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Abstract

Background: Accurate biomass estimation has critical effects on quantifying carbon stocks and sequestration rates, and above-
ground biomass (AGB) growth models are a key component of tree biomass estimation. The study objective was to develop a 
growth model for AGB of an individual tree by combining competition factors and site quality using a mixed-effect model. 

Methods: The AGB of 128 sampling trees was investigated for Simao pine (Pinus kesiya var. langbianensis) at three typical 
sites near Pu’er City of Yunnan Province, China. Richards’ Equation was used for the basic growth model (BM) of the AGB, 
and a mixed-effect model with random effect of site quality (MEM) based on BM and a mixed-effect model with fixed effect of 
competition factors (MEMC) based on MEM were built using S-plus.

Results: Both mixed-effect models are significantly better than the basic model in fitting and predicting the individual tree AGB 
growth for Simao pine, but the MEM is better than the MEMC. Moreover, the mixed-effect model with competition factors and 
site quality is the optimal estimation model due to its highest prediction precision (P=86.08%) as well as the lowest absolute 
average relative error (RMA=54.34%) and average relative error (EE =6.45%).

Conclusion: A model including site quality and competition factors can be used to improve the tree AGB growth estimation for 
the individual tree AGB growth of Simao pine.
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as the potential climate mitigation benefits of forest 
management and for assessing climate change impacts 
on forest ecosystems (Temesgen et al. 2015; Cosmo et 
al. 2016). Direct measurements of biomass are time 
consuming and expensive, so the usual procedure 
is to destructively sample a subset of trees for the 
development of allometric models that predict biomass 
from commonly measured tree characteristics like 
diameter (DBH) and height (H) (Houghton 2005; Saint-

Introduction
Forests are important components of terrestrial 
ecosystems, and they play vital roles in the global 
carbon balance (Woodwell et al. 1978; Talhelm et 
al. 2014; Sleeter et al. 2018). Trees are an important 
element of forest ecosystems’ carbon storage (Goodale 
et al. 2002; Houghton 2005; Houghton et al. 2009; Luo 
et al. 2014). Accurate estimates of tree biomass are 
critical for quantifying carbon stocks and fluxes as well 
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Andre et al. 2005; Somogyi et al. 2007; Sileshi 2014; 
Chave et al. 2014; Temesgen et al. 2015).

Equations for tree biomass estimation can be 
categorized into regional biomass conversion factors, 
stand-level and tree-level biomass Equations (Di 
Cosmo et al. 2016; Jagodziński et al. 2018). Tree-level 
biomass models are used to estimate the total and the 
components of individual trees with easily measurable 
tree inventory attributes (e.g. DBH, H). The tree-level 
biomass model became a research priority because of 
its better performance and higher predicting precision 
compared with regional and stand-level biomass models 
(Temesgen et al. 2015). More than 2600 biomass 
models related to more than 100 tree species have been 
constructed all over the world (e.g. Ter-Mikaelian & 
Korzukhin 1997; Chojnacky 2003; Jenkins et al., 2003, 
2004; Zianis 2005; Muukkonen 2007). Although many 
studies on tree-level biomass models have already been 
developed, the existing Equations are generally not 
good enough and need improvement (Temesgen et al. 
2015). Moreover, almost all of these studies were static 
models and focused on the relation among the individual 
tree biomass and predictors, whereas few studies have 
considered the growth of individual tree biomass using 
growth Equations. Furthermore, spatial and temporal 
autocorrelation between individuals and groups may be 
neglected in modelling tree biomass growth (Li & Zhang 
2010). 

