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Abstract

Background: Effective forest management and planning often requires information about the distribution of 
volume by size and product classes. Size-class models describe the diameter distribution and provide information 
by diameter class, such as the number of trees, basal area, and volume per unit of area. A successful diameter-
distribution model requires high flexibility yet robust prediction of its parameters. To our knowledge, there are no 
studies regarding diameter distribution models for Eucalyptus hybrids in Indonesia. Therefore, the aim of this study 
was to compare different recovery methods for predicting parameters of the 3-parameter Weibull distribution for 
characterising diameter distributions of Eucalyptus hybrid clone plantations, on Sumatera Island of Indonesia.

Methods: The parameter recovery approach was proposed to be compatible with stand-average growth and yield 
models developed based on the same data. Three approaches where compared: moment-based recovery, percentile-
based prediction and hybrid methods. The ultimate goal was to recover Weibull parameters from future stand 
attributes, which were predicted from current stand attributes using regression models.

Results: In this study, the moment method was found to give the overall lowest mean error-index and Kolmogorov–
Smirnov (KS) statistic, followed by the hybrid and percentile methods. The moment-based method better fit long 
tails on both sides of the distribution and exhibited slightly greater flexibility in describing plots with larger variance 
than the other methods. 

Conclusions: The Weibull approach appeared relatively robust in determining diameter distributions of Eucalyptus 
hybrid clone plantation in Indonesia, yet some refinements may be necessary to characterize more complex 
distributions.
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et al. 2011), since they provide detailed yield estimates 
by size (De Miguel et al. 2010). Size-class models predict 
diameter distributions and provide estimates of forest 
attributes (such as the number of trees, basal area, and 
volume per unit area) by diameter class (Poudel & Cao 
2013).

Introduction
Effective forest management and planning often 
requires information about the distribution of volume 
by size and product classes (Burkhart & Tomé 2012). 
Size-class and individual-tree models are required for 
predicting distributions of multiple products (Weiskittel 
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The concept of diameter distributions is not new to 
forestry literature (de Liocourt 1898). Several probability 
density functions are used to describe the structure of 
forest stands, including Weibull distributions (Bailey & 
Dell 1973). The Weibull distribution is one of the most 
widely used diameter distribution models (Burkhart 
& Tomé 2012) and one of the best-performing models 
among other distributions (Eisfeld et al. 2005).

The Weibull distribution is a flexible distribution 
function capable of fitting a variety of distribution 
shapes (Poudel & Cao 2013). It has a lower bound and 
calculations of proportions of trees across diameter 
classes is straightforward and does not require numeric 
integration (Cao 2012). In addition, the parameters of 
the Weibull distribution are generally well correlated 
with several stand-level attributes (Bailey & Dell 1973), 
such as dominant height, quadratic mean diameter, 
and mean diameter (Sghaier et al. 2016). Because of its 
flexibility, the Weibull distribution is applicable to many 
different species and forest structures from pure, single 
cohort, even-aged stands to multispecies, multicohort, 
uneven-aged stands (Mattney & Sullivan 1982; Hyink 
& Moser 1983; Knowe et al. 1994; Knowe & Stein 1995; 
Siipilehto 1999; Cao 2004; Newton et al. 2005).

The three-parameter Weibull distribution function is 
commonly used to quantify tree diameter distributions 
because of: its flexibility in fitting a variety of shapes and 
degrees of skewness; the relative simplicity of estimating 
its parameters; and the cumulative distribution has a 
closed-form solution (Bailey & Dell 1973; Bowling et al. 
1989; Little 1983; Matney & Sullivan 1982; Rennolls et 
al. 1985; Schreuder & Swank 1974; Zarnoch et al. 1991). 
The probability density function (PDF) for the three-
parameter Weibull distribution is specified by:

                                                 (1)
                 
                = 0, otherwise

Integration yields a closed-form cumulative 
distribution function (CDF):

                                                (2)

The parameter α is referred to as the location parameter 
and defines the minimum value of the distribution, β is 
the scale parameter, γ is the shape parameter and 𝑥 is
diameter at breast height (Clutter et al. 1983). The β and 
γ parameters must be positive, while α mathematically 
can be positive, zero, or negative (provided 𝑥 - α ≥ 0). For 
diameter distribution applications ≥ 0. 

