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Abstract

Background: Biomass assessment of young forest stands is important because of their role in the carbon cycling. The aim 
of this study was to develop biomass equations for young broadleaved species growing in natural conditions in Albania.

Methods: Five forest stands were investigated using circular sample plots. Diameter at breast height (DBH) and height (H) 
from 58 sampled trees ranging in age from 4 to 34 years old of Turkey oak (Quercus cerris L.), sweet chestnut (Castanea 
sativa Mill.), European hornbeam (Carpinus betulus L.) and manna ash (Fraxinus ornus L.) were measured in situ. Logarithmic 
regression equations were used and tested for their performance to estimate aboveground and tree-components biomass 
for each species using DBH, H and their combination DBH2 x H as predictors.

Results: We found that DBH was a reliable predictor for estimation of aboveground and components biomass for young 
trees but the inclusion of height in biomass allometry did not improve the biomass estimation. We observed differences in 
scale (β0) and exponent (β1) coefficients of biomass models, not only between broadleaved species, but also among tree-
components within species. Both coefficients were strongly species-specific and their values reflect differences in biomass 
stocking rate due to different growth strategies of each species in early development phases.

Conclusions: Allometric equations to estimate aboveground and tree-component biomass appeared to be species-specific, 
meaning that such models are applicable for species growing at sites with similar ecological conditions. From the tree 
variables used, DBH was the most reliable predictor of aboveground and individual components biomass, whereas height 
proved to be a promising predictor for stand biomass. These allometric equations developed for young trees will improve 
the accuracy of current estimates of forest carbon stock in Albania.
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equations. Such allometric models are commonly used 
to estimate biomass in mature forests, but these are 
missing for young forests. They are adequate tools to 
express biomass in terms of dry mass on the basis of 
easily measured variables. Most of these equations in 
the Albanian and international literature use diameter 
at breast height (DBH at 1.3 m from the ground) and tree 
height (H) to estimate aboveground biomass (AGB) or 
tree-components biomass. Other variables such as wood 
density, crown length, height-to-diameter ratio, or tree 

Introduction
During the last decades, the area of young forests 

in Albania has been expanding due to intensive 
management and damage incurred by forest fires. Since 
young forest stands play a critical role in the forest 
carbon cycling due to their capacity in dioxide carbon 
uptake in early growth phases, we urgently need to 
develop and improve techniques for accurate prediction 
of their biomass (Lehtonen 2005). One of the most 
efficient ways to achieve this goal is to use allometric 
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age are also used to improve the accuracy of allometric 
equations in biomass prediction.

The information on biomass of forest stands is required 
to assess the amount of carbon stocked in Albanian 
forests and to estimate changes in carbon stocks to meet 
reporting requirements of Albania to the United Nations 
Framework Convention on Climate Change (UNFCCC). 
For that reason, the development of biomass functions 
in each country has become an important issue and it 
is encouraged to be done for most relevant tree species 
(IPCC 2003). Despite recent developments in remote 
sensing techniques, biomass allometric models are 
fundamental to estimating biomass at the tree or stand 
level.

Few studies on biomass and biomass expansion 
factors (BEFs) have been reported for forest species in 
Albania. The first results regarding biomass estimation 
at country level were provided in the framework of the 
National Forest Inventory (ANFI 2004). Biomass was 
calculated using inventory data on stand volume per 
hectare and biomass expansion factors (BEFs) from 
other countries with similar site conditions. Omuri 
(2006) generated allometric equations and determined 
BEFs for Austrian pine (Pinus nigra Arn.), beech (Fagus 
sylvatica L.) and birch (Betula pendula L.) ≤50 years old 
in the Shishtavec area, northern-east Albania. Toromani 
et al. (2011) developed allometric equations for young 
poplar plantations growing in eastern Albania, in the 
region of Pogradeci, based on several tree variables. 
Istrefi et al. (2018) conducted research in several areas 
in eastern and central Albania to assess aboveground and 
tree components biomass of Turkey oak (Quercus cerris 
L.) ≤0 years by using linear and non-linear allometric 
models.

Several studies on allometry have been conducted 
worldwide, where 279 equations have been developed 
for different tree species and ecological regions (Zianis 
et al. 2005; Zianis and Mencuccini 2004). These biomass 
equations were developed for young trees with a 
threshold of DBH ≥10 cm omitting trees with a smaller 
diameter. Based on our review of the literature, we 
noted that most biomass equations were developed for 
mature stands (Wirth et al. 2004; Joosten et al. 2004; 
Zianis et al. 2005) and only few for young stands (Dutca 
et al. 2010). Despite the limited number of published 
equations, for many other forest species growing in 
Albania the availability of allometric equations is still 
limited. Therefore, there is still a need for improving 
existing biomass models and developing new ones for 
other forest species such as Turkey oak, sweet chestnut 
(Castanea sativa Mill.), European hornbeam (Carpinus 
betulus L.), manna ash (Fraxinus ornus L.) and others. 
From the review in the GlobAllomeTree platform 
(http://globallometree.org, Henry et al. 2013), the only 
available allometric equations for young trees were for 
Cas. sativa, and Car. betulus. Due to the lack of biomass 
equations for young broadleaved species in Albania, the 
development of allometric models for biomass estimates 
remains a challenge for researchers in Albania. The main 
objective of this study was to develop species-specific 
allometric equations for predicting aboveground and 

tree-components biomass (i.e. stem, branches, and 
foliage) using several tree variables and to test their 
accuracy and precision for biomass prediction.