It is necessary to develop comprehensive biomass 
estimation models with better prediction performance 
that consider differences in stand density and among 
sites (Temesgen et al. 2015). Forest biomass estimation 
variation can be observed between different ecological 
zones and sites (Henry et al. 2011, De-Miguel et 
al. 2014). Trees have different growth rates due to 
differences between sites, and models perform better 
when site quality is considered in the model (Vanninen 
et al. 1996; Rohner et al. 2013). Furthermore, site quality 
also has an important effect on tree growth, and it can 
be quantified as a site index (SI) which represents the 
potential productivity of the forestland by using the 
dominant height of stands at a particular standard 
age (Running & Mcleod 1988; Carmean et al. 1989; 
Sturtevant & Seagle 2004; Waring et al. 2006). Stand 
density can be used to reflect the effects of crowding and 
competition among trees on tree growth (Curtis 1985; 
Zeide 2005). Competition results from interactions 
between many biotic and abiotic factors, and this affects 
the forest structure (Sahney et al. 2010). With increasing 
stand density, individual trees can be restricted in their 
growth and even die (Bragg 2001). Many studies have 
shown that tree size is strongly affected by competition 
(Coomes & Allen 2007; Coates et al. 2004, 2009). By 
incorporating the size and distance of neighboring trees 
into the model, predictions of growth and mortality can 
be improved (Mctague & Weiskittel 2016). Biomass 
growth Equations are generally constructed by using 
forestry investigation data and contain multiple repeated 
observations of individual trees. The characteristics 
of these data led to spatial and temporal correlations 
among observations in the same sampling unit (Lhotka 

& Loewenstein 2011; Timilsina & Staudhammer 2013). 
A previous parameter estimation of the individual tree 
growth Equation was estimated by ordinary least squares 
(OLS). This would violate the regression assumptions 
of homoscedasticity of variances and independence of 
residuals and lead to inaccurate estimates if the growth 
model was developed based on non-independent data 
by OLS (Budhathoki et al. 2010; Njana et al. 2016). To 
address these problems, many researchers have tried 
to develop new growth models by incorporating mixed-
effect modelling techniques (Budhathoki et al. 2010; 
Lhotka & Loewenstein 2011). A mixed-effect model, 
which consists of fixed effects and random effects, 
provides a flexible and powerful tool for the analysis 
of grouped data (Pinheiro & Bates 2000). Fixed effects 
can indicate the average relationships of a dependent 
variable with independent variable(s), and random 
effects can reflect the difference among groups (Razali et 
al. 2015). The advantage of mixed-effect models is that 
they can fit growth and yield data in forestry fairly well 
via multilevel random effects (Gregoire et al. 1995), and 
the prediction accuracy of such models can be improved 
through modifications of random effects (Calama & 
Montero 2004). In recent years, mixed-effect models 
have been widely applied in forestry due to their better 
fitting performance and prediction precision (Ramon 
et al. 2006), and they have been used to estimate the 
dominant height growth (Fang & Bailey 2001), diameter 
increment (Lhotka & Loewenstein 2011), tree stand 
basal area (Gregoire et al. 1995), basal area growth of 
individual trees (Budhathoki et al. 2008), wood density 
(Li & Jiang 2013), stand volume (Li 2012), and biomass 
(Zhang & Borders 2004; Fehrmann et al. 2008; Fu et 
al. 2012; Njana et al. 2016) by incorporating different 
random effects (e.g. tree-level, plot-level). Therefore, 
it is crucial to accurately predict biomass growth 
by constructing a comprehensive model with good 
prediction performance using a mixed-effect model that 
considers competition factors and site quality.  

Simao pine (Pinus kesiya var. langbianensis), a 
geographic variation of P. kesiya, is distributed in 
mountain areas from the northern tropical zone to the 
southern subtropical zone of Yunnan Province, China. 
Its distribution area and stocking volume account for 
11% of the forestland of Yunnan Province (Compilation 
Committee of Yunnan Forest 1986). It has been an 
important tree species for afforestation in Yunnan due to 
its rapid growth (Southwest Forestry College & Forestry 
Department of Yunnan Province 1988). Moreover, Simao 
pine forests provide a range of goods and services and 
have important economic and ecological values (Wu & 
Dang 1992; Wen et al. 2010; Yue & Yang 2011; Li 2011). 
Therefore, it is important to be able to estimate biomass 
growth comprehensively and with high prediction 
accuracy by incorporating site index and competition 
factors to assess the potential value of these forests and 
to guide forest management.

In this study, natural forests of Simao pine were 
studied by sampling the above-ground biomass 
(AGB) of 128 trees at three sites. Mixed-effect models 
incorporating site quality and a competition factor 



were used to construct the AGB growth model based 
on a transformation of Richards’ Equation. This study 
aimed to: (1) explore a comprehensive biomass growth 
model with high prediction accuracy for estimating the 
AGB growth of Simao pine; and (2) explain the impacts 
on improving AGB estimation from site quality and 
competition factors.

