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Abstract

Background: The most commonly used method for extracting DNA from plant leaf tissue involves cetyl trimethylammonium 
bromide but some species, such as Acacia mearnsii, contain high levels of secondary metabolites and polysaccharides 
that interfere with this process. Various modifications have been proposed for effective removal of these biomolecules 
but these methods can be time consuming. Therefore, this study was initiated to optimise the cetyl-trimethylammonium 
bromide protocol for the extraction of high-quality genomic DNA and to develop a fingerprinting tool using cross species 
transferable simple sequence repeat markers for genetic diversity studies in A. mearnsii.

Methods:  Five CTAB-based modification were examined and 49 cross-species microsatellite markers, developed for 
several Acacia species, were tested in four multiplex panels of A. mearnsii populations. 

Results: The modified protocol yields high quantity and quality DNA from A. mearnsii leaves using high concentration of 
NaCl to remove polysaccharides and polyvinylpolypyrrolidone (PVPP) to eliminate polyphenols during DNA purification. 
In addition, omitting the selective precipitation and NaCl gradient steps in the extraction protocol, enabled us to extract 
DNA 10–20 min faster than the normal protocol. Of the tested microsatellite loci, 11 were successful in amplifying sharp 
and high-intensity bands in all the four multiplex panels and were polymorphic. The level of polymorphism ranged from 
0.115 to 0.794, with a mean 0.50 and mean number of alleles varied from 2 to 10, with overall mean of 6 alleles per locus. 
The mean observed and expected heterozygosity ranged from 0.058 to 0.970 and 0.102 to 0.796, respectively. The 11 
microsatellite loci that were effectively amplified from A. mearnsii DNA were adequate in detecting genetic variation among 
the tested populations. 

Conclusions:  These PCR-based, multi-allelic, co-dominant microsatellite markers provide a powerful tool for genetic, 
breeding and conservation studies in A. mearnsii.  
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2015). Acacia mearnsii was first introduced to South 
Africa in 1864 (De Beer 1986).  South Africa is the third 
largest, and one of the oldest, plantation resource areas 
in the southern hemisphere (Owen & van der Zel 2000). 
Acacia mearnsii is grown in approximately 130 000 
hectares, that stretches from south-eastern Mpumalanga 
(27.0245° S, 30.7925° E) to KwaZulu-Natal (29.7285° S, 
30.5319° E) in the north (The Department of Forestry 

Introduction
Acacia mearnsii is a well-known commercially grown 
tree species in South Africa. This species is cultivated 
mainly for its timber, timber products, pulp and its 
tannin-rich bark for the leather tanning industry. Acacia 
mearnsii is indigenous to Australia but is currently 
grown intensively in India, Japan, South Africa, Kenya, 
Tanzania, Uganda, Brazil, Uruguay and Argentina (ILDIS 
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and Water Affair 2003).   
Acacia mearnsii was first introduced into South Africa 

via a bag of seeds with no prior information on the 
genetic variability. Consequently, A. mearnsii plantations 
were presumed to have a narrow genetic base.  The high 
out crossing nature and the low self-incompatibility of 
Acacia species and their broad geographic adaptability 
enabled the species to maintain high genetic diversity 
(Duminil et al. 2009). However, the out crossing rate 
is highly dependent on flower fecundity, pattern and 
synchronization (Butcher et al. 2000). These factors 
are highly influenced by the environment. Intensive 
breeding was carried out over the years and populations 
were established in geographically isolated regions 
depending on the objective of breeding (frost tolerance, 
disease resistance and timber and bark quality). These 
populations were exposed to specific environmental 
factors that led to populations with distinct phenotypes. 
It was suggested that fragmentation of populations in a 
given region might result in an increase in the level of 
inbreeding and a decrease in allelic richness (Butcher 
et al. 2000). Natural selection, mutation, genetic drift 
and mating systems all affect the patterns of genetic 
variation among populations (Millar et al. 2008). To 
investigate the influence of the above genetic forces 
on the genetic diversity and patterns of variation, it is 
helpful to develop appropriate genetic analysis tools.

Population genetic diversity and conservation studies 
using molecular techniques are important for population 
or species survival; and the extraction of high quality 
genomic DNA and polymerase chain reaction (PCR) 
amplification protocols are essential pre-requisites 
(Bonin et al. 2004; Tan & Yiap 2009). Extraction of high-
quality DNA from plant tissue is challenging because 
plants have variable levels of metabolites and structural 
biomolecules that interfere with existing DNA extraction 
protocols (Salblok et al. 2009; Sahu et al. 2012). Secondary 
metabolites, polysaccharides and polyphenols, are plant 
biomolecules that often interfere with DNA isolation, 
enzymatic digestion and PCR (Weising et al. 2005). In 
the case where species are characterized by their high 
secondary metabolite content, such as A. mearnsii, DNA 
extraction procedures require intensive testing and 
adaptation of different protocols. 

