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Abstract 
Apoptosis is a form of programmed cell death leading to genetically controlled self-destruction of cells. It is 

essential in the development, maintenance, and regulation of cells during physiological as well as pathological 

conditions. Deregulation of apoptotic mechanisms is associated with various pathological diseases including 

cancer, autoimmune disorders, viral and bacterial infections. Virus and Mycobacterium tuberculosis elicit host cell 

apoptosis as a part of host immune defense or pathogen dissemination. They inhibit both extrinsic and intrinsic 

pathways of apoptotic mechanisms facilitating pathogen survival and escape from host immune defense.  
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Introduction 
Apoptosis is a form of programmed cell death 

which is the most common form of physiological 

cell death in eukaryotes, evolutionarily conserved 

from yeast to humans.  It leads to the genetically 

controlled sequence of events that eventually give 

rise to spatially and temporally regulated self-

destruction of cells [1,2]. Apoptotic mode of cell 

death is an active process, critical in the 

development of multicellular organisms and the 

maintenance and regulation of cell populations 

during physiological and pathological conditions 

[3,4]. Deregulation of apoptosis leads to various 

pathological conditions including cancer, 

autoimmune disorders, and spreading of viral 

infections while AIDS, Neurodegenerative 

disorders, and ischemic diseases are caused or 

enhanced by accelerated apoptosis [3,5–8]. Both 

viral and Mycobacterium tuberculosis (Mtb) 

infections modulate host cell apoptosis for their 

benefits [6,9–11]. This review briefly summarizes 

the mechanisms of apoptotic deaths and their 

regulation and significances in viral and 

mycobacterial infections.  

Apoptosis 
Various extracellular and intracellular stimuli 

trigger apoptosis. Ligation of cell surface 

receptors, DNA damage (because of defects in 

DNA repair mechanism, cytotoxic drugs, or 

irradiation), lack of survival signals, contradictory 

cell cycle signaling or developmental death signals 

are some of the signals evoking apoptosis [1]. 

Apoptosis depends on the activation of a 

proteolytic cascade of pro-caspases into active 

caspases. These caspases are synthesized in cells 

as inactive zymogens called as pro-caspases. Pro-

caspases are cleaved by pre active caspases at one 

or two specific aspartic acids splitting them into 

two subunits, one small and another large. The 

assembly of two heterodimers of small and large 

subunits results in the formation of active 

caspases. The pro-caspases fall into two classes- 

initiator and executioner [12,13]. Apoptotic stimuli 

trigger activation of initiator caspases (caspases 2, 

8, 9, 10) which in turn cleave and activate the 

executioner caspases (caspases 3, 6, 7) [14]. The 

executioner caspases cleave thousands of 

substrates responsible for the characteristic 

morphological and biochemical features of 

apoptotic cells [14]. The three main established 

routes of apoptosis in mammals are extrinsic, 

intrinsic and perforin/granzyme pathways [2,15]. 

Irrespective of the death stimuli or apoptotic 

paths, all the three routes lead to the activation of 

executioner caspases 3, 6 and 7 (Figure 1).  
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Figure 1. Diagram showing general apoptosis process through three main pathways: Extrinsic (death receptor-
mediated viz. FasL, Fas, Trail-R1, and R2) pathway, intrinsic (mitochondria-dependent) pathway and perforin 
(granzyme)-mediated pathway. The extrinsic pathway starts with the binding of death receptor ligand (DR ligand) to 
the cell surface death receptors including tissue necrosis factor (TNF) receptor superfamily include CD95 and TNF-
related apoptosis-inducing ligand (TRAIL)-R1/-R2, with the rapid activation of the initiator caspase 8. In the intrinsic 
pathway, stress (reactive oxygen species, ROS, UV, genotoxic stress, etc.) results in the perturbation of mitochondria 
membrane permeability, release of the proteins such as cytochrome c from the inner mitochondrial membrane space. 
The release is regulated in part by Bcl2 family members, with anti-apoptotic (Bcl2/Bcl—XL/Mcl1) and pro-apoptotic 
(Bax, Bak, and tBid). Once released, cytochrome c binds to apoptotic protease-activating factor 1 (Apaf1), which results 
in the formation of the Apaf1-caspase 9 apoptosome complex and activation of the initiator caspase 9. The activated 
initiator Caspases 8 and 9 then activate the effector caspase 3, 6 and7 with normal cell apoptosis or another T-cell 
effector mechanism. Cytotoxic T lymphocytes (CTL) or natural killer (NK) cells secrete the transmembrane pore-
forming molecule perforin and release cytoplasmic granules (Granzyme A/B) into tumor cells or virus-infected cells. 
Granzyme A activates DNA degradation by DNase NM23-H1while granzyme B cleaves pro-caspase 8, pro-caspase 3 or 
Bid. 