Methods

Study area
Forests in Albania cover an area of 941957 ha (ANFI 
2004) distributed over the whole territory. Within project 
“Assisted Natural Regeneration of Degraded Lands in 
Albania”, the project area was stratified in four ecological 
zones based on climate, soil, elevation and geology 
(UNFCCC 2009). The first ecological zone comprises 
forest areas of Mediterranean shrubs and gariga, while 
the second ecological zone includes mixed oak forest 
stands (Quercus spp.) with hornbeam (Carpinus betulus 
L.) and other species. The third ecological zone includes 
European box (Buxus sempervirens L.) with common 
juniper (Juniperus communis L.), while the fourth 
ecological zone comprises alpine vegetation areas with 
dwarf juniper (Juniperus nana Miquel.). Our study was 
focused on the second ecological zone dominated by 
pure and mix oak forest stands (Fig. 1). A systematic 1 
x 1 km geo-referenced grid using ArcGis program was 
established, where 19 intersections of this grid were 
located in the second ecological zone. Eight out of 19 
intersections located in young natural forest stands 
were selected randomly from north-east to central 
part of Albania. The main species at the research sites 
were: Turkey oak (Quercus cerris), sweet chestnut (Cas. 
sativa), European hornbeam (Car. betulus) and manna 
ash (Fraxinus ornus). The study areas have a distinct 
Mediterranean climate; the mean annual temperatures 
vary across sites ranging from 8.8°C to 14.4°C (Table 1), 
with extreme minimum and maximum temperatures of 
-14°C to 6.2°C and 23.7°C to 30°C, respectively (Harris 
et al. 2014; www.climexp.knmi.nl). The rainfall time 
series indicated the presence of spatial and temporal 
variability in annual and seasonal precipitation sums at 
all sampling sites. Cinnamon and dark mountain forest 
soils, the most common in the sampling sites, are deep 
with moderate fertility as well as high clay content and 
strong alkalinity (FAO 2015).

 
Sampling methodology and procedure
Starting from the main grid (1 x 1 km), biomass sampling 
plots were established at the intersections of a 200 x 
200 m grid. Five sample plots were randomly selected 
and trees inside circular sample plots (400 m2) were 
measured. Before conducting the destructive sampling, 
the diameter at breast height [DBH (cm)] of trees was 
measured by calliper with ±1 mm accuracy in two 
perpendicular directions. Tree heights [H (m)], were 
measured by ultrasonic hypsometer Vertex III (Haglöf, 
Sweden). The position of each tree in relation to the 
plot centre was recorded by measuring the distance 
from the centre and tree azimuth. In total, three to five 
trees per sample plot were selected and felled at ground 
level during the period from June 2016 to October 2017. 
Fifty-eight sampled trees were partitioned into the 
three main components (stem, branches and foliage), 
whereas plant roots were not investigated. The fresh 



weight of the stem, branches and leaves was weighed 
in the field using a precision scale with 50 kg capacity 
and accuracy ±1%. The same procedure of destructive 
analysis was followed at all research sites. Three to five 
subsamples from each tree-component were stored in 
sealed plastic bags and then sent to the laboratory of the 
Faculty of Forestry Sciences in Tirana. Masses of stem 
discs (2–3 cm thick), branches and foliage samples were 
weighed. Subsequently, all samples were dried at 70°C 
temperature, until a constant weight was achieved. Tree-
components biomass was assessed on the basis of fresh 
to oven-dry weight ratio (Eq. 1) of subsamples collected 
from sampled trees.

       
        c =  DWsubsample/GWsubsample                                              (1)

In those cases where the stem could not be weighed 
in the field, the diameter over bark was measured at 
1-metre intervals from the stem base to the top to 
determine the log volumes using Newton–Riecke’s 
equation (Van Laar & Akça 1997). The total AGB of each 
tree was estimated by the sum of stem-wood, branches 
and foliage weights.

Development of biomass equations
So far, researchers have used a variety of regression 
models for estimating tree and tree-components 
biomass. Biomass data exhibit heteroscedasticity 

because the variance differs across observations and 
for that reason the power function is considered an 
appropriate model in our study. We transformed the 
observed data using logarithmic transformation which 
is commonly used in dimension analysis studies to fit 
appropriate allometric equations. The following models 
with this form were fitted to the sampled tree data:

Model 1:   ln DW=ln β0+β1× ln DBH                              (2)

Model 2:   ln DW=ln β0+β1 × ln H                                    (3)

Model 3:   ln DW=ln β0+β1× ln DBH2 × ln H                 (4)

Model 4:   ln DW=ln β0+β1ln DBH+β2 ln H                   (5)

where DW is the aboveground dry biomass, or any of 
three components (stem, branches, foliage); DBH the 
diameter at breast height (cm); H the total tree height 
(m); and β0, β1 and β2 are the regression coefficients.

In the biomass models 2, 3 and 4, β0 represents the 
scaling coefficient, while β1 is the scaling exponent. 
The natural logarithm transformation linearises the 
allometric relationships, equalises the variance over the 
entire range of the dataset and provides comparability 
with results of previous studies (Zianis et al. 2005; 
Niklas 2006). However, the transformation introduces 
a systematic bias into the calculation, therefore to 
eliminate the bias, the final result is usually multiplied 
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FIGURE 1: Location of the research sites and sampled species



by a correction factor (CF) calculated from the standard 
error of the estimate (SEE) of the regression (Sprugel 
1983):

CF=exp×(SEE2/2)                                                                                     (6)

Models were fitted using the regression procedure within 
the SPSS software (version 24) for Windows (IBM  2006) 
to relate aboveground tree mass to different measures of 
felled tree variables including diameter at breast height 
(DBH), tree height (H), and their combination (DBH2 × H).