The most commonly used basic DNA extraction 
methods from plant leaf tissue are derived from the 
original cetyl trimethylammonium bromide (CTAB) 
based protocol (Doyle & Doyle 1990). For species like 
A. mearnsii, which contain high levels of secondary 
metabolites and polysaccharides, ensuring extraction 
of high-quality DNA is important for downstream 
genetic analysis (Sahu et al. 2012; Healey et al. 
2014). To contend with the problems associated with 
secondary metabolites various modifications have been 
proposed for effective removal of these biomolecules 
(Weising et al. 2005). The modified protocols include 
the addition of polyvinylpyrrolidone (PVP), insoluble 
PVPP, bovine serum albumin (BSA), reducing agents like 
β-mercaptoethanol or high salt solutions to the extraction 
buffer (Allen et al. 2006; Varma et al. 2007; Lade et al. 
2014; Arruda et al. 2017). However, these methods can 

be time consuming, relying on long incubation steps, or 
requiring multiple DNA washes and precipitations that 
decrease overall yield (Healey et al. 2014). Therefore, 
this study was initiated to optimise the CTAB protocol 
for the extraction of high-quality genomic DNA and to 
develop a fingerprinting tool using cross species SSR 
markers for genetic diversity studies in A. mearnsii.

Methods

Sample preparation
The development of the DNA extraction and SSR-PCR 
amplification protocols were part of the genetic diversity 
study to support the Institute for Commercial Forestry 
Research’s A. mearnsii breeding and seed production 
programmes (https://www.icfr.ukzn.ac.za). The four 
breeding populations used in this study were derived 
from a base population constituted with 1081 genotypes 
collected from different progeny trials resulting from 
controlled crosses and targeted selfing (Dunlop et al. 
2003).  The four breeding population were reconstituted 
based on similarity in disease resistance, bark yield 
and quality, stem form and vigour. Two hundred and 
twenty-eight individuals were selected from the four 
breeding populations (TP1 = 78, TP2 = 34, TP3 = 64, 
and TP4 = 52). At sampling time, three of these breeding 
populations were seven years old and one was a 15-year-
old population (TP1). Young, fresh, and healthy leaves 
free from visible contamination were sampled, wrapped 
in moist paper and placed in a cooler box. Upon arrival to 
the laboratory, each sample was ground into fine powder 
with mortar and pestle following the addition of liquid 
nitrogen. The powder was transferred to duplicate 2 ml 
reaction tubes and immediately stored in a -80 oC freezer. 
One set of samples were used for DNA extraction and the 
duplicates were stored for future reference.  

DNA Extraction
Various CTAB DNA extraction protocols were tested 
for their suitability with A. mearnsii leaf material. The 
initial protocol used here was developed by Centro 
Internacional de Mejoramiento de Maíz y Trigo (CIMMYT 
2005) and modified by Bairu et al. (2006) and Moyo 
et al. (2008). The protocol was amended to increase 
DNA quantity and quality and to shorten the time 
spent on extractions. Briefly, some of the modifications 
included an altered NaCl concentration, to adding PVPP 
to the CTAB extraction buffer, and the collapse of the 
chloroform and CTAB/NaCl steps into a single step as 
described below and summarised in Table 1. 

The final protocol contained the following steps: 
about 150 mg ground leaf material was added to  
800 µL preheated at 65 °C CTAB extraction buffer  
(2% w/v CTAB, 100 mM Tris-HCl (PH 8.0) 20 mM EDTA, 
1.4 M NaCl), with 8 µL 2-mercaptoethanol and 2% PVPP 
in a clean 2 mL tube. The mixture was incubated in a 
water bath at 65 °C for 1 hour, while mixing every 10 
min by inversion. Immediately following incubation 
800 µL chloroform: isoamyl alcohol (24:1) and  
160 µL preheated at 65 °C CTAB/NaCl (10% CTAB,  

https://www.icfr.ukzn.ac.za


0.7 M NaCl) was added and mixed for 10 min by inversion. 
The mixture was centrifuged for 10 min at 10000 rpm 
followed by recovery of the top aqueous layer into a  
1.5 ml clean tube. Precipitation of DNA was achieved by 
adding 800 µL ice-cold isopropanol to the supernatant 
and mixed gently by inversion. The mixture was then 
centrifuged for 15 min at 10 000 rpm followed by careful 
decanting of the isopropanol, leaving the pellet in the 
tube. The pellet was washed in two steps, first with 70% 
ice cold ethanol and then 95% ethanol by inversion. 
After removing the ethanol by decanting, the pellet 
was allowed to air dry in a laminar flow bench. Finally, 
the dried pellet was re-suspended in 100 µL TE buffer  
(10 mM Tris-HCl, 1 mM EDTA, PH 8.0) and stored at 
-20 °C. Following DNA extraction, the concentration 
and purity of DNA was estimated using the Jenway 
Genova Nano spectrophotometer (Bibby Scientific Ltd., 
Staffordshire, UK). 