For shape (γ) parameters less than 1, the Weibull 
distribution assumes a classic inverse J-shape 
distribution typically found in uneven-aged stands, while 
when γ equals 1, the negative exponential distribution 
results. Mound shape curves typical of even-aged stands 
are produced for γ greater than 1 (Burkhart & Tomé 
2012). When γ is equal 3.6, the Weibull distribution is 

symmetrical, similar to a normal distribution shape. 
Right-skewed curves are defined for γ less than 3.6 and 
left-skewed curves for γ greater than 3.6. As γ approaches 
infinity, the distribution approaches a spike over a single 
point (Burkhart & Tomé 2012). The location parameter 
often is assumed known in many cases, so it is logical 
to set this parameter to the smallest value or the lower 
limit of diameter measurement (Kershaw et al. 2016).

Parameter estimates based on maximum likelihood 
methods for the Weibull distribution requires individual 
tree data (Bolker 2008). Maximum likelihood estimation 
has several desirable statistical properties, such as 
consistency and asymptotic normality (Bury 1999; 
Royle & Dozario 2008), and provides better estimates 
compared to other methods (Zhou & McTague 1996). 
However, it requires more computational resources 
(Cao & McCarty 2006) and precise individual tree 
measurements. In most forestry applications, diameter 
distributions are generally predicted from characteristics 
measured in a stand of interest. Hyink and Moser (1983) 
presented a generalized framework for estimating 
diameter distributions using parameter prediction 
methods (PPM) and parameter recovery methods 
(PRM). In the PPM approach, the future parameters of 
the distribution model are directly predicted from the 
current parameters and other information about the 
stand such as density, basal area and volume. (Kershaw 
et al. 2016). The PPM uses the location (α), scale (β), 
and shape (γ) parameters as the dependent variables, 
which have been previously estimated using maximum 
likelihood methods (Cao 2004). In the PRM approach, 
future values of stand parameters are directly predicted, 
and the parameters of the diameter distribution are 
derived from the stand parameters (Hyink & Moser 
1983; Kershaw et al. 2016). 

The parameter prediction approach using the Weibull 
distribution has been applied to many different species 
and forest types: pine (Pinus taeda L. and Pinus echinate 
Mill.) plantations (Smalley & Bailey1974 a,b); slash pine 
(Pinus elliottii) plantations (Dell et al. 1979); longleaf 
pine (Pinus palustris Mill.) plantations (Leduc et al. 
2001); loblolly pine (Pinus taeda) plantations (Clutter et 
al. 1984; Feduccia et al. 1979; Smalley & Bailey 1974a); 
natural slash pine (Pinus elliotti) stands (Schreuder et al. 
1979); mixed stands of western hemlock and Douglas-
fir (Pseudotsuga menziesii and Tsuga heterophylla) 
(Little 1983); Sitka spruce (Picea sitchensis) plantations 
(Rennolls et al. 1985); and Norway spruce (Picea abies) 
plantations (Kilkki & Päivinen 1986; Kilkki et al. 1989; 
Siipilehto 1999) and many others (Vanclay 1994; 
Weiskittel et al. 2011). While parameter predictions 
can be easily derived from regression equations fit 
to precisely estimated diameter distributions, these 
models often produce poorer parameter predictions, 
low R2 values for α and γ parameters; and are not 
responsive to silvicultural treatments (Hyink & Moser 
1983). Because PPM does not work very well in many 
cases, this approach was not considered in this study.

According to Siipilehto and Mehtätalo (2013), 
there are two main options for PRM approaches: 
moment-based and percentile-based estimation. The 



PRM moment-based approach solves for the Weibull 
parameters typically using the moments of the diameter 
distribution that are estimated from regression 
equations using a variety of stand characteristics 
(Bowling et al. 1989; Hyink & Moser 1983; Lindsay et 
al. 1996; Matney & Sullivan 1982; Newton et al. 2004; 
Strub & Burkhart 1975) or from stand-level models 
predicting future stand conditions (Clutter et al. 1983; 
Waldy et al. 2021). The percentile-based method 
predicts the Weibull parameters using percentiles of the 
diameter distribution that also can be estimated from 
stand characteristics (Bailey et al. 1989; Brooks et al. 
1992; Lohrey & Bailey 1976; Knowe 1992; Magnussen 
1986; McTague & Bailey 1987). Other methods, such as 
a hybrid approach (McTague & Bailey 1987), cumulative 
distribution function regressions (CDFR; Cao 2004), and 
modified CDFRs (Poudel & Cao 2013) also have been 
proposed.