Extrinsic pathway of apoptosis 
External apoptotic signaling mediates the 

activation of transmembrane death receptors that 

transmit apoptotic signals after binding to 

extracellular death ligands such as FasL or tumor 

necrosis factor-α (TNFα) [16]. Death receptors 

belong to tumor necrosis factor receptor (TNFR) 

superfamily including TNFR-1, Fas/CD95 and 

TNF receptor-related apoptosis-inducing ligand 

(TRAIL) receptors DR-4 and DR-5 [17]. Proteins of 

TNFR family result in trimerization and activation 

of intracellular death domain after ligand binding. 

Adaptor proteins like FADD or TRADD get 

recruited through their death domains to the 

death domains of activated death receptors 

forming death inducing silencing complex (DISC). 

Death effector domains of FADD or TRADD 

recruit pro-caspase 8 leading to their autocatalytic 

activation and release of active caspase 8. 

Activated caspase 8 then cleaves and activates 

downstream executioner caspases 3 and 7. In some 

cases, the extrinsic death signals can crosstalk with 

an intrinsic pathway through caspase 8-mediated  

proteolysis of the BH3-only protein Bid. Truncated 

Bid can translocate to mitochondria and induce 

the release of cytochrome c and assembly of 

apoptosome triggering activation of pro-caspase 9 

[18–20] (Figure 1). 
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Intrinsic pathway of apoptosis 
Intracellular death signals such as DNA damage, 

oxidative stress, starvation and others trigger 

intracellular apoptotic pathway. All of these 

stimuli cause changes in inner mitochondrial 

membrane resulting in the opening of the 

mitochondrial permeability transition (MPT) pore, 

loss of the mitochondrial transmembrane potential 

(ΔΨm) and release of two groups of pro-apoptotic 

proteins from the intermembrane space into the 

cytosol [21]. The first group of released proteins 

constitutes cytochrome c, Smac/DIABLO, and the 

serine protease HtrA2/Omi that promotes 

caspase-dependent mitochondrial pathway [22–

24]. Cytochrome c binds and activates Apaf-1 

(apoptosis protease activating factor 1) which 

hydrolyzes bound dATP to dADP. Replacement of 

dADP with dATP/ATP leads to Apaf-1-

cytochrome c complex to oligomerize into a wheel 

like a heptamer called apoptosome. Pro-caspase 9 

gets recruited in the apoptosome through its 

caspase recruitment domain (CARD) [25] and gets 

activated and cleaved which then triggers 

activation of downstream executioner caspases 

(Figure 1) [25]. Smac/DIABLO and the serine 

protease HtrA2/Omi, on the other hand promote 

apoptosis by inhibiting IAP (inhibitors of 

apoptosis) proteins [23,24]. The second group of 

released proteins includes AIF, endonuclease G, 

and CAD which translocate to the nucleus and 

cause DNA fragmentation and condensation of 

peripheral nuclear chromatin [26–28]. In addition 

to the release of mitochondrial factors, the loss of 

the ΔΨm leads to regulation of biochemical 

homeostasis of the cell viz. ATP synthesis gets 

stopped, redox molecules like NADH, NADPH 

and glutathione are oxidized, and reactive oxygen 

species are enhanced [29–32]. 

Perforin/ Granzyme pathway of 
apoptosis 
Cytotoxic T lymphocytes (CTL) or natural killer 
(NK) cells can exert their cytotoxic effects on 
tumor cells and virus-infected cells by secretion of 
the transmembrane pore-forming molecule 
perforin with the subsequent release of 
cytoplasmic granules through the pore into the 
target cell [33]. These granules constitute the 

serine proteases granzyme A and B. Granzyme B 
can cleave proteins at aspartate residues and thus 
activate pro-caspase 8 and Bid.  Direct activation 
of pro-caspase 3 and cleavage of ICAD could also 
be the results of granzyme B. Thus granzyme B 
dependent routes of apoptosis may be 
mitochondrial or direct [26]. Granzyme A activates 
caspase-independent apoptosis [34] (Figure 1). 
Inside the cell, it enables DNA degradation by 
DNase NM23-H1. Granzyme A cleaves SET 
complex (nucleosome assembly protein that 
usually inhibits DNase NM23-H1 gene) thereby 
releasing the inhibition of DNase NM23-H1 
leading to DNA degradation [34]. 