Biomass model fitting and evaluation
Model fitting was carried out in two phases. First, we 
eliminated non-significant models (P>0.05) and those 
with low values of coefficients of determination (R2 

<0.5). Secondly, in order to select the best equations 
for each species, several goodness-of-fit statistics were 
examined: the coefficient of determination (R2), the root 
mean squared error (RMSE), the root mean squared 
prediction error (RMSPE) and the mean error (ME). 

The coefficient of determination (R2) indicates the 
proportion of the total variance explained by the model, 
whereas the other fitting statistics analyse the accuracy 
of the biomass estimates. The smaller their values, the 
better is the biomass model prediction performance 
(Zeng & Tang 2011). We also applied the reduced major 
axis (RMA) regression, because the observed data 
are subject to errors. RMA is more appropriate than 
standard ordinary least squares (OLS) regression when 
the independent variable is measured with error (Sokal 
& Rohlf 2012).

The tree variables (DBH or H) used to predict 
aboveground biomass are subject to natural variation 
and measurement errors (especially H) and this fact 
cannot be neglected (Niklas 2006; Kaitaniemi 2004). 
The scaling exponent of the RMA regression analysis was 
estimated using the equation 7:

                                            
            bRMA=β1/ryx                                                                                 (7)

where bRMA is the scaling exponent based on the RMA 
model, β1 is the scaling exponent estimated by the least 
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square model regression (OLS) applied to Eqs. (2–4), 
and ryx is the correlation coefficient determined from the 
least square regression (Henry & Aarssen 1999).

Uncertainty of biomass models 
Uncertainty is defined as the lack of knowledge of the 
true value which can be described as a probability 
density function characterising the range and likelihood 
of possible values of aboveground or tree-components 
biomass. It depends on the quality and quantity of 
applicable data as well as on the predictive ability of 
allometric equation to estimate biomass. We evaluated 
the reliability of the biomass models in terms of 
differences between the estimates obtained from 
allometric equation and the true value. For that reason, 
the biomass models developed for each species were 
used to predict the aboveground and tree- components 
biomass using sampled tree variables as predictors. 
Since the biomass equations were directly applied to 
sampled tree data of the investigated forest species, the 
components of the errors accounted for are the sampling 
and biomass model errors (assumed to be small). The 
key approach is that uncertainty in biomass estimates 
can be propagated from uncertainties in the biomass 
data and allometric equation prediction accuracy 
and its estimation is based on the error propagation 
equation (Bevington and Robinson 1992). Using 
this interpretation, a simple equation is used for the 
uncertainty of the sum, expressed in percentage terms:

                                                                                                       

                                                                                                 (8)

where: U is the percentage uncertainty of aboveground 
biomass in the sum of the quantities (half the 95 percent 
confidence interval divided by the total (i.e., mean) and 
expressed as a percentage), DWst, DWbr, DWf are the 
uncertain quantities of stem, branches and foliage dry 
weight (kg) predicted by allometric equations, and Ust, 
Ubr, and Uf are the percentage uncertainties associated 
with biomass estimates of tree-components (i.e., stem, 
branches, foliage).

Site Long (°E) Lat (°N) Elevation (m) MAT (°C) MAPS (mm)

Sllove 20°24’’16’’ 41°45’35’’ 750 9.6 959
Bushtrice 20°25’02’’ 41°53’34’’ 780 9.7 1010
Maqellare 20°28’03’’ 41°39’17’’ 850 9.3 1000
Zerqan 20°22’’04’’ 41°30’48’’ 715 9.8 1008

Paper 19°57’42’’ 41°04’43’’ 160 14.4 1133
Tomin 20°25’’20’’ 41°41’18’’ 647 9.8 1030
Rrape 19°57’02’’ 42°02’45’ 805 10.1 1000
Qafe-Mali 20°06’28’’ 42°08’03’ 1160 8.8 1157

*source: www.climexp.knmi.nl

TABLE 1. Site description including location, longitude (long), latitude (lat), elevation above sea 
level, mean annual temperature (MAT)* and mean annual precipitation sum (MAPS)*.

 
 

𝑈𝑈 = √(𝑈𝑈𝑠𝑠𝑠𝑠 ∙ 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠)2 + (𝑈𝑈𝑏𝑏𝑏𝑏 ∙ 𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏)2 + (𝑈𝑈𝑓𝑓 ∙ 𝐷𝐷𝐷𝐷𝑓𝑓)2

(𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 + 𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏 + 𝐷𝐷𝐷𝐷𝑓𝑓)                                                                                          

 



This error propagation equation is applicable for 
estimation of the overall uncertainty derived by the 
summed quantities of tree-components biomass 
estimates by allometric models. 

Results

Sampled tree information
The basic characteristics of sampled trees are shown in 
Table 2. The sampled trees ranged in age from 6 to 34 
years, in DBH from 2 to 16 cm and in height from 1.90 
to 9.83 m.

A total of 58 sampled trees were analysed in this 
study. The aboveground and tree-components biomass 
was computed for the four species (Table 3). 