Methods
Study Region
The study region is located in Mojiang county, Simao 
district and Lancang county which belong to Pu’er City, 
southwest of Yunnan Province, P. R. China. In this city, 
mountain areas comprise 98.3% of the overall region, and 
the study region is located between 22°02′N to 24°50′N 
and 99°09′E to 102°19′E. Three typical geographic areas 
with different climates, Tongguan Town of Mojiang 
County (Site I), Yunxian Town of Simao District (Site 
II) and Nuofu Town of Lancang County (Site III), were 
selected as study sites (Fig. 1), and the elevation of the 
sites are from 1400 m to 1600 m above sea level. The 

mean annual temperatures and annual precipitation both 
decrease from south to north (Fig. 2). Lancang county 
has the highest annual mean temperature (19.7 ℃) and 
annual precipitation (1586.5 mm), and Mojiang county 
has the lowest values (the annual mean temperature is 
18.4 ℃ and the annual precipitation is 1306 mm) (Ou et 
al. 2016).

Data Collection and Processing
Data investigation
A total sample of 128 pines in 45 plots with an area of 
900 m2 were selected and investigated in the study areas 
(Fig. 1). Plot information including latitude, longitude, 
degree of slope, and aspect of slope was recorded. Tree 
age (A), diameter at breast height (DBH) and tree height 
(H) of the 128 sampled trees were recorded (Fig. 3). 
Tree age was determined by counting the number of 
annual growth rings of the stump of each felled sample 
trees. Then, we also recorded the basic characteristics 
of the surrounding trees within 5 metres of the sample 
trees, including tree species, DBH, H and the distance to 
calculate the competition index (CI). We calculated the 
average height of dominant trees (Ht) and the average 
age of stands (A) to calculate the site index (SI). The 
average height of the dominant trees for each plot is the 
mean of the three highest trees, and the average age of 
the stand of each plot is the mean age of the standard 
trees with a DBH similar to the average DBH of the plot. 

Biomass measurement
According to the sample collection method for tree 
biomass modelling in China, the biomass of each tree 
component was measured one at a time (Zeng et al. 2011). 
The biomass of the stem was measured by the method of 
volume density. Firstly, felled trees were segmented and 
weighed, and the fresh weight was measured. Secondly, 
the segment length and diameter were measured, and the 
volume of the trunk was calculated. Branches and leaves 
were measured by the method of the graded sample 
branch. Dead branches and fruits were measured by the 
method of total weight. Thirdly, the samples from the 
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FIGURE 1: Location of the study sites.

FIGURE 2: Monthly mean temperatures and monthly gross precipitation of three typical sites. The data are average 
values from 1980 to 2010 measured by the respective county weather stations. The lines are the monthly 
mean temperatures, and the bars are the monthly gross precipitation.



different components were dried to a constant weight 
at 105 ℃ using an oven, and the sample density of the 
wood and bark was also measured using the drainage 
method. Finally, the biomass of wood and bark of the 
sampled trees was calculated using the volume and the 
corresponding sample density, and the branch biomass 
and needle biomass of sample trees were calculated 
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using fresh weight and the corresponding dry matter 
ratio.

The sample trees were divided into two sets by 
random selection; one set with 96 sample trees was used 
to fit the models, and the other one was used for the test. 
The basic characteristics are listed in Table 1.

FIGURE 3: Scatter of the diameters at breast height (DBH) and tree height (H) vs tree age. a: DBH vs age, b: H vs age.

Data set SI Class 
(m)

N Age (years) DBH (cm) Height (m) AGB (kg)

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Fitting

12 7 28.43 2.59 21.24 2.83 16.84 1.82 197.50 50.37
14 34 38.12 2.65 22.49 1.81 16.86 0.79 297.96 63.59
16 19 38.58 4.44 20.71 3.00 14.86 1.42 294.57 111.64
18 26 38.73 2.20 34.00 2.24 21.45 1.17 622.36 83.73
20 10 36.40 4.54 31.59 4.71 23.26 3.17 684.21 197.22