Regulation of apoptosis 
The components of apoptotic pathways are 

genetically encoded and ready for action. Most 

cells are just waiting for the death stimuli to 

trigger these pathways. Thus a tight regulation of 

apoptosis is mandatory. B-cell lymphoma-2 (Bcl-2) 

family proteins play a crucial role in the regulation 

of apoptosis through their ability to control 

mitochondrial permeability [35]. Bcl-2 family 

comprises three subfamilies that contain between 

one and four Bcl-2 homology (BH) domains. Anti-

apoptotic Bcl-2 subfamily includes four BH 

domains, and most of them are membrane-

associated proteins. The pro-apoptotic Bax-like 

subfamily comprises membrane-associated 

proteins that lack BH4 domains, while the BH3-

only subfamily includes a diverse group of 

proteins containing only BH3 domains [36].  The 

mammalian BH3-only protein family currently 

consists of eight members (Bid, Bad, Bim, Bak, Bik, 

NOXA, PUMA, and HRK). Among eight 

members, NOXA, PUMA, and Bid are 

transcriptionally upregulated by p53. Bid is 

activated by caspase 8-dependent proteolysis. 

Phosphorylated Bad is trapped by 14-3-3 protein 

and sequestered in the cytoplasm. Once Bad is 

unphosphorylated, it gets freed and is 

translocated to mitochondria. Bim and BMF are 

microtubules, and actin microfilaments tethered 

proteins and disruption of cytoskeleton liberates 

them [37,38]. The anti-apoptotic Bcl-2 family of 

proteins (Bcl-2, Bcl-XL, Bcl-W, Mcl1, Bcl2A1 and 

Bcl-B) blocks apoptosis by preventing BH3-only  
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Table 1: List of viral and Mtb proteins involved in apoptosis deregulation 

Viruses/Mtb (proteins) Modulation in apoptotic process References 

Adenovirus proteins (E3-10.4K  
and E3-14.5K) 

Reduce Fas presentation, inhibit TNF-mediated apoptosis 
 

[42, 43] 
 

Epstein-Barr virus LMP-1 protein Acts like constitutively activated TNF receptor [44] 

Myxoma virus protein M-T2 Viral mimic protein of TNF receptor [45] 

Cowpox virus CRM protein Prevents TNF-mediated apoptosis [46] 

Vaccinia virus protein A53R Prevents TNF-mediated apoptosis [47] 

HIV-1 Tat Decreases susceptibility to TRAIL, TNFα, and Fas. 
Upregulates FasL, Bax, caspase 8 and RCAS-1 expression, 
upregulates Bcl2 and c-FLIP expression, downregulates 
caspase 10 expression 

[50,68-72] 

Herpesviruses: FLICE Inhibits DISC formation [51] 

Human Cytomegalovirus: vICA Inhibits caspase 8 [52] 

SV40 virus large T antigen Binds to and sequesters p53  [53] 

Human papillomavirus E6 protein p53 ubiquitination and degradation [55] 

Adenovirus E1B-55K protein p53 ubiquitination and degradation [56] 

Adenovirus E1B-19K Binds to Bak preventing Bax-Bak oligomerization [56] 

Human herpesviruses: Bcl-2 ortholog Blocks the mitochondrial release of cytochrome c [59] 

Epstein-Barr virus: Bcl-2 ortholog Blocks the mitochondrial release of cytochrome c [60] 

Kaposi’s sarcoma-associated γ-herpes 
virus: Bcl-2 ortholog 

Blocks the mitochondrial release of cytochrome c [59] 

Human CMV protein: vMIA Inhibits Fas-mediated apoptosis [61,62] 

Poxviruses serpin CrmA Suppresses caspase 1 and 8, inhibits TNF and Fas-mediated 
apoptosis 

[63] 

Baculovirus protein p35 Inhibits caspases 1, 3, 6, 7, 8 and 10 [64,65] 

African swine flu virus: vIAP Inhibits caspase 3 [66] 

HIV-1 gp120 Syncytia formation, upregulates Fas, FasL, and TNFα 
expression, upregulates TRAIL receptors: DR4 and DR5, acts 
as a molecular mimic of Fas, reduces expression of Bcl2,  
phosphorylates mTOR and p53, increases expression of 
PUMA and activates p38 

[48,67] 

HIV-1 Nef Increases the membrane expression of TNF [49] 

Hepatitis B virus pX protein  Inactivates p53 [57] 

West Nile capsid protein Binds to and sequesters p53 [54] 

Arenaviruses matrix protein Z Activation of BH3-only proteins?, an indirect interaction 
with p53 and PI3K/Akt with the help of PML? 