For Q. cerris the total tree biomass ranged between 
1.07 and 56.34 kg, stem biomass from 0.84 to 34.65 kg, 
branch biomass from 0.19-17.84 kg, and foliage biomass 
between 0.04 and 3.84 kg. The relative contribution of 

stem biomass to AGB in Q. cerris increased from 62% for 
large diameter classes to 78% for small diameter classes 
(Fig. 2). The proportion of branch biomass for this 
species increased from 18% for the small diameter class 
to 32% for the large diameter class. The ratio of foliage 
biomass versus AGB increased proportionally with DBH 
from 4% to7%, indicating that leaf mass gives a marginal 
contribution in aboveground biomass. For Car. betulus, 
the AGB ranged from 0.72 to 21.80 kg, stem biomass 
from 0.40 to 13.12 kg, branch biomass from 0.23 to 
6.25 kg, and foliage biomass from 0.09 to 2.43 kg. For 
this species, the proportion of stem increased from 55% 
for the small diameter classes to 60% for large diameter 
classes, while the contribution of branch biomass 
declined from 32% for the small diameter classes to 
29% for large diameter classes. Regardless of the DBH 
values of Car. betulus trees, the relative contribution of 
foliage biomass was increased from 11.0 to 12.5%. 

For F. ornus, the AGB per tree ranged from 1.83 to 12.09 
kg, stem biomass from 0.96 to 7.20 kg, branch biomass 
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Tree species Number of trees Age (years) DBH (cm) H (m)

Quercus cerris 18 8–27 2.00–15.00 2.75–9.83
Carpinus betulus 17 6–34 2.00–16.00 2.30–9.10
Fraxinus ornus 16 6–26 2.20–7.50 1.90–8.00
Castanea sativa 7 7-15 3.20–12.00 2.75–9.60

Tree variable
Species Number of trees Values DBH H DWst DWbr DWf AGB
Q. cerris 18 Min 2.00 2.75 0.84 0.19 0.04 1.07

Max 15.00 9.83 34.65 17.84 3.84 56.34
Mean 6.51 4.43 7.97 3.46 0.74 12.16

SD 3.40 1.77 9.24 4.25 0.92 14.23
Car. betulus 17 Min 2.00 2.30 0.40 0.23 0.09 0.72

Max 16.00 9.10 13.12 6.25 2.43 21.80
Mean 6.94 5.28 3.85 3.31 1.23 8.40

SD 4.67 2.25 2.82 2.90 1.08 6.71
F. ornus 16 Min 2.20 1.90 0.96 0.65 0.12 1.83

Max 7.50 8.00 7.20 4.23 1.94 12.09
Mean 4.48 4.55 3.24 2.23 0.61 6.07

SD 1.85 1.69 1.86 1.09 0.53 3.38
Cas. sativa 7 Min 3.20 2.74 1.10 0.46 0.30 1.85

Max 12.00 9.60 16.72 9.22 5.15 31.09
Mean 7.74 6.20 9.65 5.68 2.82 18.15

SD 2.76 2.07 4.90 2.89 1.59 9.30

TABLE 3. Summary statistics of aboveground and tree-components biomass of felled trees (DBH, diameter at 
breast height (cm), H, total tree height (m), DWst, stem dry weight (kg), DWbr branch dry weight (kg), DWf, foliage 
dry weight (kg), AGB, aboveground tree biomass (kg))

TABLE 2. Summary of information of sampled trees used to develop the biomass functions



from 0.65 to 4.23 kg, and foliage biomass from 0.12 to 
1.94 kg. For F. ornus, the proportion of stem biomass 
increased proportionally with DBH from 53% to 60%, 
while the branch and foliage biomass proportions were 
inversely related to sampled tree DBH. The proportion 
of branch and foliage biomass in small diameter classes 
were 41.3 % and 7.4%, whereas in large diameter classes 
they were 33.2 % and 16.1 % respectively.

For Cas. sativa, the aboveground biomass per tree 

ranged from 1.85 to 31.09 kg, stem biomass from 1.10 
to 16.72 kg, branch biomass from 0.46 to 9.22 kg and 
foliage biomass from 0.30 to 5.15 kg. For Cas. sativa, the 
proportion of stem biomass was 54 % and 59 % for small 
and large diameter classes, respectively. The relative 
proportion of branch biomass increased proportionally 
with DBH from 25% to 30%, but the proportion of foliage 
biomass was equal (16% of the AGB) for small and large 
diameter classes. 
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FIGURE 2: Box plots of biomass components (in percentages) by forest species estimated by field destructive sampling by DBH 
(1.3 m from the ground) and tree height (H) classes.

 

 



Frequency distribution of sampled tree variables
All species exhibited different frequency distributions 
of diameter at breast height, where the biggest tree 
number occurred in the 2, 4 and 6 cm diameter classes 
(Fig. 3). The sampled Car. betulus trees had DBH values 
across the full range of diameter classes, whereas the 
frequency distribution of other species was noticeably 
concentrated in the smallest DBH classes which ranged 
from 2 to 10 cm. Fifty-three trees comprising 94% of the 
total number of sampled trees in all species had a DBH ≤6 
cm. Regarding tree height, similar patterns in frequency 
distribution were observed for all species. A greater 
proportion of trees occurred in the mid-height range 
and a regular frequency decline of trees and a flattening 
of the curves towards the largest height classes was 
observed. We found a strong relationship between DBH 
and tree height (H) for all species (Table 4). The R2 values 
of the applied linear models were always significant 
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(P<0.05), with a lower value in F. ornus, probably due to 
the characteristics of this species in young development 
phases.

For all studied species, age distributions were 
produced using 10-year age classes (Fig. 3c). In Q. cerris, 
Car. betulus and F. ornus we noticed a unimodal pattern 
in age distributions, typical for even-aged forest stands 
with few trees in young and old age classes. By contrast, 
in Cas. sativa, was observed the lack of a typical age 
distribution as well as the absence of mature trees in the 
forest stand.