SSR marker screening
Due to the lack of species specific SSR markers for A. 
mearnsii, 49 simple sequence repeat (SSR) markers 
were used from other Acacia species (Additonal File). 
The markers were chosen based on their ability to 
amplify across species (Adamski et al. 2013; Aggarwal et 
al. 2011; Miller 2009; Ng et al. 2005; Butcher et al. 2000). 
Initially, unlabelled primer sets were tested using PCR 
amplification and the PCR products were visualization 
on a 2% MetaPhor™ agarose gel (Lonza Rockland Inc., 
Rockland, USA) with TAE buffer. Only those markers 
with visible bands were selected for further evaluation. 
The forward primer of each selected primer set was then 
labelled with a fluorescent dye and used for downstream 
amplification. The PCR products were sent to the Central 
Analytical Facility at Stellenbosch University, South 
Africa for fragment analysis. The software program, 
Gene Marker® v2.4.0 (Soft Genetics) was used to score 
the electropherograms. After this step, only polymorphic 
markers that amplified more than two alleles across 
eight A. mearnsii samples of known genetic variation 
in the breeding programme were selected for further 
analyses.

PCR amplification 
The initial PCR reactions were performed using the 
DreamTaq master mix, ready-to-use solution containing 
DreamTaq DNA Polymerase, optimized DreamTaq buffer, 

MgCl2, and dNTPs, from Thermo Scientific. Each reaction 
mixture contained; ~150 ng DNA, 5 µL DreamTaq PCR 
master mix (Thermo Scientific), 0.4 µM of each primer,  
0.8 µL BSA (1mg/ml) and dH2O to make up the final 
volume of 10 µL. A gradient PCR was performed to 
determine the optimal annealing temperature (Ta) for 
each primer set tested. The temperature range for the 
gradient PCR was set from 48–60 °C, while the remaining 
parameters set were according to the manufacturer’s 
protocols. The PCR products were viewed on a 2% 
MetaPhor™ agarose gel. The optimum Ta was established 
for each primer set and the touchdown PCR method was 
used for all subsequent PCR amplifications using the 
DreamTaq master mix. The touchdown protocol had 
the following conditions: initial denaturation step at 95 
°C for 3 min, 10 cycles of 95 °C for 20 seconds, Ta 10 °C 
higher than the optimum and decreasing every cycle by 
1 °C for 20 seconds and an elongation step of 72 °C for  
30 seconds, followed by 25 cycles of 95 °C for 20 seconds, 
optimum Ta for 20 seconds, 72 °C for 30 seconds, with a 
final elongation step of 72 °C for 5 minutes. Additional 
magnesium chloride (MgCl2; 1 mM) was added to PCR 
mixtures for primer sets with weak amplicons. The 
various annealing temperatures for each primer pair (Ta 
= 48–52 °C) and the different levels of amplicons across 
the primer sets, made multiplexing difficult. Each primer 
was, therefore, amplified in single-plex and added to a 
single tube for fragment analysis as a ‘multiplex’. Four 
multiplex sets (Multiplex A, B, C and D) were established 
(Table 2). All amplified products were sent to the Central 
Analytical Facility at Stellenbosch University, South 
Africa for fragment analysis. Gene Marker® v2.4.0 was 
used for scoring all genotypes. This process was time 
consuming and an alternative was needed. 

The KAPA2G Fast Multiplex kit (KAPA Biosystems, 
Cape Town, South Africa) was tested for its multiplexing 
utility, using the selected Acacia SSR primer sets. The 
KAPA2G Fast Multiplex kit contains KAPA2G Fast HotStart 
DNA Polymerase, a buffer optimised for multiplex PCR, 
with 0.2 mM of each dNTP and 3 mM MgCl2 (at 1X). This 
kit is pre-optimized for multiplex PCR reactions to use 
with primer interactions, primer concentrations, DNA 
quality and quantity, with marginal changes to annealing 
temperatures. Each PCR reaction mixture contained: 
~150 µL DNA, 5 μL KAPA2G Fast Multiplex mix, 0.6 µL 
BSA (1mg/mL), 0.1–0.4 μM of each primer and dH2O 
to make up the final volume of 10 µL. The PCR cycle 
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CTAB Protocol Mean DNA concentration (ng/µL) Mean 260/280 ratio Mean 260/230 ratio

1 (0.7 M NaCl in CTAB buffer) 44.217# 2.089# -

2 (with CTAB/NaCl step) 15.981 1.787 -

3 (1.4 M NaCl in CTAB buffer) 113.222 1.908 0.966

4 (combined CTAB/NaCl step) 131.214 1.915 1.309

5 (final protocol) (PVPP added) 159.515 1.887 1.754

TABLE 1: Comparison between the different modified CTAB protocols tested for DNA extraction from Acacia mearnsii 
leaf material.