[74-78] 

Enterovirus 71 2B protein Direct interaction with and activation of Bax [80,81] 

Mtb proteins 
(Mcl-1, A1?) 

Upregulates TNF, Fas, and caspase 8 expression, stimulates 
ROS-dependent activation of apoptosis signal-regulating 
kinase, phosphorylates and degrades FLIP, MOMP-
mediated apoptosis, upregulates FLIP expression, secretes 
more sTNFR2, increases expression of anti-apoptotic protein 
Bcl-w, inhibition of the pro-apoptotic protein Bad 

[101,104-
106, 113-
115] 

? Refers to mechanism not yet verified.   
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protein induced oligomerization of the pro-

apoptotic Bcl-2 proteins Bax and Bak in the 

mitochondrial outer membrane. Some BH3-only 

proteins (Bid and Bim) interact with almost all 

anti-apoptotic Bcl-2 proteins whereas others 

(NOXA) interact only with specific Bcl-2 members 

[35,37,38]. 

 In conclusion, under distinct apoptotic stress 

signals, BH3-only proteins interfere the fine-tuned 

balance of homo or hetero-oligomerization 

between pro-apoptotic members Bax/Bak and 

anti-apoptotic members Bcl-2/Bcl-XL and release 

the intermembrane space proteins like cytochrome 

c to trigger apoptosis.IAPs (inhibitors of apoptosis 

proteins) are a family of proteins having anti-

apoptotic activity [32]. Including NAIP, c-IAP1, c-

IAP2, XIAP, and survivin, there are eight human 

IAP homologs. XIAP, c-IAP1, and c-IAP2 directly 

inhibit caspases 3, 7, and 9. Smac/Diablo, when 

released from mitochondria, binds to XIAP and 

releases caspases from XIAP-caspase complex 

thereby enabling their activation [39,40]. The 

cellular FLICE-like inhibitory proteins (c-FLIPs) 

inhibit activation of caspase 8 and thus prevent 

apoptosis [34]. 

Virus-mediated modulation of apoptosis 
In most cases of viral infections, immune and 

inflammatory responses, as well as apoptosis of 

the infected host cell, are triggered. Meanwhile, 

some viruses utilize apoptosis as a mechanism of 

killing cells and spreading virus by targeting a 

variety of crucial steps in the pathways that block 

or delay apoptosis. Thus viral infection elicits host 

cell apoptosis as a part of host immune defense or 

viral survival component [41]. 

Virus modulates the extrinsic pathway 
of apoptosis 
Many viruses can efficiently modulate the 

extrinsic pathway of apoptosis.  Adenovirus 

proteins E3-10.4K and E3-14.5K reduce the 

presentation of Fas molecules on the surface of the 

cells that results in resistance to Fas-mediated cell 

death [42]. These proteins also resist TNF-

mediated apoptosis [43]. Epstein-Barr virus LMP-1 

(latent membrane-1) protein acts like 

constitutively activated TNF receptor which 

interacts with TNF receptor-associated death 

domain (TRADD) protein [44]. The myxoma virus 

protein M-T2, a viral mimic protein of TNF 

receptor, Cowpox virus cytokine response 

modifying (CRM) proteins and vaccinia virus 

protein A53R inhibits TNF-mediated apoptosis 

[45, 46, 47]. Membrane-bound HIV-1 gp120 

induces apoptosis through syncytia formation 

while it triggers apoptosis by various mechanisms 

like upregulation of Fas, FasL, and TNFα 

expression, upregulation of TRAIL receptors DR4 

and DR5, and acting as a molecular mimic of Fas 

[48]. HIV-1 Nef protein downregulates the 

expression of CD4 and MHC I molecules but 

heightens the membrane expression of TNF and 

related cytokines [49]. HIV-1 Tat mediates 

apoptotic resistance in the infected cells by 

decreasing susceptibility to TRAIL, TNFα, and 

Fas, but it reconciles apoptosis in uninfected 

bystander cells by upregulation of FasL [50]. 