Relationship between AGB and tree variables
Visual examination of the biomass data (Fig. 4) revealed 
the existence of a strong relationship between DBH 
(and/or DBH2 × H) and AGB on the logarithmic scale. 
The values of the correlation coefficient (r) between 
AGB and DBH varied between 0.92 (P<0.05) for F. ornus 
and 0.96 (P<0.05) for the other species. In addition, 
correlation between AGB and DBH2 × H ranged from  
r = 0.89 (P<0.05) for F. ornus to r = 0.97 (P<0.05) for Car. 
betulus and remained in the same level for the two other 
species. The relationship between AGB and tree height 
was clearly weaker for all species, where the values of 
the correlation coefficient varied from 0.78 (P<0.05) 
for F. ornus to 0.92 (P<0.05) for Cas. sativa. There was 
also evidence of changing variance in AGB values among 
species associated with an increasing value from Cas. 
sativa to F. ornus.

Biomass model evaluation
The coefficient estimates and goodness-of-fit- statistics 
(i.e. R2, RMSE, RMSPE, ME) of all biomass models 
for the four species (after applying the logarithmic 
transformation) are shown in Table 5. These statistics 
were significant at P<0.05 level, indicating that the fitted 
biomass equations performed well. The most reliable 
model fitting was obtained for aboveground and stem 
biomass, while the model fitting for foliage and branch 
biomass was less reliable with relatively lower R2, RMSE 
and high ME. In Model 1, which uses DBH as predictor, 
the values of the coefficient of determination (R2) 
indicated that the fitted model explained between 75% 
and 97% of the observed biomass variance. We noted 
that R2 values were different between biomass models, 
tree-components and across species. The lowest values 
of the coefficient of determination (R2) were observed 
in Model 3, which uses the product of squared DBH 
with tree height as predictors, whereas the highest 
values occurred in Model 1 and Model 4. The R2 values 
indicated that fitted models explained between 62% and 
95% of the biomass variance per tree-component for 
all studied species with mean values of 75%, 79% and 
82% of variance in foliage, branch and stem biomass, 
respectively, whereas the AGB equation explained 
on average 84% of the total observed variance. The 
inclusion of tree height (H) as independent variable 
in the Model 2, did not improve the goodness-of-fit-
statistics for biomass prediction of tree-components in 
Q. cerris, F. ornus and Cas. sativa. 

The values of root mean square error (RMSE) varied 
among species and ranged between 0.18 and 4.46. All 
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FIGURE 3: Log-transformed frequency distribution (number 
per ha) of diameter at breast height (a), height 
(b) and age (c) of all sampled trees. The x-axis 
values are the central values of each class.
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biomass models used in this study produced the most 
reliable estimates for AGB and stem wood biomass, 
whereas the least accurate estimates were derived for 
branch and leaves biomass. Most of the mean error (ME) 
values obtained from all biomass models were close 
to zero, indicating that all allometric equations except 
Model 2 provided accurate prediction of biomass. The 
values of this statistic obtained from biomass model 2 
were far from zero, implying that allometric equations 
using tree height as a predictor performed the poorest. 
The dominance of positive values of ME indicated that 
the biomass models provided an underestimate of the 
aboveground or tree-component biomass, whereas in 
those cases when this statistic was negative, the biomass 
was overestimated. In this study we found differences 
between species in bRMA values for relationships between 
AGB versus DBH, H and their combination (DBH2 × H) 
(Table 6). In the case of DBH, two out of four values for 
Q. cerris and Cas. sativa were significantly different from 
the others. In the allometric models using tree height 
(H) as biomass predictor, the bRMA values decreased 
from Q. cerris to F. ornus. The lowest values of the scaling 
exponent of RMA regression were found in Model 3, 
which uses the predictor variable (DBH2 × H) for biomass 
estimate, whereas the highest values were obtained 
by Model 2, where total height was the only biomass 
predictor.

In contrast to the bRMA values, correction factor scores 
(CF) showed less variability across tree-components 
and species. The largest differences in CF values were 
found between foliage biomass and DBH in Model 
1 (Table 6). When tree height was the predictor, we 
observed less variation in CF values compared to DBH 

TABLE 2: Confusion matrix

and a wider range of CF values in stem (1.010–1.070) 
and AGB (1.010–1.060). The largest values of CF were 
obtained when DBH2 and H were used as predictors in 
the allometric Model 3, whereas the largest values at 
species level were found in F. ornus and Cas. sativa.

Uncertainty of biomass models
In order to assess the bias of allometric equations 
in biomass prediction, the quantitative estimates of 
uncertainty were applied. The uncertainty estimates 
of the biomass models developed in this study ranged 
from 1 to 24.6%, depending on the species and tree-
components (Table 7). The highest bias was found 
for biomass Model 4, while the best model based on 
uncertainty values was the allometric Model 3, where 
DBH2 x H was the predictor variable. When considering 
the bias values of biomass models by forest species, the 
highest values were found in Cas. sativa, and the lowest 
values in Q. cerris. The uncertainty of biomass models 
increased from foliage to stem biomass indicating that 
stem biomass was estimated more accurately.