#The mean taken from four samples



parameters were set up following the manufacturer’s 
protocols. The PCR cycle parameters were as follows: 
initial denaturation at 95 °C for 3 minutes, 30 cycles of 
95 °C for 15 seconds, 60 °C for 30 seconds, and 72 °C 
for 20 seconds, with a final elongation step of 72 °C for 
1 minute. The above mentioned multiplex sets were 
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used for amplification and the amplified products were 
sent to the Central Analytical Facility at Stellenbosch 
University, South Africa for fragment analysis. All loci 
were successfully amplified using the KAPA2G Fast 
Multiplex kit. All subsequent amplifications were done 
using this kit.

Multiplex Dye Primer sequence (5’-3’) Repeat 
motifs

Type 
repeat

Ta Size 
range 
(bp)

Na Source

A

AH2-1 FAM F: GACAGAGGGAGCATTTTGTA (CT)12 Di- 60 146-160 10 Aggarwal et al. 
2011

R: CAGACAAGACCAGAGAATGAC

AH3-18 FAM F: TGAGACAATTAATGGTGGTG (TAA)5 Tri 60 209-221 4 Aggarwal et al. 
2011

R: TTTACAAGGGAAAAGCTGAG

Am465 Cy 3.5 F: TGGGTATCACTTCCACCATT (AC)23 Di- 60 113-131 5 Butcher et al. 
2000

R: AGGCTGCTTCTTTGTGCAGG

B

AH3-1 PET F: CTAAGGCACTTGGATCATTC (TCT)5 Tri- 60 214-217 2 Aggarwal et al. 
2011

R: AGAGAGAGAGAGGCACACTG

AH3-10 FAM F: AGGGATATCGGATGCTTACT (GAT)7 Tri- 60 178-202 10 Aggarwal et al. 
2011

R: AAAGATGCAGCAGACCTATC

Ak15 VIC F: CACCCCCACGTTATCTTACA (TAT)5 Tri- 60 297-309 4 Adamski et al. 
2013

R: GACTGGCGAAAGAGTCGAA

C

AH16 HEX F: GAGGGTAATGCTTCAAGTAGAC (GA)16 Di- 60 86-88 2 Ng et al. 2005
R: TGCGTGTCTCCCCACTACTC

AH56 Cy3.5 F: GATAGCTCATAGAAACACCATACC (GA)9 Di- 60 123-129 4 Ng et al. 2005
R: GGCGAAGCTCTCTCTCTCTCTCTCTCT

Ak89 FAM F: AGGGGAAGGACGAAAGTTGT (AC)7 Di- 60 160-174 5 Adamski et al. 
2013

R: GCAAGAGGAGCTTCAAGTGG

D

AH01 FAM F: TTGAGGTTGAGGGTGATGAA (GA)6 Di- 60# 106-116 5 Ng et al. 2005
R: GGCAAGCCTCTCTCTCTCT

AH2-13 NED F: GAAGAAGCAGGAGGAGGTAG (AG)7 Di- 60# 143-151 7 Aggarwal et al. 
2011

R: TGTTTTCCACTTCTCACACA

TABLE 2: Detail of the eleven selected SSR markers with bands amplified in A. mearnsii. 

# 0.5 mM additional MgCl2 added; Ta= annealing temperature; Na= number of observed alleles. Only the annealing temperature used for the 
KAPA2G Fast Multiplex kit is reported.



Statistical analyses
Estimates of null allele frequencies were performed 
using the software program FreeNA (Chapuis and 
Estoup 2007) using the Expectation Maximization 
Algorithm (EM) (Dempster et al. 1977). The influence 
of null alleles on genetic diversity estimates was 
assessed with a Wilcoxon signed rank test using R 
 (R Core Team 2015) and Fst per locus values for corrected 
uncorrected null alleles were made using the excluding 
null alleles (ENA) method (Chapuis & Estoup 2007). 
Genetic diversity per locus was assessed using the mean 
number of alleles (Na), observed (Ho) and unbiased 
expected (uHe) heterozygosity using GenAlEx v6.5 
(Peakall & Smouse 2012), and the inbreeding coefficient 
(Fis) was determined using Genepop v4.3 (Rousset 
2008). Polymorphic information content (PIC) was 
estimated using Cervus v3.0 (Kalinowski et al. 2007), 
probability of identity (PID) for unrelated individuals 
and probability of identity for full siblings (PIDSibs) were 
estimated using GeneAlEx V6.5, and allelic richness 
(Ar), using the rarefaction method, as implemented in 
FSTAT (Goudet 2001). Deviations from Hardy-Weinberg 
equilibrium were calculated using Genepop v4.3. PID 
and PIDSibs estimate the probability that two randomly 
chosen full-sibs within a given population that have 
the same genotype on a set of makers. The PID assumes 
that there is no linkage disequilibrium and population 
substructure. When such assumptions do not hold, the 
PIDSibs is often used as a conservative upper bound of the 
“real” probability.