Various herpes viruses encode viral FLICE-like 

inhibitory proteins (FLIPs), which contain death 

effector domain but lack caspase activity, inhibit 

extrinsic apoptotic pathway at the point of DISC 

formation [51]. The human cytomegalovirus 

encodes vICA, which associates with caspase 8 

and blocks its activation [52] (Table 1). 

Virus modulates the intrinsic pathway of 
apoptosis 
Many viruses alter apoptosis utilizing the tumor 

suppressor p53. SV40 virus large T antigen and 

West Nile capsid protein binds to p53 and 

sequesters it in an inactive complex [53,54]. 

Moreover, Human papillomavirus E6 protein and 

adenovirus E1B-55K protein promote ubiquitin 

mediated degradation of p53 [55,56] and Hepatitis 

B virus pX protein binds and inactivates p53 [57]. 

Virus-encoded orthologs of anti-apoptotic Bcl2 

proteins are also crucial players in the modulation 

of apoptosis. Adenovirus E1B-19K is similar to 

Bcl2 which binds to Bak preventing Bax-Bak 

oligomerization [58]. Human herpes viruses, 

Epstein-Barr virus and Kaposi’s sarcoma-
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associated γ-herpes virus use Bcl-2 orthologs to 

block the mitochondrial release of cytochrome c 

[59,60]. Although human cytomegalovirus (CMV) 

protein vMIA shares no sequence homology to 

Bcl2, it is functionally similar to Bcl-2 and inhibits 

Fas-mediated apoptosis [61,62]. Some viruses use 

IAP orthologs that can inhibit caspases. For 

example, Poxviruses serpin CrmA suppresses 

caspase 1 and 8 and inhibits TNF and Fas-

mediated apoptosis [63]. Likewise, African swine 

flu virus produces vIAP that inhibits caspase 3 

and Baculovirus protein p35 is another vIAP with 

a potential to inhibit caspases 1, 3, 6, 7, 8 and 10 

[64,65,66]. HIV-1 gp120 triggers apoptosis by 

reduced expression of Bcl2, phosphorylation of 

mTOR and p53, increased expression of pro-

apoptotic protein PUMA and activation of p38 

[67]. HIV-1 Tat inhibits apoptosis in infected cells 

by upregulation of Bcl2 and c-FLIP expression 

[68,69] and downregulation of caspase 10 

expression [70]. The same protein triggers 

apoptosis in bystander cells by upregulation of 

Bax, caspase 8 and RCAS-1 expression [71,72], and 

Bim-mediated intrinsic apoptosis [73]. Matrix 

protein Z of some arenaviruses (New World 

arenavirus, Tacarible virus (TCRV), and the 

attenuated vaccine strain of Junín virus (JUNV) 

Candid #1)  activates caspase 9 thereby triggering 

the intrinsic apoptotic pathway [74,75]. Though 

the exact molecular mechanism of viral protein Z-

mediated apoptosis is still not clear, in vitro 

experiments suggest a direct activation of BH3-

only proteins and an indirect interaction with 

proteins like p53 and PI3K/Akt through cellular 

oncoprotein promyelocyte leukemia protein 

(PML) [74–76]. The Old World arenaviruses, the 

lymphocytic choriomeningitis virus (LCMB) and 

Lassa virus (LASV) do not cause apoptosis of 

infected cells [77,78]. Caspase-mediated cleavage 

of nucleoproteins (NPs) of Old World 

areanviruses generates multiple truncated 

isoforms of NPs [74,79]. A decoy function of NPs 

has been proposed in which the cleavage of highly 

expressed NPs within the cell suppresses the 

cellular targets of caspases thereby inhibiting the 

apoptosis of the infected cell [74]. Enterovirus 71 

2B protein directly interacts with and activates the 

proapoptotic protein Bax leading to the activation 

of mitochondrial pathway of apoptosis [80,81] 

(Table 1). 