Total 96 37.49 1.50 26.11 1.30 18.37 0.67 418.06 46.68

Testing

12 2 32.00 2.00 28.75 3.55 19.30 0.10 345.37 71.94
14 5 39.00 5.67 19.66 3.20 16.78 1.52 185.89 60.91
16 13 50.00 5.59 27.68 3.55 18.71 1.57 395.02 92.28
18 10 44.70 3.68 37.88 2.57 23.80 2.26 704.72 96.04
20 2 48.00 2.00 40.50 5.60 32.25 2.75 830.54 283.31

Total 32 45.38 2.77 30.48 2.08 20.88 1.19 483.24 61.21

All

12 9 29.22 2.07 22.91 2.50 17.38 1.44 230.36 45.79
14 39 38.23 2.40 22.12 1.62 16.85 0.71 283.59 56.11
16 32 43.22 3.57 23.54 2.34 16.42 1.09 335.38 75.59
18 36 40.39 1.92 35.08 1.77 22.11 1.05 645.24 65.68
20 12 38.33 3.98 33.08 4.08 24.76 2.83 708.60 167.35

Total 128 39.46 1.35 27.20 1.11 19.00 0.59 434.35 38.18

TABLE 1. Basic characteristics of the sampled trees



Competition index calculation
To calculate the competition index (CI), we used the 
formula of Hegyi (1974), Equation 1.

                                                                                                      (1)

where CIi is a competition index, Di is the diameter of 
sample tree i, Dj is the diameter of competition tree j 
around the sample tree, and DISTij is the distance from 
sample tree i to competition tree j.

Site index calculation
To derive the site index (SI), the dominant height and age 
of each plot were measured. SI was calculated for Simao 
pine using the Equation by Wang (2003), Equation 2.

                 (2)

where SI is the site index, Ht is the average height of 
dominant trees of each plot, A is the average age of each 
plot, and the base age is 20 years according to Wang 
(2003). The site index of the plots includes five types 
from 12 m to 20 m according to an interval of 2 m in this 
study (Table 1).

Model fitting
Basic model (BM)
 Richards’ growth Equation developed from Bertalanffy’s 
growth theory is used to describe biological growth 
changes over time. Growth Equations such as 
Monomolecular, Gompertz, and Logistic Equations 
are Richards’ growth Equations of the special form. 
Richards’ Equation is widespread in forestry because 
of its flexibility and excellent fitting performance 
(Richards 1959, Liu & Li 2003, Rohner et al. 2013). In 
the present study, Richards’ growth Equation is used as a 
basic biomass growth model. The general expression of 
Richards’ growth Equation is listed in Equation 3.

                
(3)

where parameters A, b and c are given in Equations 4–6:
 

(4)
                                          

(5)
                                           

 (6)

where is the response variable describing the change 
in biomass with tree age (t), A is the asymptote of the 
maximum parameter for tree growth, b is the growth 
rate parameter that indicates the rate a tree approaches 
its asymptotic biomass, c is the parameter related to m, 
m is the power exponent of anabolism, η is the anabolism 

constant, and β is the catabolism constant. Parameter 
A in Equation 3 is the most unstable parameter; thus, 
a transformation of the Equation is constructed to 
solve this problem by using the parameter a, which 
is an expected-value parameter when t = t0 to replace 
parameter A (Fang & Bailey 2001). Therefore, we finally 
selected the transformation of Richards’ Equation to 
construct a basic biomass growth model. The Equation 
is shown in Equation 7.

(7)

where y is the organ biomass of an individual tree, a is 
the progressive parameter of organ biomass growth, b is 
the rate of growth, c is the curve shape parameter, t is the 
tree age, and t0 is a fixed reference age that may be fixed 
at any positive value according to the specific research 
situation (Fang & Bailey 2001). Its value was set at 20 
years in this study.

