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Abstract

Background: Accurate estimates of wood density are needed by the forest sector to increase value along the tree-to-product 
value-chain. Amongst tools supporting in-situ assessments, micro-drills and acoustic hammers have become increasingly 
popular. Our objective was to use these tools, and other easily-obtained measures, to develop predictive wood density 
models for in-situ assessments of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees in western North America. 

Methods: Wood density estimates of 133 trees, 60–75 years-old, were benchmarked against X-ray densitometry data 
using linear mixed-effects models. Mean resistograph amplitude (unadjusted, adjusted, and standardised variants), and 
combinations of acoustic velocity, tree diameter, stand age, and site index were considered as fixed effects. Plots, comprising 
differing treatments, and sites were considered as random effects. Candidate models were selected based on fit statistics, 
and further evaluated with an independent external dataset comprising 37 Douglas-fir trees.

Results: The optimal model comprised amplitude (adjusted), site index (transformed), and the quotient of velocity and age. 
It had a mean absolute percentage error, MAPE, of 4.1%, mean absolute error, MAE, of 19.4 kg.m-3, a root-mean-squared-
error, RMSE of 25.0 kg.m-3, and marginal R2 for fixed effects, R2

marg of 0.60. With external data, MAPE was 8.7%, MAE 52.4 
kg.m-3 and RMSE 59.5 kg.m-3. Fit statistics for a simpler two-variable model (standardised amplitude and transformed site 
index) were: MAPE 4.9%, MAE 23.2 kg.m-3, RMSE 28.0 kg.m-3, and R2

marg, 0.48, and with external data MAPE was 8.5%, MAE 
51.6 kg.m-3 and RMSE 59.3 kg.m-3. Thus, with external data, the simpler model produced greater accuracy than the optimal 
model. Amplitude, and all other single-variable models, recorded poorer levels of accuracy.

Conclusions: Micro-drilling alone, though highly significant as a predictor, is insufficient for providing accurate wood 
density estimates of individual trees. Site effects need to be considered too. Standardisation of mean amplitudes to z-scores 
makes models highly portable across a range of resistance tools and operating speeds, and therefore more practical. As 
noted in the literature, optimal models are not necessarily best for predicting outcomes with other datasets, therefore 
model evaluation with external data is critical to determining how well a model will perform in practice.
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introduced tree species in New Zealand (Wang et al. 
2001; Maclaren 2009), France, Germany, the UK, Spain, 
Belgium, and the Czech Republic (Zeidler et al. 2017; 
Spiecker et al. 2019). Its popularity arises from its 
relatively fast growth, high productivity, and desirable 
wood properties.

Wood density is one such desirable property and an 
important indicator of the quality of solid wood products 

Introduction
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) 
is widely recognised as being the most commercially 
significant species for structural applications in North 
America, particularly the Pacific Northwest of the United 
States, and the west coast of Canada. Outside of North 
America, Douglas-fir is amongst the most commonly 
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(Zobel & Van Buijtenen 2012). Wood density directly 
influences and is correlated with stiffness and strength 
(Zeidler et al. 2017), thus is used as a selection criterion 
in tree breeding programs for improving yield of high 
quality structural lumber (Howe et al. 2006). Because 
Douglas-fir wood density varies considerably from one 
tree to another, from one site to another, and from one 
region to another (Filipescu et al. 2014; Kimberley et al. 
2017), forest managers and wood processors need to 
be able to assess this wood property to best match the 
raw material to the final product. When assessed in-situ, 
there are greater opportunities to increase revenue to 
both land and mill owners, through improved selection, 
sorting, allocation to the correct processing pathway, 
and through reduced wastage and manufacturing costs. 
Therefore, there is a need for rapid, accurate, and non-
destructive methods for assessing wood density in 
standing trees.

A range of non-destructive tools and methods have 
been developed for in-situ assessments of wood density 
(Gao et al. 2017; Schimleck et al. 2019). Examples 
include wood increment borers, the Pilodyn Wood Tester, 
torsiometers, and micro-drills (Gao et al. 2012; Wessels 
et al. 2011). Acoustic tools, although developed primarily 
for assessing wood stiffness, have also been used in wood 
density studies (e.g. Chauhan & Walker 2006; El-Kassaby 
et al. 2011; Newton 2017). Increment cores, when 
analysed using X-ray densitometry techniques (Walker 
& Dodd 1988; Eberhardt & Samuelson 2015), enable 
very accurate measurements of wood density. However, 
X-ray densitometry is expensive and time-consuming 
(Chantre & Rozenberg 1997), requires rigorous methods 
for preparing and processing cores, and therefore is 
neither a rapid technique nor can it be applied in-situ 
on standing trees. Other tools such as the Pilodyn and 
torsiometer, which penetrate only a small way through 
the bark, are less destructive than increment borers, but, 
according to Gao et al. (2012) they cannot be considered 
as substitutes for the increment borer as they have had 
only limited success. 