Results

DNA extraction, quality and quantity 
In this study, the CTAB DNA isolation technique 
was employed to extract DNA from Acacia mearnsii 
leaf samples with slight modifications. The mean 
concentration and purity of DNA samples extracted 
from the leaves of Acacia mearnsii based on the five 
protocols tested are presented in Table 1. The mean 
DNA concentration varied significantly ranging from 44 
to 159 ng/µL, at low concentration of NaCl and at high 
concentration of polyvinyl polypyrrolidone (PVPP), 
respectively. The addition of a high concentration 
NaCl and PVPP provided the best results, with high 
DNA concentrations (>100 ng/µL) and near optimum 
wavelength ratios (mean 260/280 = 1.887; mean 
260/230 = 1.754). Efficient DNA extraction was achieved 
with the optimised CTAB protocol, with less than 5% re-
extraction. However, the 260/230 ratio values from the 
spectrophotometer assessments indicated that some 
residual phenols and/or carbohydrates might still be 
present in the DNA extracts. Subsequently, Bovine Serum 
Albumin (BSA) was used during PCR amplification to 
eliminate the effect of the co-extracted compounds.

SSR screening and summary statistics
Of the 49 assessed microsatellite makers developed for 
other Acacia species, only 11 (22.5%) loci amplified 
clear reproducible high-quality DNA bands in A. 
mearnsii (Table 2). These markers were polymorphic 

and consistent amplification was achieved among the 
four populations of A. mearnsii tested. The proportion of 
missing data ranged from 0% to 3.5% per locus. Missing 
data of up to ~4% of the scored genotypes is, however, 
acceptable for population genetic studies (Putman and 
Carbone 2014) and no genotype was eliminated from 
the analysis. The proportion of null alleles calculated 
per locus over all samples ranged from 0.00 (Ak89) to 
25.8 (AH3-10), with a mean of 10.8 over all loci. The 
null allele frequencies (NAF) for locus AH2-13 and AH3-
10 were higher than 20% (Table 3). The observed null 
allele frequencies per population for AH2-13 and AH3-
10 ranged from 15.5–20.6% and from 19.4–32.1% per 
population, respectively (data not shown). Although the 
values are high, they are still within the range of values 
often reported in other studies using SSR loci develop 
in other species (Dakin and Avise 2004). There was 
no significant difference detected between Excluding 
Null Allele (ENA) corrected and uncorrected FST values 
(p-value > 0.05; Bonferroni corrected) and therefore, it 
was decided to keep all loci for the subsequent analyses. 
The genotypes showed a wide range of allelic diversity 
from 2 to 10 alleles per locus. The highest allele number 
(Na = 10) was observed at markers AH2-1 and AH3-10 
and the lowest was for AH16, with an overall mean Na 
of 5.3 (Table 2). Based on alleles detected among four 
multiplex panels in all four A. mearnsii populations, di-
nucleotide repeat SSRs were relatively more polymorphic 
than those with tri-nucleotide repeats.

The unbiased expected heterozygosity (uHe) ranged 
from 0.103 to 0.796 per locus, while the observed 
heterozygosity (HO) varied from 0.058 to 0.97 (Table 3). 
Only three loci (AH3-1, AH3-18 and Am465) did not show 
significant deviation from Hardy-Weinberg equilibrium 
(Table 3). A high level of variation was observed for the 
inbreeding coefficient (FIS) estimates among loci (FIS = 
-0.567 to 0.653). Negative FIS values were only observed 
at two loci (AH3-18, Ak89), indicating a heterozygote 
excess for Ak89. Two loci were found to be highly 
polymorphic (AH2-1 and AH3-10). Both loci had PIC 
values greater than 0.7, with high allelic richness (Ar) 
values. More than 50% of the markers had PIC values 
greater than 0.50. The combined PID value for the SSR 
panel was 7.2 x 10-8. Therefore 1 in about 14 million 
trees will have the same genotype. The PIDSibs value of 
1 x 10-3 provides a lower bound for the number of loci 
required for the successful identification of individuals, 
with 1 in about 1000 individuals sharing the same 
genotype if all individuals are full siblings. This indicates 
that these markers had a high discriminatory power and 
were found to be highly suitable for genetic diversity 
analysis. The allelic richness (Ar) estimates were based 
on a minimum sample size of 30 individuals, the values 
ranged from 2 (AH16 and AH3-1) to 9 (AH3-1), with a 
mean of 4.8 alleles per locus. 