Mixed-effect model without fixed effects from 
competition factors (MEM)
Forestry growth and yield data are affected by the 
sampling region (e.g. different regions may have different 
site conditions) and the correlation among the trees 
in the same sampling position. The data from within a 
sampling unit is dependent; thus, autocorrelation and 
heterogeneity are common in these data (Gregorie 
1987). The mixed-effect modelling technique can 
partly remove the negative impact of heterogeneity 
and autocorrelation within-plots by using variance (e.g. 
power, exponential function) and covariance (e.g. time-
autocorrelation function) structure. This technique can 
also explain the plot parameter variability by selecting 
appropriate covariates (Fang & Bailey 2001). In our 
study, site quality was taken as a random effect to select 
the mixed parameters, and power and exponential 
functions were used for describing the variance 
structures. Three time-autocorrelation functions, 
including the autoregressive time correlation structure 
with order 1 (AR(1)), continuous time AR(1) structure 
(CAR(1)) and autoregressive moving-average structure 
with both order 1 (ARMA(1,1)) function, were used to 
describe covariance structures. The mixed parameter 
selection to determinate the model forms, variance and 
covariance structure were all given by the research of 
Pinheiro & Bates (2000). 

Mixed-effect model with fixed effects from competition 
factors (MEMC) 
Based on the MEM, competition factors were considered 
fixed effects to input the Equation parameters of the 
MEM, and both CI and the quadratic effect (CI2) are 
incorporated into the models.

Model evaluation
In this study, Log likelihood (logLik), Akaike Information 
Criterion (AIC) and Bayesian Information Criterion 
(BIC) were used to evaluate the model fitting results 
(Equations 8–10).
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(8)

                    (9)

                (10)

where      is the maximum likelihood estimation of θ for 
the Likelihood function of model                 , x is the random 
sample, q is the number of unknown parameters, and n 
is the sample capacity.

Moreover, the sum relative error (RS), mean relative 
error (EE), absolute mean relative error (RMA) and 
prediction precision (P) were used to test the model 
prediction performance (Equations 11–14).

               
           (11)

                
       (12)

                
      (13)

              
    (14)

where yi is the measured value,   is the estimated 
value,    is the mean value of the estimated value, ta is 
the distribution value of t (when confidence level is a = 
0.05), N is the sample capacity, and T is the parameter 
number of the regression curve Equation.

Results
Mixed-effect model without fixed effects from 
competition factors (MEM)

Mixed parameter selection
The fitting results of different parameter combinations 
are listed in Table 2. Models with mixed parameters have 
lower AIC and BIC and higher logLik values than the basic 
model, referred to as the transformation of Richards’ 
Equation (BM). The optimal fitting result emerges when 
the parameter a is regarded as the mixed parameter 

(AIC=1305.367, BIC=1318.189, logLik= -647.684). The 
mixed-effect model is listed in Equation 15.
 

       (15)

where y is the above-ground biomass, a is the progressive 
parameter of organ biomass growth, ua is the parameter 
for the random effect from the site index, b is the growth 
rate of AGB, t is the tree age, t0 is the standard age with a 
value of 20 years, and c is the shape parameter.

Variance and covariance structure selection
A comparison of the variance and covariance structure 
fitting results of the MEM are listed in Table 3. The 
optimal fitting result emerged when the power function 
is regarded as a variance structure but none are regarded 
as covariance structures (AIC=1224.4, BIC=1239.8, 
logLik=-606.2). 

Mixed-effect model with fixed effects from 
competition factors (MEMC)

Basic model construction 
Based on the MEM, when parameter a is regarded as a 
random effect and the basic individual tree competition 
index is regarded as a fixed effect, the optimal model 
form is listed in Equation 16. Comparisons of different 
effects in the AGB growth mixed-effect model are listed 
in Table 4. The optimal fitting results emerge in the 
mixed-effect model with competition factors and site 
index (MEMC) (AIC=1298.1, logLik=-640.1). The fitting 
results of parameters are listed in Table 5. Parameter b is 
extremely significant at the p=0.01 level. 

        (16)

where y is the above-ground biomass, CI is the 
competition index, CI2 is the quadratic effect of CI, a is 
the progressive parameter of organ biomass growth, ua 
is the parameter for random effects from the site index, 
b is the growth rate of AGB, b1 and b2 are the estimated 
parameters of the fixed effect from  and  to parameter b, 
respectively, t is the tree age, t0 is the standard age with 
a value of 20 years, c is the shape parameter, and c1 and 
c2 are the estimated parameters of the fixed effect from 
CI and CI2 to parameter c, respectively.

Variance and covariance structure selection 
The fitting results of the variance and covariance 
structures are listed in Table 6. The optimal fitting result 
emerged when the power function is regarded as a 
variance structure but none are regarded as covariance 
structures (AIC=1230.2, BIC=1250.7, logLik=-607.1). 
The optimal fitting results of the mixed-effect model 
taking the competition factor as a fixed effect are listed 
in Table 7, and the optimal model form is shown in 
Equation 17.