A successful diameter-distribution model requires 
robust predictions of its parameters. The PRM approach 
was proposed because its estimates were compatible 
with stand-average growth and yield models developed 
from the underlying diameter distribution data (Hyink & 
Moser 1983). Other methods were proposed because of 
the nature of the underlying data and/or the objectives 
of the study. In this study, the overall objective of this 
analysis was to evaluate different parameter recovery 
methods for predicting parameters of the Weibull PDF 
for characterising diameter distributions of Eucalyptus 
hybrid clone plantations in Sumatera, Indonesia. The 
specific objectives were to: (1) compare moment-based, 
percentile-based and hybrid methods; (2) determine 
the best approach for robust estimation of diameter 
distributions across a full range of current and future 
predicted stand conditions; and (3) based on observed 
performance, predict moments and/or percentiles from 
stand and site characteristics using nonlinear regression 
analyses.

Methods 

Study site
This study was conducted in Sector Teso East of PT. 
Riau Andalan Pulp and Paper, a member of Asia Pacific 
Resources International Holding Limited (APRIL) Group 
and used inventory plot data from Eucalyptus hybrid 
plantations. Teso East is 19,600 ha in size and is located 
in the central region of Sumatera Island, Riau Province, 
Indonesia in the Kampar and Kuantan Singingi regencies 
between 101° 18′ E and 101° 32′ E, and 00° 09′ N and 
00° 03′ N (Figure 1). The region is characterised by a wet 
tropical climate with average rainfall ranging from 2000–
3000 mm per year, and the average rainy days is around 
160 days per year. The annual average temperature 
is 27.6oC with an average minimum of 21.8oC and an 
average maximum of 35oC.

Until now, Estate Teso East has had its fifth rotation. 
The first rotation was planted with Acacia mangium in 
1995 and then Eucalyptus sp. was planted on a large 
scale starting in 2010. Based on the soil characteristics, 
this study location was dominated by soil horizon B 
(topsoil) and C (parent material). This plantation area is 
relatively flat with slopes ranging from 0–15% and low 
elevation ranging from 30–90 metres above sea level.

Data collection
In APRIL plantations, the plot layout used systematic 
sampling with random starting points. Initial sampling 
intensity was 1% of total stand area (one plot represents 
4 ha area) with an additional 2–5% sampling intensity for 
a pre-harvest inventory (one year before harvest). Plots 
were circular with a radius of 11.28 m (0.04 ha). First 
measurements were made at six months after planting 
and regularly continued at twelve-month intervals until 
harvesting. dbh was measured beginning at 18 months. 
All live trees with dbh of 1.0 cm and greater on each 
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TABLE 1: Description of the study sites

FIGURE 1: Location of the study area in the Sector Teso East, central region of Sumatera



plot were measured using a diameter tape at 1.3 metres 
above the ground as measured from the uphill side of the 
stem. Each tree was assigned a status (live or dead), and 
assessed for wind damage, pests, and diseases. 

This study only used the most recently established 
eucalyptus clone stands that were planted 2013 to 2016 
with an initial spacing of 3 x 2 m (1667 trees per ha) and 
had at least three consecutive measurements. There are 
2808 measurements in this study, where clone A and 
B accounted 2,476 and 332 plots, respectively. Table 
1 summarises stand attributes and their associated 
increments by clone. In comparison to clone A, clone B is 
recently developed by the APRIL Group concession. The 
maximum age of existing inventory data for clone B is 
42 months. Because of its promising growth (Table 1), 
it was important to include this clone in the modeling 
conducted in this study.

Maximum likelihood estimation (MLE)
Weibull parameters were estimated using the 
individual tree dbh measurements from each plot at 
each measurement period using maximum likelihood 
estimation (MLE) methods (Johnson et al. 1995; Casella 
& Berger 2001). The location parameter (α) was set to 1 
cm in this study (minimum dbh measured), and the MLE 
estimates of the scale (β) and shape (γ) parameters were 
used as reference distributions to compare with the 
recovered parameter estimates. The likelihood function 
of the Weibull PDF (Eq. 1):

                                          (3)

MLEs where obtained by minimising the negative of the 
logarithm of the likelihood function.