In contrast, micro-drill resistance tools have 
demonstrated greater potential (Isik & Li 2003; Gao et 
al. 2012), are less invasive than increment borers due 
to the smaller holes (3 mm) left following drilling (Rinn 
1988) and are used extensively in assessing progeny 
trials (Bouffier et al. 2008; Gwaze & Stevenson 2008; El-
Kassaby et al. 2011; Desponts et al. 2017). 

Micro-drill resistance tools record the amplitude of 
the resistance to turning (torque) experienced by a fine 
drill when driven through wood at a given forward speed 
(cm per min) and rotational frequency (rpm) (Rinn 
1988). As the bit progresses through the stem, resistance 
due to friction generally increases, thus creating an 
increasing trend. Therefore, adjustments need to be 
made to the data prior to analyses, to remove any 
potential sources of bias. Methods developed to adjust, 
or detrend, resistance profiles include trigonometric 
approaches (Gantz 2002; Fundova et al. 2018), 
smoothing functions, and translation functions that shift 
the baseline to correct for bias (Isik & Li 2003; Eckard 
et al. 2010; Fundova et al. 2018). Due to the nature of 

these detrending methods, the full bark-to-bark profile 
is required. Shorter profiles (e.g. the first 5 cm of the 
inside-bark profile) have also been evaluated (Bouffier 
et al. 2008) and moderate relationships (i.e. R2 ≈ 0.41 
and 0.48, based on correlations of 0.64, 0.69) reported 
between mean (adjusted) amplitude and mean wood 
density assessed in progeny trials of maritime pine 
(Pinus pinaster Ait.) at two sites. In general, only weak to 
moderate relationships have been found for individual 
trees. Gwaze & Stevenson (2008) reported an R2 of 0.23 
for 25-year-old shortleaf pine (Pinus echinata Mill.) 
in Missouri, USA, while Walker et al. (2019) reported 
an R2 of 0.47 for 6-9-year-old loblolly pine growing in 
southeastern US and noted improved correlations with 
inclusion of site effects in their predictive models. Isik 
and Li (2003) obtained R2 values of 0.21, 0.24, 0.31, 
0.44 for 11-year-old loblolly pine (Pinus taeda L.) at four 
sites in South Carolina, USA, and when all sites were 
combined, the phenotypic correlation was just 0.12. 

Phenotypic correlations, often estimated using 
product-moment correlation statistics (also called 
Pearson’s r) should not be confused with genetic 
correlations that, based on correlations between family 
means, will always be stronger than their phenotypic 
counterparts. It should also be noted that the coefficient 
of determination, R2, equal to the square of r, describes 
the explanatory power of a model with the dataset at 
hand, not the predictive ability or usefulness of the model 
to new data obtained from other settings. Therefore, 
models that fit well to in-sample data (i.e. with a high R2 
value), may not necessarily provide accurate predictions 
when applied to new data (Mendenhall & Sincich 2012). 
The same holds true for other variates of R2 including 
marginal and conditional R2 values, R2

marg and R2
cond 

respectively, (Nakagawa & Schielzeth 2013) where R2
marg 

represents the proportion of variance explained by fixed 
effects alone (akin to R2 in a fixed-effects model) while 
R2

cond represents the proportion of variance explained 
by both fixed and random effects. A low R2

marg and high 
R2

cond implies that the fixed effects (measured variables) 
explain little of the variance while random effects 
(unmeasured) explain a far greater proportion of the 
variance, indicating that there are other factors that the 
model may have failed to capture.

In addition to examining goodness-of-fit statistics, the 
use of an independent dataset is considered the “gold 
standard” for assessing the predictive power of models 
(Alexander et al. 2015). Moreover, this new dataset adds 
a further level of scrutiny to the model construction 
process (Snee 1977). When it is not possible to collect 
new data, techniques such as data-splitting, cross-
validating, or bootstrapping can be applied (Snee 1977; 
Dankers et al. 2019). 