                    (17)
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Mixed 
para-
meter

logLik AIC BIC LRT p-value

No -667.0 1342.0 1352.3 - -
a -647.7 1305.4 1318.2 38.7 <0.0001
b -652.6 1315.1 1327.9 28.9 <0.0001
c No convergence
a, b -647.7 1307.4 1322.8 38.7 <0.0001
a, c -647.7 1307.4 1322.8 38.7 <0.0001
b, c No convergence
a, b, c -647.7 1309.4 1327.3 38.7 <0.0001

TABLE 2. Mixed parameter selection of the mixed-effects 
model for AGB growth 



where y is the above-ground biomass, a is the progressive 
parameter of organ biomass growth, ua is the parameter 
for random effects, is the growth rate of AGB, t is the tree 
age, t0 is the standard age with a value of 20 years, c is the 
shape parameter, c1 is a mixed parameter of parameter 
c, c2 is a mixed parameter of parameter c, CI is the basic 
competition index, and CI2 is the quadratic effect of CI. 
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Model evaluation
The final fitting results of BM, MEM and MEMC are listed 
in Table 8. The parameter a did not differ significantly 
between the three models due to overlapping intervals 
of the estimated value, although BM has the lowest value 
with 61.799, and the parameters b and c have significant 
differences among the three models. MEM has the 

No. Variance structure Covariance structure logLik AIC BIC LRT p-value
1 No No -647.7 1305.4 1318.2 - -
2 Power No -606.3 1224.4 1239.8 92.839 <0.0001
3 Exponential No -617.8 1247.5 1262.9 59.889 <0.0001
4 No AR(1) -647.7 1307.3 1322.7 0.099 0.7532
5 No CAR(1) -647.7 1307.7 1322.8 0.015 0.9015
6 No ARMA(1,1) -647.7 1305.7 1322.7 0.095 0.9777

TABLE 3. Mixed-effects models considering variance and covariance structures for AGB growth 

TABLE 4. Comparison of different effects on the AGB growth mixed-effects model
Model logLik AIC BIC LRT p-value
Mixed-effects model with competition factors and 
regional effect

-640.1 1298.1 1321.2 - -

Mixed-effects model with regional effect -647.7 1305.4 1318.2 25.0 0.0001

TABLE 5. Estimated parameters of the AGB growth mixed-effects model incorporating competition factors as fixed 
effects

Parameter Estimated value Standard deviation df t-Value p-value
a 62.4101 34.2398 87 1.823 0.0718
b 0.0930 0.0225 87 4.128 0.0001
b1 -0.0015 0.0008 87 -1.812 0.0734
b2 0.00003 0.00001 87 1.956 0.0537
c 17.2559 10.4085 87 1.658 0.1009
c1 -0.5845 0.3855 87 -1.516 0.1331
c2 0.0088 0.0061 87 1.443 0.1526

TABLE 6. Mixed-effects models incorporating competition factors as fixed effects considering variance and covariance 
structures for AGB growth (* the model with no significant parameters b1 and b2.)

No. Variance structure Covariance structure logLik AIC BIC LRT p-value
1 No No -640.1 1298.1 1321.2
2 Power No -608.1 1236.2 1261.9 63.9 <0.0001
3 Exponential No -616.2 1252.5 1278.1 47.7 <0.0001
4 No AR(1) -639.4 1298.8 1324.4 1.4 0.2394
5 No CAR(1) -639.4 1298.8 1324.4 1.4 0.2394
6 No ARMA(1,1) -639.6 1299.2 1324.8 1.0 0.3209
7* Power No -607.1 1230.2 1250.7 66.0 <0.0001



optimal fitting performance because of the lower values 
of AIC and BIC and the highest value of logLik (Table 
8), but the difference between the MEM and MEMC is 
not significant because of the higher p value (p value = 
0.113) according to the likelihood ratio test (LRT). While 
MEMC has the minimum value of EE (6.45%) and RMA 
(54.34%), and the highest value of prediction precision 