Mycobacterium-mediated modulation of 
apoptosis 
Bacterial pathogens are known to have anti-

apoptotic mechanisms. Mycobacterium tuberculosis 

(Mtb) causes persistent infection indicating that it 

employs effective mechanisms to inhibit host cell 

death [82]. Published studies highlight both pro-

apoptotic as well as anti-apoptotic capabilities of 

virulent Mtb [83,84], however the underlining 

molecular mechanisms are still not well 

understood. Though there is a lack of published 

data favoring Mtb-mediated apoptosis of host 

cells, increased apoptosis of primary human 

macrophages or human macrophage-like cell lines 

(U937 and THP1) were reported upon infection 

with virulent Mtb in vitro [85–87]. Human alveolar 

macrophage-derived from bronchoalveolar lavage 

of tuberculosis patients also showed increased 

apoptotic death compared to healthy subjects 

[88,89]. Apoptosis of Mtb infected cells 

accompanied by the recruitment of uninfected 

macrophages through upregulation of MMP9 on 

epithelial cells surrounding the granuloma helps 

in the dissemination of the bacteria [90]. In the 

studies involving the zebrafish and mouse lung 

models, the pro-apoptotic nuoG Mtb mutant 

induced enhance innate response, longer survival 

and rapid dissemination of the bacteria [91,92]. 

Thus, evidence suggests that host cell apoptosis is 

crucial for host resistance to Mtb infection. 

Considerable less apoptosis of human alveolar 

macrophage or macrophage-like cell lines when 

infected with virulent Mtb compared to infection 

with less virulent strains was reported [93–96]. 

Furthermore, fact that inhibition of apoptosis of 

human and murine macrophages by Apoptosis-

inducing species M. kansaii after over-expression 

of Mtb-nuoG/SecA2/PknE [97–99] and resistance 

to FasL and TNFα-mediated apoptosis of Mtb 
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infected cells provide the evidence that Mtb 

inhibits host cell apoptosis [100].  

Mtb modulates the extrinsic pathway of 
apoptosis 
Gene expression profiling study suggests that 

numerous apoptosis-related genes are down-

regulated in active tuberculosis patients compared 

to latently infected subjects. Though expressions 

of TNF, Fas, and caspase 8 upregulate in active 

tuberculosis patients, simultaneous marked 

expression of FLIP, inhibits host cell apoptosis 

[101]. Mtb infected macrophages are known to 

secrete more soluble TNF receptor 2 (sTNFR2) 

which binds to TNFα thereby inhibiting its 

binding with the TNFR1 [100,102–104]. Upon 

infection with Mtb, TNF production in the mouse 

cell line RAW264 stimulates ROS-dependent 

activation of apoptosis signal-regulating kinase 

thereby phosphorylating FLIP [105]. Ubiquitin-

proteasome-mediated degradation of 

phosphorylated FLIP activates caspase 8 leading 

to apoptosis [105] (Table 1). 

Mtb modulates the intrinsic pathway of 
apoptosis 
Mtb infection upregulates the expression of anti-

apoptotic genes like mcl-1 and A1, both of which 

encodes for anti-apoptotic Bcl-2-like proteins [106–

110]. Alternative splicing gives rise to two 

isoforms of Myloid cell leukemia-1 (Mcl-1) 

protein. One is the anti-apoptotic full length Mcl-

1L that possesses BH domains 1, 2 and 3 and a 

transmembrane domain. Another is the pro-

apoptotic short variant Mcl-1S that lacks BH1, BH2 

and the transmembrane domain. Mcl-1S dimerizes 

with and antagonizes the function of Mcl-1L 

thereby regulates the mitochondrial permeability 

[109,111]. Furthermore, chemical inhibition of Mcl-

1 in mouse peritoneal macrophages infected with 

Mtb significantly triggered apoptosis [112]. It will 

be interesting to dissect the role of both isoforms 

of Mcl-1 in Mtb-mediated apoptosis evasion. Also, 

the expression of anti-apoptotic protein Bcl-w gets 

upregulated [113], while the inactivation of the 

pro-apoptotic Bad protein occurs upon Mtb-

H37Rv infection [114]. Infection of macrophages 

with attenuated Mtb leads to MOMP-mediated 

apoptosis without MPT induction [10,115] (Table 

1). In contrast, macrophages infected with virulent 

Mtb induce both MOMP and MPT causing 

irreversible mitochondrial swelling leading to 

necrosis [115].   

Conclusion 
Programmed cell death via apoptosis is crucial in 

maintaining cells in health and pathological 

conditions. Both viral and Mtb infections 

modulate the apoptotic pathways of infected as 

well as neighboring bystander cells. Though the 

majority of virally infected cells undergo 

apoptosis favoring viral dissemination, viral 

proteins help specific host cells to evade apoptosis 

thereby preferring viral persistence. Mtb infection 

prominently evades host cell apoptosis leading to 

the persistent survival of the pathogen. 

Understanding the molecular mechanisms of 

deregulation of apoptosis in viral and Mtb 

infection may provide insights into revealing new 

targets for curing these pathological conditions.  
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