Despite the results of previous studies demonstrating 
the potential of micro-drilling to estimate wood density, 
a factor that has limited its practical use is the availability 
of accurate, reliable models that make predictions with 
new data from other settings. 

The objective, and key challenge of our research, 
was to develop individual tree-based predictive models 
and to access their accuracy with both in-sample and 



external datasets. Using our predictive models, we 
wished to resolve three key questions: 1) Can micro-drill 
resistance tools alone provide accurate assessments of 
wood density for a diverse set of trees? 2) When used 
in combination with acoustic velocity tools, and other 
easily measured variables (diameter, stand age, site 
index), what level of accuracy can be achieved? 3) How 
portable are the predictive models to new data? Overall, 
we wanted to develop robust, portable models for 
rapid in-situ assessments of wood density in individual 
standing trees. 

Methods

Study sites
The Douglas-fir trees of this study were located in 
coastal western North America. They ranged in age 
from 60 to 75 years old and were selected from six 
experimental installations, four of which were planted, 
and the remaining two of natural origin, both of which 
had regenerated naturally after wildfire. Site index (at 50 
years) ranged from 27 to 41 m, Table 1. The installations 
were established between 1963 and 1970, on sites 
with elevations ranging from 274 to 823 m above sea 
level. Measurements from five of the six stands were 
used to develop models for predicting wood density 
(known hereafter as the in-sample dataset). Following 
model development, and candidate model selection, 
measurements from the sixth stand were obtained to 
test model portability and predictive ability with new 
observations (the external dataset). The external dataset 
was collected one year after the in-sample dataset. 

The five stands of the in-sample dataset were part of 
the Levels-Of-Growing-Stock (L.O.G.S) Cooperative Study 
in Douglas-fir (Williamson & Staebler 1971; Marshall et 
al. 1992). Each of the L.O.G.S stands comprised plots with 
three differing treatments; a control (i.e. no treatment 
and plot density greater than 2450 stems per hectare), 
a light thinning treatment (for which 70% of basal area 
was retained), and a heavy thinning treatment (for which 
30% of basal area was retained). Plot densities were 
maintained over time, relative to the controls, through 

repeated thinning treatments. The sixth stand, though 
adjacent to one of the L.O.G.S sites, was in no way related 
to L.O.G.S. This completely independent stand was 
managed differently. It comprised four combinations of 
thinning and fertilisation treatments; 1) no thinning or 
fertilisation; 2) no thinning, but fertilisation with 448 kg 
N ha-1; 3) thinning with 1/3 of the basal area retained, 
but no fertilisation; and 4) thinning with 1/3 of the basal 
area retained and fertilisation with 448 kg N.ha-1. The 
sixth stand, with a different study design and evaluated 
with a different instrument, using different settings, 
provided an external dataset (i.e. completely separate 
data) and an opportunity to evaluate model portability 
and accuracy. 

Tree measurements
Trees were randomly chosen from plots by stratification 
into three diameter at breast height (DBH) classes 
which differed with site and treatment. The three 
classes approximately represented boxplot statistics (i.e. 
minimum DBH to lower quartile, lower quartile to upper 
quartile, and upper quartile to maximum DBH) thus 
ensuring that DBH distributions were approximately 
normal. In total, 172 trees were sampled with 133 trees 
used for model development (five locations x three 
treatments x three replicates x three trees = 135, minus 
two trees for which data were missing due to issues with 
sample preparation and collection of field micro-drill 
data) and 37 trees for evaluation of model portability 
(one location x four treatments x two replicates x five 
trees = 40, minus three trees with unreliable micro-
drill data). The two datasets were collected during late 
summer / early autumn at the end of growing season. 
There was a one-year difference between collection of 
the two datasets, however weather conditions were very 
similar (dry and warm) and typical for the season in the 
Pacific Northwest.

Each tree was measured at breast height for diameter, 
by micro-drill resistance methods for amplitude, and 
by time-of-flight tools for acoustic velocity. A 5-mm 
core sample, also taken at breast height, was extracted 
from each tree for wood density assessment using X-ray 
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TABLE 1: Description of the study sites

Site Latitude Longitude Elevation Origin Site Index Established* Age in study

(m, a.s.l.) (m, age 50) (years)

Hoskins 44°41’ 123°30’ 305 Natural 41 1963 66
Iron Creek 46°24’ 121°59’ 762 Planted 40 1966 60
Sayward 50°04’ 125°35’ 274 Planted 34 1969 62
Shawnigan 48°38’ 123°43’ 335 Planted 29 1970 64
Stampede 42°53’ 122°49’ 823 Natural 34 1968 75

Shawnigan 48°38’ 123°43’ 335 Planted 27 1971 64
*Year of establishment indicates when experimental sites were established, not planted.