Moment-based parameter recovery
In moment-based parameter recovery, regression 
equations, as a function of mean top height, stand 
density, age, or relative density, are used to predict the 
arithmetic mean diameter (D̄, the first moment) and 
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the quadratic mean diameter (DQ, the square root of 
the second moment). As with the MLE estimates, we set  
α =1, our minimum measured dbh. Weibull parameters 
were then recovered from the arithmetic mean diameter 
(D̄) and quadratic mean diameter (DQ) using (Burkhart 
& Tomé 2012):

                                                                                    (4)

                                                         (5)

where   was predicted DQ, D̄ was predicted D̄,  

                   and α, β, and γ were recovered Weibull 

parameters. Eqs. 4 and 5 were numerically solved to 
recover the parameters using the algorithms developed 
by Kershaw and Maguire (1995).

Percentile-based parameter recovery
Percentile estimation of the Weibull parameters are 
relatively easy to obtain given the closed form solution 
of the cumulative distribution and the geometric 
interpretation of the distribution parameters (Zarnoch 
& Dell 1985). Similar to the moment estimates, the 
percentile estimates are functions of the distribution 
parameters and are often highly correlated with forest 
stand characteristics (Borders et al. 1987; Knowe 
1992; Knowe et al. 1992). If three sample percentiles 
are known, each can be equated to its corresponding 
Weibull cumulative distribution function value and the 
three equations can be solved iteratively for estimates 
of α, β, and γ (Burkhart & Tomé 2012). If the location 
parameter is assumed known, then only two percentiles 
are required to estimate β and γ. 

Given the Weibull cumulative distribution function 
(Equation 2), and letting Dp represent the estimated pth 

percentile value of diameter in the sample, then:

̭

Stand attributes
Clone A

(n = 2476)
Clone B

(n = 332)

Mean Min Max Stdev Mean Min Max Stdev

A (month) 34.3 12 63.6 14.4 29.1 18 42 9.6

HT (m) 17.3 5.8 30 5.7 18 10.6 27.7 4.4

BA (m²ha-1) 12.4 1.8 26.9 5.2 14.2 3.9 22.9 3.8

SD (trees∙ha-1) 1,536 175 2,101 209 1,569 450 1,851 203

DQ (cm) 9.7 3.4 18.5 2.5 10.6 7.8 14.5 1.4

VOL (m³ha-1) 73 0.05 234.4 53.37 85.71 14.69 189.8 42.63

TABLE 1: Summarised stand attributes and their increment for the inventory plots (n = 2808) used for modeling (A = 
age; HT = top height; BA = basal area; SD = stand density; DQ = quadratic mean diameter; and VOL = stand 
volume).



                                                    (6)

Solving Eq.6 for Dp yields:

                                                   (7)

The scale parameter, β, is given by:

                                                         (8)

Given two percentiles p1 and p2 where p1 < p2, γ is 
estimated using:

                                                    (9)

Theoretically, any two percentiles can be used; however, 
Bailey et al. (1989) found best performance resulted 
when percentiles represented a broader proportion of 
the distribution. In this study, we used the 25th and 99th 
diameter percentiles to recover parameters β and γ of 
the Weibull distribution.

Hybrid parameter recovery methods 
Moments and percentiles are combined in the hybrid 
approach (Bailey et al. 1989; Brooks et al. 1992; Knowe 
et al. 2005; Lee & Coble 2006; Coble & Lee 2008; and 
Jiang & Brooks 2009). As in the other approaches, the 
location parameter was expected to be known (i.e., α = 
1), and the β and γ parameters were recovered from a 
moment estimate and two percentile estimates using 
(Bailey et al. 1989):

                                                                                                    (10)

                                                                                                    (11)

Here we used estimates of DQ, 25th and 99th diameter 
percentiles to estimate β and γ.