Discussion

Allometric equations
Four regression models developed to predict 
aboveground and tree-components biomass were 
evaluated for their performance and accuracy of the 
estimates. The multiple regression models which used 
DBH and total tree height (H) were the most accurate. 
The logarithmically transformed model using DBH 
alone as an independent variable performed better 
meeting the criteria of accuracy and biomass prediction 
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Species Dependent variable Independent variable R2 Regression coefficients
ln β0 β1

Q. cerris DBH H 0.802 0.326 0.467
Car. betulus DBH H 0.970 0.689 0.474
F. ornus DBH H 0.752 0.018 0.788
Cas. sativa DBH H 0.823 -0.091 0.683

TABLE 4. Relationship between DBH and H, R2 and values of parameters lnβ0 and β1

 
 

FIGURE 4: Relationship between aboveground biomass (AGB) and diameter at breast height (DBH), tree height (H) and  
DBH2 × H on a logarithmic scale for all studied species.



Istrefi et al. New Zealand Journal of Forestry Science (2019) 49:8                      Page 9

Species

F. ornus Cas. sativa

Model coefficients Goodness-of-fit statistics Model coefficients Goodness-of-fit statistics

ln β0 β1 β2 R² RMSE RMSPE ME ln β0 β1 β2 R² RMSE RMSPE ME

1 Stem 0.983 1.418 - 0.88 1.02 0.99 1.00 -1.600 2.153 - 0.96 1.37 1.36 1.43

Branch 0.013 1.405 - 0.83 1.02 1.00 1.00 -0.693 2.066 - 0.94 2.03 2.00 1.82

Foliage -0.073 1.231 - 0.79 3.47 3.39 2.39 -1.131 2.328 - 0.87 0.81 2.21 2.18

AGB -1.610 2.748 - 0.92 3.06 2.42 1.36 -1.253 2.143 - 0.97 0.23 0.18 0.00

2 Stem 1.523 1.281 - 0.62 0.65 0.59 0.50 -0.262 2.253 - 0.81 1.24 1.20 1.54

Branch -0.248 1.234 - 0.48 4.46 4.43 2.40 -0.588 2.164 - 0.72 1.83 1.78 1.80

Foliage 1.539 2.459 - 0.43 3.27 3.12 3.10 -1.030 2.423 - 0.79 2.10 2.07 2.10

AGB -1.540 2.459 - 0.66 3.46 2.84 1.34 -1.163 2.271 - 0.80 1.11 1.06 1.12

3 Stem 0.285 0.031 - 0.70 0.78 0.72 0.58 0.920 0.021 - 0.60 1.31 1.29 0.97

Branch 0.004 0.029 - 0.75 0.86 0.68 0.63 0.255 0.023 - 0.54 1.37 1.44 0.99

Foliage -2.511 0.061 - 0.53 0.87 1.65 0.65 -0.412 0.023 - 0.61 1.29 1.35 0.94

AGB 0.899 0.032 - 0.73 1.80 0.74 1.23 1.502 0.022 - 0.62 1.24 1.34 0.91

4 Stem -0.948 1.503 -0.123 0.91 0.18 0.16 0.00 -3.516 1.517 0.732 0.94 0.19 0.16 0.01

Branch -1.156 1.027 0.256 0.89 1.16 1.15 -1.15 -3.176 1.939 0.456 0.91 0.74 0.73 0.64

Foliage -4.976 2.809 -0.078 0.67 0.76 0.63 0.00 -2.089 1.629 0.512 0.91 0.24 0.22 0.58

AGB -0.376 1.413 0.006 0.91 0.18 0.15 0.00 -1.643 1.709 0.519 0.93 0.21 0.17 -0.04

TABLE 5. The coefficients estimate and goodness-of-fit-statistics of log-transformed biomass equations (R2, coefficient of  
determination, RMSE, root mean squared error, RMSPE, root mean squared prediction error, ME, mean error) for Models 1–4.

Species

Q. cerris Car. betulus

Model coefficients Goodness-of-fit statistics Model coefficients Goodness-of-fit statistics

ln β0 β1 β2 R² RMSE RMSPE ME ln β0 β1 β2 R² RMSE RMSPE ME

1 Stem -0.303 1.901 - 0.85 1.26 1.22 1.22 -0.474 1.371 - 0.96 0.94 0.88 1.67

Branch -0.599 1.918 - 0.82 1.69 1.65 1.26 -0.060 1.158 - 0.93 1.45 1.39 0.81

Foliage -0.959 1.895 - 0.75 2.74 2.72 0.77 -0.773 1.636 - 0.93 2.05 2.00 0.54

AGB -1.420 1.886 - 0.93 1.09 1.05 1.06 -1.148 1.633 - 0.97 0.33 0.26 0.34

2 Stem -0.587 2.628 - 0.68 1.56 2.28 1.45 -0.617 2.263 - 0.95 1.33 1.31 1.31

Branch -0.819 2.650 - 0.72 2.02 1.93 1.93 -0.696 1.927 - 0.92 1.80 0.57 3.71

Foliage -1.113 2.615 - 0.71 3.13 3.07 1.12 -1.288 1.527 - 0.92 3.09 3.08 1.60

AGB -1.525 2.618 - 0.72 1.34 1.23 1.21 -1.527 2.688 - 0.96 1.25 1.23 1.20

3 Stem 0.610 0.027 - 0.65 1.33 1.06 0.76 0.217 0.017 - 0.74 1.59 0.95 1.03

Branch -0.204 0.026 - 0.61 1.34 1.13 0.77 -0.499 0.024 - 0.71 1.15 1.36 0.75

Foliage -1.751 0.026 - 0.62 1.34 1.12 0.77 -1.487 0.024 - 0.71 1.32 1.94 0.87

AGB 1.056 0.026 - 0.65 1.32 1.08 0.76 0.767 0.020 - 0.75 2.29 1.11 -1.94

4 Stem -1.933 1.798 0.224 0.93 0.72 0.64 0.64 -2.190 -0.084 2.162 0.90 0.26 0.18 -0.43

Branch -2.715 1.781 0.213 0.88 0.38 0.36 0.00 -3.471 0.195 2.386 0.92 0.36 0.29 0.01

