hysteresis; ' — spin crossover between
intermediate spin S = 3/2 and S = 5/2. Data of 6 and 7
was omitted in the statistical analysis. Units: Ti/K;
AH/KJ molt; AS/] Kt mol?; (J/kg)/K. Taken from (Bocda
et al. 2000; Salitros et al. 2009; Nemec et al. 2011; Kriiger
et al. 2013, 2015; Masarova et al. 2015).

The results obtained by the cluster analysis are
shown in Fig. 20. It can be seen that the complexes
under study span two clusters: the cluster 1 is
formed by complexes for which below-room
temperature spin crossover was observed (No. 1, 2,

18F g

8,9, 10, 12 and 14). The remaining complexes span
the cluster No 2 and they show near- or above-
room temperature spin transition.

The PCA analysis yields the biplots of principal
components shown in Fig. 21. It is seen that
the transition temperature Ti2 closely relates to
the enthalpy and entropy of the spin transition
whereas a correlation with cooperativeness J does
not exist. The biplot on the right shows the objects
spanning into individual clusters which are well
separated between two principal components.
Finally, the Pearson correlation evaluates
the correlation coefficients for each pair of
variables. It is found that Ti2 — AH pair possesses
a high correlation coefficient r = 0.97. As already
indicated by CA and PCA analysis, the correlation
of the cooperativeness with the remaining
parameters is weak. The transition temperature
and the transition entropy are plotted vs the
transition enthalpy along with the regression curve.
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Fig. 20. Dendogram of the cluster analysis (using Ward’s
method and squared Euclidean distance) for complexes
numbered according to Table 2.
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Fig. 22. Linear correlations Ty, vs AH and AS vs AH.
The confidence intervals (95 %) are drawn as dashed curves.

According to Fig. 22 the linear relationship is now
confirmed.

The aspects discussed in the  present
communication are only a part of the huge story, as
documented by a number of alterative models
and plethora of experiments about the spin
crossover phenomenon. Alternative views were
comprehensively presented in recent articles
(Enachescu et al. 2018; Nicolazzi et al. 2018;
Pavlik et al. 2018).

Conclusions

The spin crossover behaviour is based upon a fine
tuning of the crystal field strengths balancing
the interelectron repulsion. The spin orbit coupling,
however, also plays an important role. Ideal
thermodynamic  behaviour, as described by
the regular solution&domain model, is further
modified by the interactions in the solid state that
are considered as the solid-state cooperativeness.
The role of the cooperativeness is analogous to
the role of the activity in solution models: it allows
using the equation for the ideal system but instead
of the mole fraction xn, an effective mole fraction
J:xu is in the play. The nature of the
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cooperativeness lies in the electronic (chemical)
and nuclear (physical) hardness. Thermo-dynamic
data about AH and AS can be obtained not only
from the direct calorimetric measurements but also
from an appropriate model of the spin crossover
adapted to the magnetic data analysis. These
parameters are mutually interrelated through
the transition temperature Ti2 as proven by
the multivariate statistical analysis.
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