Discussion
Exploiting the differences in solubility of polysaccharides 
and DNA in the CTAB buffer by adjusting the 
concentration of sodium chloride can aid the removal 
of polysaccharides (Weising et al. 2005). It has been 
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described that a high salt concentration in the extraction 
buffer assists in eliminating polysaccharides by 
increasing their solubility in ethanol (Fang et al. 1992; 
Lodhi et al. 1994; Varma et al. 2007). The addition of 
NaCl at concentrations higher than 0.5 M, along with 
CTAB, successfully removes polysaccharides during 
DNA extraction (Moreira & Oliveira 2011; Lucas et 
al. 2019). In the present study, a concentration of 1.4 
M NaCl was used in the extraction buffer that further 
improved the quality of the extracted DNA. Endogenous 
DNases can degrade the extracted DNA unless EDTA 
is added (Weising et al. 2005). EDTA has an inhibitory 
effect on magnesium-dependant DNases by binding to 
magnesium ions through chelation (Weising et al. 2005). 
In this study, the addition of PVPP, which have strong 
H-receptor for binding and removal of polyphenolics 
into the CTAB buffer was helpful in removing the 
polyphenols and polysaccharides from leaf samples of 
Acacia mearnsii (Kolosova et al. 2004).  

This protocol resulted in a mean total DNA amount 
of 15.95 μg extracted from 150 mg leaf tissue. Similar 
results were obtained with modified CTAB methods in 
cotton (15–30 μg from 100 mg plant tissue; Ali et al. 
2019), as well as Arabidopsis thaliana, Zea mays and 
Nicotiana sp. (5–30 μg from 200 mg plant tissue; Allen 
et al. 2006). However, the values obtained in this study 
are much lower than those obtained from other species 
characterized by high levels of secondary metabolites 
(Sahu et al. 2012; Arruda et al. 2017). Tiwari et al. (2012), 
obtained a DNA concentration ranged from 179 to 833 
ng/µL using the modified CTAB protocol in selected 
medicinal plants.  Similarly, Sahu et al. (2012) achieved 
DNA concentration ranged from 8.8 to 9.9 μg/μL that 
was amenable of RAPD markers analysis. The difference 
in DNA concentration could be attributed to the various 

modifications such as high salt concentration, PVP, PVPP 
and avoiding the use of liquid nitrogen and selective 
precipitation and washing steps in addition to species 
differences. 

The 260/280nm and 260/230nm wavelength ratios 
are well-known measures of nucleic acid quality. The 
recommended values for the 260/280 ratio ranged from 
1.8 to 2.0 and the optimised CTAB protocol in this study 
resulted in an absorbance value of 1.89, which is within 
the accepted range indicating the protocol is efficient in 
obtaining high-quality DNA samples. The quality of the 
DNA obtained using the optimized protocol is sufficient 
since ratios in the range of 1.6–1.8 are acceptable for 
PCR reactions. Similarly, in a pure DNA sample, the 
reference interval for 260/230 ratio is 2.0–2.2, however, 
the ratio obtained in this study was 1.75 which falls 
below the recommended level. This value was similar 
to those reported by Murray and Thompson (1980) but 
lower than values reported by Arruda et al. (2017). This 
indicates that the quality of the DNA is low due to possible 
contamination by residual polyphenolic compounds 
and/or carbohydrates in the extract (Moncada et al. 
2013). The high quality DNA obtained by Arruda et al. 
(2017) might be attributed to the higher concentration 
of CTAB (3%) and NaCl (2.5 M) compared to CTAB (2%) 
and NaCl (1.4 M) used in this study. This could aid to 
more efficient elimination of polysaccharides since the 
composition and concentration of reagents can interfere 
with the quality and quantity of extracted DNA (Borges 
et al. 2012). In addition, the low 260/280 and 260/230 
ratios obtained in this study might be attributed to high 
quantities of tannin in A. mearnsii leaves (Elgailani & 
Ishak 2014). 