TABLE 1: Location and description of study sites comprising in-sample and external datasets.



densitometry. This approach was used to provide an 
accurate measure of wood quality, and as a benchmark 
against which the non-destructive measures could be 
evaluated. 

Cores were initially frozen to prevent mold and stain, 
then dried at 50℃ for 24 hours. Following conditioning 
(for at least 48 hours) to attain a uniform moisture 
content of 8%, X-ray densitometry profiles were 
generated at a resolution of 0.06 mm. Profiles included 
ring width, earlywood and latewood densities, and 
earlywood/latewood proportions. Ring density was 
calculated using the weighted areas of earlywood and 
latewood. Mean wood density of each tree was calculated 
using the weighted average of ring density for the length 
of the core from inside bark to pith.

Micro-drill resistance methods were applied from 
bark to pith in close proximity to the location of the core 
samples. In-sample dataset trees were drilled using an 
IML RESI F400-S tool at the maximum constant forward 
speed of 150 cm/min, while external dataset trees were 
drilled using a newer Resi PD500 at a constant forward 
speed of 25 cm/min. The rotational frequency used for 
the latter tool was 1500 rpm while that for the former, 
while not recorded, was known to be at a value between 
400-1200 rpm. Together, the selection of rotational 
frequency and forward speed settings is important for 
preventing overloading the motor, while drilling speed 
selection can influence drilling resistance measurements 
and subsequent prediction of wood density (Sharapov 
et al. 2019a). In general, resistance amplitudes tend to 
be lower at lower forward speeds, but the difference 
may be equal to several orders of magnitude (Mattheck 
et al. 1997, Rinn 2015). Both instruments converted 
variations in torque into graphical and digital outputs of 
path length of the drill (measured at a resolution of 0.1 
mm) and the relative resistance, given as an amplitude 
percentage, that the drilling bit encountered. Before 
average amplitude was calculated, the initial portion of 
the profile through the bark was removed as was any 
portion that extended beyond the pith; identified by a 
bowl-like shape (Rinn 2012; Fundova et al. 2018).

An average of the amplitude profile for each tree was 
calculated using six approaches. The first approach, the 
simplest, determined the arithmetic mean of the profile. 
Since mean values are sensitive to outliers, with further 
bias introduced through increasing drill resistance, 
the second approach overcame these shortcomings 
and detrended the profiles through construction of 
trendlines that smoothed over fluctuations, and through 
correction of the baseline. The third approach was 
similar to the second, but after adjusting/detrending 
the profile, a value determined within the first 10 cm 
of the inside-bark profile was added to the mean. The 
third approach was motivated by the study of Bouffier 
et al. (2008). However, rather than using 5 cm, as in 
their approach, we chose 10 cm due to our trees being 
considerably older, and hence larger. The remaining 
three approaches scaled the mean amplitudes to their 
respective z-scores to enable comparison of values from 
different samples (which may have different means and 
standard deviations, as can be the case when drills are 
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operated at different speeds, or different brands of drills 
are used). The mean amplitude values, X, were scaled 
using the usual method of calculation (Draper & Smith 
1966) i.e. subtraction of the mean, μ, and dividing the 
result by the standard deviation, σ, i.e. Z = (X – μ) / σ. 

Details of the six approaches follow:

A0: The arithmetic mean amplitude of unadjusted 
data.

A1:The average difference between centered moving 
means and centered moving minimums (window 
widths of 10 and 100 respectively), plus the average 
centered moving minimum within 100 mm of the 
inside-bark profile (following Isik & Li 2003).

A2: The average difference between centered moving 
means and centered moving minimums (window 
widths of 10 and 100 respectively), plus the average 
amplitude within 100 mm of the inside-bark profile.

Z0: The standardised equivalent of A0.

Z1: The standardised equivalent of A1.

Z2: The standardised equivalent of A2.