Moment and percentile estimation
The quadratic mean diameter, arithmetic mean diameter, 
and the percentiles were calculated for each plot and 
measurement period using the individual tree dbh data. 
Several regression equation forms were used to predict 
the diameter moments or percentiles (e.g., Matney & 
Farrar 1992; Baldwin & Feduccia 1987; Cao 2004) based 
on stand characteristic. In this study, the logistic equation 
was used to predict arithmetic mean diameter (D̄) and 
a modified general form of the regression equation 

from Cao (2004) to predict diameter percentiles with 
additional DQ variables to ensure compatibility with 
stand-level models (Waldy et al. 2021).

DQ was estimated using the relationship of basal 
area and stand density. In Waldy et al. (2021), the stand 
density model from Clutter et al. (1983) and basal 
area model derived from the Schumacher polymorphic 
equation were the best fit models based on several 
models evaluated, for projecting future attributes to 
any point in time. These time-based models gave DQ 
estimates with rMSE = 0.72 cm and explained 85% of the 
variability (Waldy et al. 2021).

Arithmetic mean diameter (D̄) was estimated using a 
logistic equation and the estimated DQ:

                            (12)

Finally, percentiles were estimated using:

                      
                  (13)

where D̄ was arithmetic mean diameter (cm); Di was 
the ith diameter percentile (cm); DQ was the quadratic 
mean diameter (cm); RD was a relative density measure 
defined as the ratio of actual density to the maximum 
density attainable in a stand with the same mean tree 
size; HT was the top height (m); AGE was stand age 
(months); bi were regression parameters and ϵ was a 
random error term. Equation (12) assured that DQ > D̄  
because the logistic component,

                                                , and exp(x) > 0. 

Fitted Eqs. 12 and 13 were used to predict each plot × 
measurement period moments.

Nonlinear regression was used to fit Eqs 12 and 13 
and appropriate goodness of fit criteria were used to 
evaluate the moment and percentiles estimates. We 
then included clone and site class as random effects into 
the regression equations and nonlinear mixed effects 
methods (Pinheiro & Bates 2000) were used estimate 
fixed and random effects for each model. A likelihood 
ratio test used to assess significance of random effects 
(Weiskittel et al. 2011).

Model evaluation
The Kolmogorov-Smirnov (KS) statistic (Massey 
1951) and an error-index (EI; Reynolds et al. 1988) 
were computed for each method to evaluate the three 
prediction methods. Using a significance level of 5%, the 
KS test was used to compare the estimated cumulative 
frequency and the observed frequency. The method 
producing the lowest average KS statistics and error-
index values was considered the best method. All 
estimation and analyses were carried out using the R 
statistical language (R Core Team 2020).
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Results
Moment and percentile prediction models
Using nonlinear least square analysis, all coefficients for 
Equation 12 and 13 to predict arithmetic mean diameter 
and diameter percentiles were significant (p < 0.05). 
Consequently, all parameters associated with stand 
characteristics (DQ, RD, HT, and AGE) were included for 
mixed-effect analysis that involved clone and site class 
within clone as random effects (Table 2). Based on the 
likelihood ratio test, the best random-effects models 
included all coefficients as random effects of clone and 
site class within the clone (Table 2). Parameter estimates 
and their associated standard errors (in parentheses), 
random effects standard deviations, and goodness-of-fit 
statistics for the arithmetic mean diameter, 25th and 99th 
diameter percentiles are shown in Table 2. The full model 
with fixed and random effects accounted for 99%, 77% 
and 93% of the variation for D̄, D25 and D99 prediction 
models, respectively (Table 2). The D25 percentile model 
had the lowest performance compared with the D̄ and 
D99 models. Differences between clones were greater 
than differences across sites within clones for almost 
all modelling parameters, except b1 and b2 associated 
with the D99 model (Table 2). Coefficient estimates 
(fixed + random effects) by clone and site classes for all 
prediction models are shown in Table 3. 

Characteristics of Maximum Likelihood Estimates
The estimated Weibull scale parameters, β, based on the 
MLE method ranged from 3.95 to 15.11 and the shape 
parameters, γ, ranged from 1.68 to 11.50 (Table 4). Based 
on the K-S test, estimated diameter distributions were 
not significantly (p > 0.05) different from the observed 
diameter distributions for 68% (CI = 95%) and 80%  
(CI = 99%) of the observed Eucalyptus hybrid clone 
diameter distributions (Table 5). The scale parameter 
increased, and the shape parameter decreased, with 
increasing age and site class for both clones (Figure 
2). For a similar stand age, clone A had lower scale and 
shape parameters than clone B. In addition, clone B had 
smaller variation in scale parameter but higher variation 
in shape parameter than clone A (Figure 2).