Foliage -4.270 1.743 0.267 0.88 0.38 0.35 0.00 -4.433 0.216 2.346 0.91 0.36 0.29 0.00

AGB -1.467 1.760 0.227 0.93 0.28 0.24 0.04 -1.787 0.084 2.130 0.95 0.22 0.18 0.00

Biomass

Com-
ponent

Biomass

Com-
ponent



quality. As suggested by other studies, DBH is more 
accurately measured and therefore, is relatively more 
reliable when is used as single independent variable to 
develop biomass equation (Chave et al. 2005; Pastor et 
al. 1984; Mosseler et al. 2014) than other tree variables 

such as tree height (Hosoda & Lehara 2010; Hunter et 
al. 2013). We observed that inclusion of tree height as 
single predictor variable did not improve the biomass 
model accuracy and this finding is consistent with 
that reported by Johansson (1999). In contrast, other 
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Model Biomass component Q. cerris Car. betulus F. ornus Cas. sativa

bRMA CF bRMA CF bRMA CF bRMA CF

1

Stem

1.971

1.280

1.392

1.020

1.478

1.170

2.197

1.056
Branch 1.270 1.040 1.240 1.071
Foliage 1.432 1.040 1.140 1.060
AGB 1.030 1.030 1.210 1.060

2

Stem

3.097

1.070

2.310

1.020

1.577

1.010

2.535

1.051
Branch 1.060 1.040 1.030 1.065
Foliage 1.060 1.040 1.050 1.057
AGB 1.060 1.040 1.010 1.056

3

Stem

1.194

1.255

0.860

1.295

0.733

1.063

1.140

1.215
Branch 1.298 1.286 1.041 1.337
Foliage 1.285 1.284 1.636 1.233
AGB 1.243 1.159 1.060 1.247

4 

Stem 1.052 1.058 1.020 1.038
Branch 1.093 1.081 1.020 1.070
Foliage 1.089 1.082 1.424 1.060
AGB 1.050 1.029 1.021 1.046

TABLE 6. Values of the scaling exponent (bRMA) of reduced major axis regression and the biomass correction factor (CF) by spe-
cies and allometric models used in the study

TABLE 7. Uncertainty estimates of biomass models by forest species and tree-components
Model Biomass component Uncertainty (%) of biomass models by species and tree components

Q. cerris Car. betulus F. ornus Cas. sativa

1

Stem 3.70 2.70 2.40 5.00

Branch 4.00 3.00 3.40 6.00

Foliage 4.50 3.50 3.50 6.60

AGB 2.33 1.75 1.73 3.51

2

Stem 2.95 3.95 2.80 5.25

Branch 3.24 4.25 3.40 5.70

Foliage 4.15 4.70 3.70 6.80

AGB 1.95 2.75 3.14 3.74

3

Stem 1.00 1.40 2.30 1.50

Branch 1.30 2.80 3.40 2.70

Foliage 1.70 3.20 3.50 5.40

AGB 1.26 1.24 3.03 3.41

4 

Stem 4.30 9.00 6.10 6.50

Branch 6.10 17.00 7.80 10.30

Foliage 9.00 17.36 22.80 24.60

AGB 3.44 11.85 6.54 12.72



authors have found a significant improvement in model 
accuracy statistics when tree height was used as biomass 
predictor (Reed & Tome 1998), but this variable might 
be more useful for stand biomass estimates than for 
individual tree (Wang et al. 2013). In general, allometric 
models were more robust for stem and aboveground 
biomass than for branch and foliage biomass. Stem 
and aboveground biomass showed less variation than 
other tree components, and this may be related to the 
variation of local conditions, tree position in the canopy 
and sunlight availability.

The coefficients of log-transformed allometric biomass 
equations differed between species. We found that the 
scaling exponent (bRMA) in regression equation varied 
among species and tree variables used as predictors, 
indicating that such models are species-specific and 
that the use of a common scaling coefficient for different 
species would lead to bias in biomass prediction. Our 
values of bRMA (2.05 for DBH and 2.38 for tree height) 
differed from that used by West et al. (1999). These 
authors suggested that AGB should be scaled with DBH 
according to a universal value of scaling exponent (bRMA 
= 8/3, i.e. 2.67), which depends on the tree architecture. 
West et al. (1999) assumed that using a universal value 
of b is not acceptable, especially when trees are growing 
under different environmental conditions. Although 
our sampled trees were growing under similar site 
conditions, the bRMA value in allometric models developed 
in this study were different from those reported earlier 
by Zianis and Mencuccini (2004). Therefore, we conclude 
that the scaling exponent value is probably mainly 
affected by species traits and their growth during the 
juvenile period (Poorter et al. 2015). Pilli et al. (2006) 
reported three different scaling exponent values for 
juvenile (b = 2.08), adult (b = 2.66) and mature (b = 2.51) 
trees, whereas Niklas (2004) reported scaling exponents 
close to 1.0 in the case of young plants, while for large 
plants the exponents declined to below 0.75. In contrast, 
we found that tree age is associated with a decrease of b 
from 2.2 (age class 1–10 years) to 2.0 (age class 11–20 
years). Moreover, we observed that the variability of the 
scaling exponent was lower for stem biomass than for 
branch and foliage biomass. The scaling exponent values 
varied across species and were different from those 
reported in a previous study. Thus, Blujdea et al. (2012) 
reported for the same allometric model a higher value 
for F. excelsior (b = 3.04) and a lower value for Quercus 
species (b = 1.22). The most reliable fitted model for 
estimation of aboveground biomass was the multiple 
regression function (Model 4). Based on the goodness-
of-fit-statistics (R2; RMSE; RMSPE), all our biomass 
models produced the most reliable estimates for AGB 
and stem biomass and the least accurate estimates for 
branch and foliage biomass. Most of the mean error (ME) 
values obtained from the biomass models were close 
to zero, indicating that all allometric equations except 
Model 2 could provide accurate estimates. 