TABLE 2: Confusion matrix

P (86.08%), BM has the minimum value of RS (7.71%) 
(Table 8). Moreover, the heteroscedasticity of the 
residual is not found in either mixed-effect models, but 
it is obvious in the BM, and the MEMC has the narrowest 
interval of standardised residual (Fig. 4). Therefore, the 
MEMC is the optimal model for the individual tree AGB 
growth of Simao pine. 
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TABLE 7. Fitting results of the three AGB growth models.
Estimation parameter BM MEM MEMC

Estimated value p-Value Estimated value p-Value Estimated value p-value

a 61.7990±14.5400 <0.0001 76.3382±19.2527 0.0001 76.9496±11.6512 <0.0001

b 0.0516±0.0200 0.0346 0.0111±0.0115 0.3389 0.0656±0.0152 <0.0001

c 6.3479±1.0760 0.0013 2.9552±0.6778 <0.0001 9.1919±2.9250 0.0023

c1 - - - - -0.1017±0.0341 0.0037

c2 - - - - 0.0003±0.0001 0.0033

logLik -667.0 -606.2 -607.1

AIC 1342.0 1224.4 1230.2

BIC 1352.3 1239.8 1250.7

D-matrix - D=[28.1220] D=[2.9887×10-9]

Heteroscedastic function 
value -

Residual error 1.4507 1.7662 2.3904

TABLE 8. Comparison of the three AGB growth models.
Model Fitting index Testing index

logLik AIC BIC LRT p-value RS(%) EE (%) RMA (%) P (%)

BM -667.0 1342.0 1352.3 7.71 9.82 61.93 85.81

MEM -606.2 1224.4 1239.8 121.6 <0.0001 -62.08 -37.46 55.16 79.85

MEMC -607.1 1230.2 1250.7 119.9 <0.0001 -34.26 6.45 54.34 86.08

FIGURE 4: Scatter of standardised residual vs 
predicted AGB for three models. a: 
basic model (BM); b: Mixed effect 
model without fixed effects from 
competition factors (MEM); and 
c: Mixed effect model with fixed 
effects from competition factors 
(MEMC).



Discussion
The different combinations of mixed parameters were 

selected, and the mixed model with mixed parameter a 
was considered as the optimal basic model because of the 
low AIC (Table 2). Parameter a represents the estimated 
asymptotic biomass at a standard age; however, trees 
have different growth potentials at the same standard 
age depending on the site quality. Many factors would 
influence tree maximum diameter at an equal basal age, 
such as water-holding capacity, elevation, and slope 
(Rohner et al. 2013). Thus, selecting parameter a as a 
mixed parameter in the model can improve the estimation 
and indicates that the site quality has a significant 
effect on the age-biomass relationship. Site quality had 
important effects on tree growth (Robichaud & Methven 
1993). Past studies generally used site characteristics 
(a plot-level variable) as variables for biomass growth 
models and showed that site characteristics had a 
significant effect on tree growth (Lee et al. 2004). 
Westfall (2016) reported that mixed models, including 
plot random effects, can reduce prediction bias and 
variance for populations to a great extent compared 
to fixed effect models; Lhotka & Loewenstein (2011) 
reported analogous results. Similarly, our study found 
that mixed-effect models, including the random effects 
of site quality, are better than basic models (i.e. higher 
logLik and lower AIC and BIC), and incorporating random 
effects can improve the biomass growth model for Simao 
pine. Our results are consistent with previous studies for 
both static models (Subedi & Sharma 2011; Rohner et al. 
2013; Ou et al. 2016; Chen et al. 2017; Huff et al. 2018), 
and growth models (Budhathoki et al. 2008; Timilsina 
& Staudhammer 2013; Westfall 2016). Moreover, the 
competition factor is an important predictor variable for 
the individual tree model because it intensively affects 
tree growth (Lhotka & Loewenstein 2011). In our study, 
MEMC had a better estimation due to incorporating the 
competition factor as a fixed effect compared with MEM, 
and the predictive ability was significantly improved 
(i.e. largest P and smallest EE and RMA). Specifically, 
the predictive accuracy increased to 86%. Thus, it can 
obviously improve the mixed model predictive accuracy 
if competition is regarded as an independent variable, 
and it also indicates that tree competition is the critical 
element for predicting individual tree biomass growth. 
Therefore, mixed-effect models have been used in 
forestry because of their superior fitting and prediction 
accuracy compared with traditional models (Huff et 
al. 2018). The mixed-effect model, only including the 
random effects of site quality, can greatly improve the fit 
performance of the model, and the mixed-effect model 
incorporating competition factors can further improve 
the prediction ability. In addition, autocorrelation among 
measurement data may result in biased estimates of the 
model parameter for biological data (Budhathoki et al. 
2010). The mixed-effect model was then introduced 
to address this challenge by defining the variance and 
covariance structures of random effects in parameter 
estimations (West et al. 2007; Smith et al. 2014; De-
Miguel et al. 2014; Njana et al. 2016). We also found that 
our prediction model had issues with heteroscedasticity 