Diameter distribution model comparisons
Table 4 summarises the parameter estimates for fit data 
using maximum likelihood (MLE) and the three PRMs 
(MOM, PCT, and HYB). The results of the three PRMs 
indicated that all the three PRMs provided relatively 
similar mean parameter estimates for the Weibull 
distribution function, with the average scale parameter 
in the range of 9.53–10.37, and the average shape 
parameter in the range of 2.80–3.46. The MOM and HYB 
methods were more similar to the MLE based on the 
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Factor Parameter D̄ D25 D99

Fixed effects b0 3.7564 (1.1495) 1.2951 (0.1785) 1.9872 (0.1591)

b1
1.5021 (0.4841) 0.0269 (0.0088) -0.0155 (0.0029)

b2
-0.7535 (0.2975) 0.0127 (0.0036) 0.0288 (0.0012)

b3
15.3432 (6.7380) 0.6449 (0.1969) -0.3663 (0.3397)

Random effects

   (Clone) s(b0) 2.8489 0.2334 0.2135

s(b1) 0.7263 0.0096 <0.0001

s(b2) 0.6312 0.0040 <0.0001

s(b3) 13.2230 0.2348 0.4693

   (Site Class | Clone) s(b0) 2.8490 0.1454 0.1070

s(b1) 1.1114 0.0129 0.0064

s(b2) 0.7182 0.0050 0.0027

s(b3) 16.0999 0.2332 0.1466

Goodness-of-fit

  Fixed rMSE 0.2874 1.1311 1.1510

R² 0.9821 0.5451 0.8631

Bias -0.0829 -0.5099 0.7320

Fixed + random rMSE 0.2156 0.7953 1.0592

R² 0.9899 0.7738 0.9327
 Bias -0.0038 -0.0046 -0.0117

TABLE 2: Parameter estimates and their associated standard errors (in parentheses), random effects standard 
deviations and goodness-of-fit statistics for arithmetic mean diameter and percentiles prediction models.



average scale parameter, the PCT and HYB methods were 
relatively closer to the MLE based on the average shape 
parameter (Table 4; Figure 3). Shape parameters for HYB 
method were similar with the PCT that derived from the 
same variables and formulation (Table 4; Figure 3). Like 
most other applications, the shape parameter was more 
difficult to model than the scale parameter (Figure 3).

Based on the statistical model evaluation of three 
PRMs, the MOM had the best fit based on the KS statistic 
at 0.1757, followed by the HYB and PCT with KS statistic 
at 0.1988 and 0.2125, respectively (Table 5). The KS 
statistic also indicated the coverage (# of observed 

distributions fitting within the 95% CI) of estimated 
distributions were 49% (MOM), 26% (PCT), and 37% 
(HYB); and 66% (MOM), 44% (PCT), and 54% (HYB) at 
99% confidence (Table 5). The MOM also had the lowest 
mean error-index at 26.5218, followed by HYB (27.7307) 
and PCT (31.4708) (Table 5). In terms of the differences in 
precision for predicting the Weibull parameter, the MOM 
has the lowest variability with the standard deviation 
of error index at 6.7118 and the PCT had the highest 
variability at 9.7699. Although all approaches allow for 
a direct mathematical link between the predicted overall 
stand characteristics and a diameter distribution that is 
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Equation Parameter Estimate coefficient by clone and site class
A:22 A:24 A:26 A:28 B:24 B:26 B:28

D̄ b0 5.0580 6.8023 6.4207 5.9698 1.4566 -0.6481 1.2354
b1 0.1972 0.6093 0.3989 1.7608 2.7261 3.2856 2.0468
b2 -0.8457 -1.5070 -1.3428 -1.6237 -0.2855 0.2443 -0.0292
b3 2.6035 0.2958 -0.3092 7.9372 31.4552 41.3175 27.9144