With A0 being the unadjusted mean, A1 will be less 
than or equal to A0, and A2 greater than A0 (Figure 
1). Data distributions for A0, A1, and A2 are preserved 
after standardisation to Z0, Z1, and Z2 (Figure 2), and 
therefore performance metrics arising from linear 
models with either standardised (Z0, Z1, Z2) or non-
standardised data (A0, A1, A2) will be identical for in-
sample datasets.

Trees were also acoustically assessed for time-
of-flight using a Hitman ST300 (Paradis et al. 2013). 
Sensors were centered at breast height and placed 
approximately one metre apart. Measurements were 
taken on opposite sides and oriented perpendicular 
to the slope orientation to avoid reaction wood. Four 
measurements were taken per tree, and the mean of the 
measurements for each tree (automatically calculated 
by the Hitman) used in the analyses. A summary of all 
data collected, for both in-sample and external datasets, 
is given in Table 2.

Analyses
To account for experimental variability and structure 
inherent in our data, linear mixed-effects models that 
allow for random group effects, were developed to 
estimate wood density. The models were developed 
using data from the 133 in-sample trees, and were 
formulated as: 

y = Xβ + Zu + ε

where y is the response vector (mean wood density 
obtained by X-ray densitometry for each of the 133 
trees), X and Z are matrices of explanatory variables 
corresponding to fixed (observed/measured variables) 
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FIGURE 1: Example of amplitude profiles using an IML RES F400-S (a) and a Resistograph PD500 (b), before (red) and 
after (blue) adjustment. Mean amplitudes for the unadjusted profile, A0, and adjusted variants, A1, A2, are 
indicated by horizontal solid red, and dashed blue and green lines respectively.

FIGURE 2: Kernel density profiles of non-standardised mean resistograph amplitudes (A0, A1, A2), and standardised 
equivalents (Z0, Z1, Z2) for in-sample and external datasets. Sample size is indicated by N, and bandwidth by bw.



and random effects (unobserved/unmeasured variables) 
respectively, β and u are the corresponding vectors of 
parameters for the respective fixed and random effects, 
and ε is a vector of random errors. Explanatory variables 
included acoustic velocity, V (km.s-1), breast-height 
diameter, DBH (cm), stand age (years), site index, SI (m, 
age 50), and micro-drill amplitude (% for A0, A1, A2, 
unitless otherwise). Each of the six amplitude variants 
was sequentially evaluated. The quotient of V and Age, 
V/Age, was also evaluated as an explanatory variable. 
Inverse and natural logarithmic transformations of 
variables were examined and selected by inspecting plots 
for linearity and constant variance with increasing mean 
values of the dependent variable. Models developed with 
combinations of explanatory variables, including single 
variable models, were explored. For all models, site and 
plot (plot nested within site) were formulated as random 
effects. 

The models were fitted using the Restricted Maximum 
Likelihood method (REML, Searle et al. 1992) and 
developed using the linear and nonlinear mixed-effects 
models package, “nlme”, (Pinheiro et al. 2019) within 
the R environment (R Core Team 2018). The significance 
of explanatory variables was evaluated with α = 0.05 
using conditional t-tests and F-tests (Pinheiro & Bates 
2006). Moving (rolling, running) means were facilitated 
through the “caTools” package (Tuszynski 2019) and 
data frame manipulations through the “plyr” package 
(Wickham 2011).

Performance of models that satisfied the conditional 
t and F tests, were evaluated using: AIC (Akaike 1974), 
R2

marg and R2
cond following Johnson (2014), mean absolute 

error, MAE (Equation 1), mean absolute percentage error, 
MAPE (Equation 2), and root-mean-squared error, RMSE 
(Equation 3). Multiple metrics were applied because 
the use of a single metric could lead to an incorrect 
interpretation. Though we report both R2

marg and R2
cond, 

our focus is primarily on the former metric, similar to 
the coefficient of determination, R2. Diagnostics of the 

models included plots of residuals against fitted values, 
and plots of observed values versus fitted values. All 
predictions and subsequent calculations of MAE, MAPE, 
and RMSE were made at the population level, because, 
in practice, contributions due to random effects are 
unknown.

 
       

                       (1)

       
                    (2)

       
                     (3)

where yi and ŷi are observed and predicted values, and N 
the sample size.