The systematic exploration of microsatellite markers 
across species should be the first step in developing SSRs 
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Locus NA Ar Ho uHe FIS PID PIDSibs PIC NAF HWD p-value

AH2-1 8.25 9.96 0.514 0.779 0.393 0.057 0.36 0.792 0.18 0.00
AH2-13 4.00 7.96 0.216 0.446 0.608 0.340 0.60 0.410 0.21 0.00
AH3-18 3.75 4.97 0.407 0.431 0.001 0.360 0.62 0.395 0.00 0.19
Am465 4.25 5 0.634 0.663 0.042 0.170 0.46 0.608 0.02 0.37
AH3-10 9.00 10 0.336 0.796 0.575 0.054 0.36 0.794 0.26 0.00
AH3-1 2.00 2 0.095 0.102 0.080 0.780 0.88 0.115 0.02 0.23
Ak15 3.25 4 0.361 0.563 0.403 0.270 0.53 0.485 0.16 0.00
AH16 2.00 2 0.058 0.164 0.653 0.710 0.85 0.151 0.14 0.00
AH56 4.50 6 0.337 0.598 0.445 0.210 0.49 0.557 0.17 0.00
Ak89 5.50 6.97 0.970 0.608 -0.567 0.210 0.50 0.551 0.00 0.00
AH01 6.25 7 0.622 0.639 0.005 0.170 0.48 0.594 0.04 0.00
Mean 4.80 5.99 0.416 0.524 0.240 - - 0.496 0.11 -
SE 0.36 0.83 0.041 0.035 0.11 - - 0.067 0.03 -

TABLE 3: Genetic diversity parameter values measured per locus over all samples

Ar= allelic richness; Ho= observed heterozygosity; He= unbiased expected heterozygosity; FIS= Inbreeding coefficient; PID= probability of identity 
per locus; PIDSibs= probability of identity for full siblings per locus; PIC= Polymorphic information content; NAF(%)= null allele frequency as 
percentage; HWD= deviation from Hardy-Weinberg; SE= Standard error



in under-studied species. Developing new SSR primers 
specific to the species of interest is both time consuming 
and costly (Yosodha et al. 2005; Ravishankar et al. 2015). 
It is, therefore, more feasible to source SSR primers 
developed for other related species. The use of SSR 
markers across species from the same genus (Omondi 
et al. 2010; Aggarwal et al. 2011; Adamski et al. 2013; 
Le Roux et al. 2013; Roberts et al. 2013) and across 
different genera (Peakall et al. 1998) have been reported 
for Leguminosae. In this study, the possibility of cross-
species transferability of 49 microsatellites, derived 
from A. mangium, A. koa and A. auriculiformis, into A. 
mearnsii was investigated. Of the tested 49 cross-species 
markers, only 11 were effective in amplifying sharp and 
high intensity bands. The transfer rate was 22.5%, which 
is moderately low. This result was in agreement with 
Butcher et al. (2000), who reported low levels of cross-
species SSR amplification within Acacia species. The 
low transferability might be attributed to the genetic 
divergence among the Acacia species due to exposure to 
different bottlenecks and geographic isolation (Varshney 
et al. 2005; Barbará et al. 2007).  Similarly, several studies 
indicated the low transferability rate of SSRs among 
plant species (Luro et al. 2008; Koppolu et al. 2010; Lee 
et al. 2011). Although transferability was in general very 
low, the mean number of alleles amplified per locus was 
relatively higher (6.0) in this study compared to the 2.9 
allele per locus reported by (Adamski et al. 2013) using 
16 Acacia koa SSR markers on seven Acacia species. The 
high levels of polymorphisms of SSR loci indicated that the 
application of these markers for genetic diversity studies 
in A. mearnsii was useful and cost-effective compared to 
developing new SSR markers specific to the species. This 
study provided an important insight in the development 
of microsatellite markers suitable for genetic studies 
in A. mearnsii. In the current study, we only used SSRs 
to study their cross-species transferability and on the 
genetic diversity of four A. mearnsii breeding population. 
However, their genomic distribution, biological function 
and other uses should be further investigated (Vieira et 
al. 2016).

Various factors such as genotyping errors of loci 
should be considered in choosing a sufficient SSR panel 
for population genetic and parentage studies. A well-
known problem with SSR is the occurrence of null 
alleles and over estimation of alleles due to polymerase 
strand-slippage in DNA replication (Vieira et al. 2016). 
The analysis of null allele frequencies per genotype 
conducted using the maximum likelihood estimates 
in this study confirmed the presence of null alleles in 
all loci but Ak89.  For these loci, null-allele frequencies 
estimates ranged between 0% and 25.8%, with 64% of 
the loci showing null-allele frequencies above 5%. In this 
case, the null alleles occur when an allele fails to amplify 
via PCR and heterozygotes might falsely be scored as 
homozygote. Null alleles can possible be either caused 
by mutations in the flanking regions of a microsatellite 
sequence (Chapuis & Estoup 2007; Dakin & Avise 
2004), or associated with shorter alleles outperforming 
the longer alleles, usually due to lower DNA quality or 
quantity (Gagneux et al. 1997; Wattier et al. 1998). 
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Consequently, null alleles may inflate genetic diversity 
parameter estimates (Chapuis & Estoup 2007; Carlsson 
2008) and result in inaccurate parentage assessments 
(Dakin & Avise 2004). Carlsson (2008) reported 
that in datasets containing null alleles, the genetic 
differentiation estimate FST were slightly overestimated. 
If the frequency of a null allele is <0.1, some estimators 
can be used directly without adjustment; if it is >0.5, 
the potency of estimation is too low and such a locus 
should be excluded (Huang et al. 2016). In this study, the 
estimated null allele frequencies were generally below 
the threshold levels. 