D25 b0 0.9454 1.1477 1.2233 0.9345 1.4989 1.4012 1.6833
b1 0.0070 0.0174 0.0041 0.0415 0.0351 0.0320 0.0421
b2 0.0237 0.0155 0.0178 0.0096 0.0101 0.0125 0.0039
b3 0.9622 0.8341 0.5222 1.1938 0.4514 0.5397 0.2436

D99 b0 2.1217 2.1818 2.3095 2.3301 1.7646 1.7967 1.6186
b1 -0.0063 -0.0224 -0.0156 -0.0165 -0.0126 -0.0115 -0.0235
b2 0.0289 0.0302 0.0269 0.0257 0.0285 0.0278 0.0333
b3 -0.7517 -0.7901 -1.0401 -0.9254 0.1114 0.0389 0.3257

TABLE 3: Coefficient estimates (fixed + random effects) of nonlinear mixed effect model by clone and site classes for 
arithmetic mean diameter and percentiles prediction models.

r α is referred to as the location parameter and defines the 
minimum value of the distribution, β is the scale parameter, γ 
is the shape parameter and 𝑥 is diameter at breast height D̄ ϵ

Method Scale parameter (β) Shape parameter (γ)

Mean Stdev Min Max Mean Stdev Min Max

MLE 10.23 1.85 3.95 15.11 3.39 1.20 1.68 11.50
MOM 10.24 1.71 4.29 15.08 2.80 0.78 1.89 14.02
PCT 9.53 1.59 5.10 14.58 3.46 0.97 2.35 7.98
HYB 10.37 1.79 4.24 15.85 3.46 0.97 2.35 7.98

TABLE 4: Average of the parameter estimates of the Weibulll distribution using fit data and 
three prediction methods.

Method KS EI

Mean Stdev Coverage (%)a Mean Stdev

MLE 0.1499 0.0699 68, 80 23.6921 6.4569

MOM 0.1757 0.0724 49, 66 26.5218 6.7118

PCT 0.2125 0.0759 26, 44 31.4708 9.7966

HYB 0.1988 0.0825 37, 54 27.7307 8.1979
a Percentage of distributions that fall within 95% or 99% confidence intervals of the KS Dmax

TABLE 5: Means and standard deviations of the goodness-of-fit statistics produced 
by three diameter distribution prediction methods.



consistent with those characteristics, the moment-based 
method (MOM) indicated the best fit to the observed data 
when compared to the other methods (PCT and HYB).

For evaluation, some graphical examination of the 
performance of the three PRMs were conducted. Figure 
4 illustrates the three methods for typical plots of the 
diameter distributions observed in the Eucalyptus hybrid 
clone plantations. The plots represent a range of clones, 
stand ages, and the variation of distributions typically 
observed in the region. Figure 4a shows a unimodal 
distribution for clone A at 30 months and illustrates that 
the three methods perform equally well for modeling the 

distribution of that plot. Figure 4b shows a multimodal 
distribution. In this case, none of the three methods 
fitted the plot well and all missed the valley (8–9 cm) and 
the peak (13–14 cm). However, the MOM and PCT were 
better fits for the peak (6–7 cm) than the HYB. In Figure 
4c for clone B at 30 months with a distribution that was 
close to normal, the MOM was the better fit than the 
others. The PCT and HYB show a similar pattern for this 
plot. While in Figure 4d with an irregular distribution, 
the MOM tends to deal with tails of both sides and MOM 
exhibited slightly greater flexibility in describing the 
larger variance than the two other methods.
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FIGURE 2: Boxplots of: Weibull scale β (a); and shape γ (b) parameter by clone, age and site class estimated from full 
sample of the trees in the plot using maximum likelihood estimation method. (A = clone "A"; B = clone "B"; 
SC = Site Class; the black dots indicate extreme values).
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FIGURE 3: Parameter estimation comparison between MLEs and three parameter recovery estimation methods for 
scale (a; above) and shape (b; below). The dotted line represents the 1:1 line, while the red line is the 
observed trend using a smoothing line.