In Albania, as in other European countries, biomass 
estimates based on allometric equations and BEFs have 
been applied without any quantitative estimates of 
uncertainty. Therefore, information on the overall error 

occurring with the use of biomass models is missing. The 
uncertainty estimates of the biomass ranged from 1.0 to 
24.6%, depending on the species, tree components and 
biomass model applied. The uncertainty in the biomass 
estimates of Cas. sativa was high because the number of 
sampled trees used to generate allometric equations was 
low. By contrast, the lowest values of error were found in 
Q. cerris where the number of trees used to develop the 
biomass models was the highest. The uncertainty results 
indicate that the applicability of biomass models needs 
to be carefully evaluated, especially for the presence of 
bias, before using these in other geographic areas or in 
other countries.

Contribution of tree-components to total AGB
For all species studied, stem wood was the main 
contributor to the total AGB, followed by branches and 
foliage. The fact that the highest proportion of the AGB is 
allocated in the stem has been documented in previous 
studies, with proportions ranging from 50% to 92% for 
different species (Fonseca et al. 2011). Our results are 
within the same range varying from 52% (Car. betulus) 
to 65% (Q. cerris). The proportions of biomass of each 
tree component relative to AGB are consistent with those 
reported by Blujdea et al. (2012) for several broadleaved 
species growing in Romania. As expected, the proportion 
of biomass allocated to stems increased with tree size. 
As trees grow, age and size-related changes in tree shape 
and form alter the contribution of stem to whole-tree 
biomass increment (Bartelink 1998). In contrast, the 
relative contribution of branches and foliage to AGB 
decreased. We found that the biomass allocation to each 
tree-component differed among species, suggesting that 
their proportion relative to AGB depends on tree species 
in a mixed stand and stem density. 

Allometric equation comparison with previous 
models
The literature and GlobAllomeTree repository (http://
globallometree.org, Henry et al. 2013) contain numerous 
allometric equations for different trees species from 
the Mediterranean basin and other regions. Such 
allometric equations to estimate tree biomass have been 
developed for various species growing under different 
site conditions. We noticed that information about 
biomass equations for Q. cerris and F. ornus is missing 
in the GlobAllomeTree web platform (Table 8), and 
the equations developed in this study can enrich the 
database.

The allometric equations we developed used 
variables from 58 sampled trees growing in specific 
sites representing a small region. Some authors suggest 
that biomass regression equations developed for a site 
or region can be used to predict tree biomass in other 
places (Wirth et al. 2004). To verify that, we compared 
the results provided by Model 3 developed in our study 
with allometric models found in the GlobAllomeTree 
platform for Car. betulus and Cas. sativa. We could not 
do the same comparison for other species because our 
models differed from those found in this platform. The 
average values of AGB estimates from each allometric 
equation were compared using one-way ANOVAs. Means 
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were separated using Tukey HSD post-hoc test. In the 
case of Car. betulus we found that the mean values of 
biomass estimated from each model were significantly 
different (F=7.162; P=0.002), whereas in the case of 
Cas. sativa this difference was not significant (F=1.739; 
P=0.204). The results of the post-hoc test revealed 
significant differences in the mean AGB values estimated 
by our model for Car. betulus and those of Hoellinger 
(1987) (i.e. model 3 (P=0.002) and model 4 (P=0.022) 
in Table 8). In contrast, the results of the post-hoc test for 
Cas. sativa indicated no significant difference between 
the AGB estimated by our model and those of Hoellinger 
(1987) (i.e. models 5 (P=0.212) and 6 (P=0.352) in Table 
8).This suggests that the use of allometric equations 
needs to consider factors such as species characteristics, 
age, soil fertility and climate (Madgwick & Satoo 1975). 
Another limitation in the use of biomass equations 
is the range of values of independent variables. 
Extrapolation below or above these ranges could lead to 
substantial differences between the true and predicted 
values (Zianis & Mencuccini 2003). Since allometric 
relationships between biomass and tree variables vary 
across species, tree size and age, the use of such models 
in other geographic areas is not suggested because this 
may lead to incorrect estimations (Harding & Grigal 
1986; Wang et al. 2002; Zianis & Mencuccini 2003; Zabek 
& Prescott 2006). Finally, the biomass equations were 
developed on a relatively narrow DBH and H range and 
their application to large trees outside these ranges may 
be associated with larger errors in biomass prediction.

Conclusions
The dataset from 58 young trees representing four 
broadleaved species were used to develop allometric 
equations to estimate aboveground and tree-
components biomass. The intention is to use these 
equations in biomass estimation for respective species 
in the framework of the National Forest Inventory. Stem 
and AGB biomass by DBH were the most accurately 
predicted, whereas the use of tree height as biomass 
predictor was associated with a decrease in prediction 
accuracy. The possibility of estimating young tree 
biomass by forest yield tables or forest inventory data 

is limited due to the lack of biomass expansion factors. 
Since few biomass equations exist and there is a need 
for their development, further investigations in other 
ecological zones and other species should be conducted 
in Albania.
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