which was corrected by using the power variance 
function (the optimal variance function) in the 
estimation process (Budhathoki et al. 2008). Therefore, 
the mixed-effect model had a good fitting performance 
which is consistent with previous studies (Subedi & 
Sharma 2011; De-Miguel et al. 2014). In contrast, all of 
the time-autocorrelation covariance structures in our 
study did not improve the model performance which 
indicates that the estimation models considering time 
autocorrelation cannot improve fitting. This might be 
attributable to the biomass sample data without a time 
series (Eisfelder et al. 2017). However, it is unrealistic 
and impossible to obtain the time series data of the 
biomass because destructive sampling was performed to 
collect biomass data (Temesgen et al. 2015). Therefore, 
we investigated sample trees with different ages (from 
8 years to 80 years) in different locations to replace the 
time series data. The AGB change rule along with the 
tree ages can be explained by using the mixed-effect 
model considering site quality and competition factors. 
Thus, the investigated methods for estimating the AGB 
growth would be reasonably practical. Additionally, we 
did not consider spatial autocorrelation among trees in 
the same plot because Simao pine is an intolerant tree 
species and because sampling trees of different ages 
occurs at distant locations. 

Furthermore, the data characteristics of the 
independent variables are important for selecting the 
form of mixed effects. A random effect is applicable if the 
variable is a grouped one, but a fixed effect is appropriate 
if the data are a continuous variable in a mixed-effect 
model (Pinheiro & Bates 2000). In this study, the site 
index and competition index were incorporated into 
the mixed-effect models as random and fixed effects, 
respectively. The site index (SI) is often used as grouped 
data in forestry. SI tables of the dominant tree species 
are established to predict potential productivity of 
forestland; SI is based on the dominant height classes 
with a 2-m interval at a standard stand age (Meng 2006; 
Duan et al. 2009 ). Thus, it was considered as a random 
effect into the mixed-effect model in this study. The 
competition index is a continuous variable, and it was 
calculated using the distances between each sample tree 
and its neighbouring competing trees and their DBH in 
this study (Hegyi 1974). Thus it was incorporated into 
the mixed-effect model as a fixed effect.

In addition, the national continuous forest inventory of 
China (NCFI) is being conducted using permanent plots 
and carried out every five years to reflect the dynamic 
change of forest resources at the national scale since 
1987 (Kang 2011). Fang et al. (2001, 2002) calculated 
forest biomass carbon using the NCFI database by 
the variable biomass expansion factor method, with 
estimation error of less than 3% at the regional and 
national scale. At the stand level, the location of each tree 
in each permanent plot and the height of the stands had 
been recorded (Kang 2011). Therefore, the CI of each 
tree can be calculated and the SI of the plots can be found 
by looking up the SI tables of the different dominant tree 
species. So the comprehensive estimation method has 
the potential to improve biomass growth estimation and 
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reflect the dynamical change of stand biomass.  

Conclusions
To improve estimation of individual tree AGB growth, 
a nonlinear mixed-effect model was developed by 
incorporating random effects of site quality and fixed 
effects of competition factors based on a transformation 
of Richards’ function. We found that the mixed-effect 
model was significantly better than the BM because 
of its better fitting and prediction performance, and 
the MEMC is the optimal estimation model due to its 
highest prediction precision. Therefore, comprehensive 
biomass growth estimation considering the site index 
and competition index can be used to predict the AGB 
growth of Simao pine trees, and it is a potential method 
for AGB growth estimation of other tree species.
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