FIGURE 4: Model evaluation for the four example plots that represent: (a) clone A, 30 months; (b) clone A, 42 months; 
(c) clone B, 30 months; and (d) clone B, 42 months. The histogram represents the observed diameter 
distribution, and three curves represent diameter distribution models prediction.
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Discussion
To be compatible with a recently developed stand-
level growth and yield model (Waldy et al. 2021), the 
predicted quadratic mean diameter played an important 
role in recovering parameters of the Weibull distribution 
that characterised the future diameter distributions. In 
this study, the prediction models were quite good at 
predicting arithmetic mean diameter and 99th percentiles 
but relatively poor at predicting the 25th percentile. This 
means that stand attributes, especially DQ and AGE, 
have a stronger correlation with the arithmetic mean 
diameter and higher percentiles than lower percentiles, 
which has been found in similar analyses. For example, 
Cao (2012) found similar trends in predicting future 
diameter distributions of loblolly pine (Pinus taeda L.). 
He found that stand attributes explained more variability 
in estimating higher percentiles (50th percentile and 
above) than lower percentiles.

The method of moments is one of the most accurate 
methods for estimating the Weibull distribution 
parameters (Al-Fawzan 2000; Nanang 1998; Ueno & 
Osawa 1987; Shifley & Lentz 1985). Moments are the 
preferred method in growth and yield models because 
they ensure numeric compatibility and generally require 
fewer equations (Weiskittel et al. 2011). Our study 
indicated the MOM had a higher percentage of coverage 
for estimated distributions that fit the observed 
diameter distributions than PCT and HYB. This higher 
percentage for MOM in this study was likely because of 
sufficient sample sizes to model moment based recovery 

with an average of 60 trees per plot (plot size 0.04 ha). 
Bankston (2019) reported that larger plot sizes resulted 
in more accurately predicted diameter distributions. 
However, he suggested a plot size of 0.08 ha might be 
sufficient for model building for data from unthinned 
stands. A substantial decrease in error was no longer 
evident when plot size increased from 0.08 to 0.10 
hectares. Shiver (1988) suggested a sample size of not 
less than 50 trees is required to obtain satisfactorily 
accurate estimates of the Weibull parameters, while 
simulation studies from Saborowski (1994) indicated 
that a sample with n = 80 could generally be expected 
to produce satisfactory results. To get a better diameter 
distribution that represented plot-level measurements, 
modifying the plot size is not a logical decision for the 
well-established forest inventory system applied by the 
APRIL group. Instead of using Weibull distributions, other 
probability density functions (e.g., beta, Johnson’s SB, 
gamma or lognormal) are  potentially worth examining 
to describe the structure of a Eucalyptus hybrid clone in 
this region. Goodwin (2020) suggested several variants 
of the Weibull distribution. While some of those models 
produced better estimates of diameter distributions, 
Goodwin’s recommendation for plantations was to use 
the 3-P Weibull distribution, as done in this study.

 Using simulated development of the MOM 
model predictions, the peakedness of the distribution 
was reduced for both clones with increasing stand age. 
The diameter distribution of clone A tended to become 
more positively skewed and the variation increased 
with increasing stand age (Figure 5), partly because of 
mortality in the lower tree strata, and thinnings from 
below, which remove the suppressed trees or crown 
thinning (thinning from above), which remove dominant 
and co-dominant trees (van Laar & Akca 2007). The 
number of trees decreased in lower diameter classes and 
increased in upper classes, shifting curves to the right 
and increasing the flattening degree with increasing 
age. In clone B, the shape curves for all ages were almost 
similar with no significant increases in variation. These 
findings were relatively logical because the mortality for 
this clone was very low, so the diameter growth tends to 
be relatively uniform.

Conclusions
In this study, the moment method was found to give 
the lowest mean error-index and KS statistic, followed 
by the hybrid and percentile methods. Although all 
three methods had difficulty in describing multimodal 
diameter distributions, the moment method tended to be 
more robust with tails on both sides of the distribution 
and exhibited slightly greater flexibility in describing 
the larger variance than the two other methods. Overall, 
the Weibull approach appeared relatively robust in 
estimating diameter distributions of Eucalyptus hybrid 
clone plantation in Indonesia yet some refinements may 
be necessary to characterise more complex distributions 
and longer rotations. 

FIGURE 5: Simulated development of diameter 
distribution over ages using MOM method. 
Simulations are based on prediction stand-
level variables (SD, BA, HT, RD and DQ) using 
site class = 26 and initial stand density 1667 
trees ha-1.
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