All SSR loci were used for the downstream diversity 
analyses. It was reported by Carlsson (2008) that loci 
affected by null alleles can still be useful for population 
level studies.  However, breeders should interpret 
the results with caution as the effect of null alleles on 
parentage analysis is more substantial, as it could lead 
to false parentage assignments (Pemberton et al. 1995). 
Since these breeding populations were derived from 
the same base population, it is therefore, advisable to 
use parentage assignment methods that consider the 
presence of null alleles in the dataset (Dakin & Avise 
2004) during further selection and breeding planning.

The mean genetic diversity value observed in A. 
mearnsii (He = 0.524) in this study was much higher 
than the study conducted on A. longifolia in Portugal 
(He = 0.190) (Vicente et al. 2018) using SSRs. However, 
the value is more comparable with a study of A. senegal 
(He = 0.519) (Djibo et al. 2017), A. auriculiformis (He = 
0.60) (Son et al. 2016) and A. mangium (He = 0.56) (Son 
et al. 2016) using SSRs. The inbreeding coefficient (FIS) 
measures the deviation of heterozygosity from expected 
values under the assumptions of Hardy Weinberg. A 
negative and positive FIS value indicates an excess or 
deficiency of heterozygosity in a population relative 
to the ratio under HWE. All the markers except Ak89 
revealed a positive FIS value suggesting a deficiency of 
heterozygotes. The deficiency of heterozygotes can be 
attributed to either inbreeding or existence of null alleles 
or the presence of subpopulations within populations 
(Wahlund effect) (Jordana 2003). Of the 11 microsatellite 
loci analysed, 9 loci deviated from HWE in A. mearnsii (P 
< 0.001). This might be due to the small sample size used 
or the existence of null alleles (Wang 2008). Linkage 
disequilibrium observed among pairs of loci in this study 
appeared to be associated with the presence of null 
alleles in some of the analysed loci. All the microsatellite 
loci, except Ak89 and AH01, which were found to depart 
from the Hardy-Weinberg equilibrium (HWE), had null 
allele frequencies exceeding 10%. 

The probability of identity (PID) is also a widely 
used individual identification estimator (Peakall & 
Sydes 1996; Reed et al. 1997; Waits et al. 2001; Ferrie 
et al. 2013), which provides the probability that two 
randomly drawn individuals within a given population 
will have identical genotypes at multiple loci. For PID, it 
is assumed that there is neither linkage disequilibrium 
nor population substructure. In the case of such 
assumptions not holding true, the PID might drastically 
underestimate the above-mentioned probability. Hence, 



probability of identity for siblings (PIDsibling) is often used 
as a conservative upper bound of the “real” probability 
(Waits et al. 2001). Low PID values are required to 
accurately estimate individual identity and not falsely 
classify individuals as identical (Waits et al. 2001; Vidya 
& Sukumar 2005). Locus PID values in the range of 0.01 
– 0.0001 are generally used in wildlife forensics (Waits 
et al. 2001), suggesting the values in the current study 
are slightly higher than ideal. It is important to take the 
population size and genetic history of the species under 
study into account in choosing an appropriate marker 
panel using PID estimates (Schwartz & Monfort 2008). 
For example, if the study population comprise of 10000 
individuals, a PID < 0.0001 (1 in about 10000 individuals) 
should be sufficient for individual identification.

Conclusions
In this study, we managed to get high quantity and 
quality DNA from A. mearnsii leaves by modifying the 
CTAB-based DNA extraction procedure using high 
concentration of NaCl to remove polysaccharides and 
PVPP to eliminate polyphenols during DNA purification. 
In addition, by combining the CTAB and NaCl steps in 
the extraction protocol, we succeeded in the extraction 
of DNA 10–20 min faster than the normal protocol. 
According to our knowledge, this is the first assessment 
of cross-species microsatellite marker transferability and 
the use of these markers to study the genetic variation in 
A. mearnsi. However, it was also demonstrated that the 
majority of cross-species microsatellite markers were 
not transferable across species in the genus Acacia. 
Considering the high polymorphism demonstrated by 
the studied microsatellite markers, the cross-species 
amplification is an interesting alternative to the 
development of new microsatellites in A. mearnsii. These 
multi-allelic, PCR-based, co-dominant microsatellite 
loci provides a powerful tool for genetic, breeding and 
conservation genetic studies of A. mearnsii. 
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