Candidate models were selected using all but the 
R2

cond performance metric. The models were first 
grouped by number of variables (as this influences 
performance metrics). Within each model subgroup, any 
model having at least one performance metric in the top 
two of that metric was selected as a candidate model. 
This process essentially filtered out poorer-performing 
models. Candidate models were then evaluated using 
external data and the two best candidate models 
selected based on MAPE, MAE, RMSE metrics and their 
model parameters presented. The simpler of the two 
models (since simple models are generally better in 
practice) was then selected for further analyses with 
overall performance demonstrated by the percentages 
of all trees within 25 kg.m-3, 50 kg.m-3, 5% and 10% of 
their true values.

Summary statistics are reported as means with 
variability indicated by standard errors (SE).
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Site n Density DBH V A0 A1 A2 Z0 Z1 Z2
(kg.m-3) (cm) (km.s-1) (%) (%) (%)

In-sample dataset
Hoskins 25 465±7 46±2 4.4±0.1 45±3 40±3 54±3 0.5±0.3 0.3±0.3 0.4±0.3
Iron Creek 25 450±7 42±2 4.5±0.1 35±2 32±2 45±2 -0.5±0.2 -0.5±0.2 -0.5±0.2
Sayward 27 500±5 33±2 4.7±0.1 40±2 39±2 53±2 0.1±0.2 0.2±0.2 0.3±0.2
Shawnigan 27 522±6 27±2 4.6±0.1 40±2 39±2 50±2 0.0±0.2 0.2±0.2 0.0±0.2
Stampede 27 474±6 39±2 4.6±0.1 38±1 35±1 47±1 -0.1±0.1 -0.2±0.1 -0.3±0.1
All sites 133 483±4 37±1 4.6±0.1 40±1 37±1 50±1 0.0±0.1 0.0±0.1 0.0±0.1
External dataset
Shawnigan 37 590±6 24±1 4.6±0.1 6±0 6±0 8±0 0.0±0.2 0.0±0.2 0.0±0.2

TABLE 2: Summary data (mean ± se) of the in-sample and external datasets.

DBH = diameter; V = acoustic velocity; A0 = mean amplitude; A1 = mean adjusted amplitude shifted by the mean rolling minimum 
amplitude within 100 mm of bark; A2 = mean adjusted amplitude shifted by the mean amplitude within 100 mm of bark; Z0, Z1, 
Z2 are standardised equivalents of A0, A1, A2 respectively.



Results

Explanatory variables
All variants of mean resistograph amplitude were highly 
significant as explanatory variables for predicting 
wood density, as was site index (transformed), acoustic 
velocity, V, and the quotient V/age. However, age was 
not significant as an explanatory variable. Diameter was 
significant as a predictor of wood density only when in 
combination with V (Table 3). 

Model performance with in-sample data and 
candidate models
The optimal model, i.e. the model with the best 
performance metrics (Table 3), comprised three 
explanatory variables: 1/SI, V/Age, and A2 (or Z2). 
For this model AIC, MAE, MAPE, and RMSE were the 
lowest amongst all models, and R2

marg (0.60) the highest. 

R2
cond was 0.61, which indicated that the fixed effects 

accounted for the majority of the variance. MAE was 
19.4 kg.m-3, MAPE 4.1%, and RMSE 25.0 kg.m-3. Another 
three-variable model, with fixed effects X = [1/SI, V, A2] 
(or similarly X = [1/SI, V, Z2]), also recorded very good 
performance statistics: R2

marg 0.58, MAE 19.9 kg.m-3, 
MAPE 4.2%, and RMSE 25.4 kg.m-3. These two models 
were selected as candidate models for further evaluation 
with the external dataset. R2

marg for all remaining three-
variable models ranged 0.39 to 0.55, MAE from 12.0 to 
24.6 kg.m-3, MAPE from 4.5 to 5.2%, and RMSE from 
26.5 to 30.8 kg.m-3 (Table 3). The poorest performance 
metrics were all attributed to one model with X = [1/
SI, V, DBH]; the only model within this group without 
amplitude as an explanatory variable.

Amongst two-variable models, all models with 
transformed site index and amplitude (all variants) were 
selected as candidate models, as they all had at least one 
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Explanatory 
variables 1, X

R2
marg R2

cond AIC MAE  
(kg.m-3)

MAPE  
(%)

RMSE  
(kg.m-3)

1/SI 0.33 0.42 1307 26.0 5.5 32.2

V 0.03 0.48 1309 30.6 6.5 38.7

V/Age 0.05 0.50 1308 30.6 6.5 38.9

A0 (Z0) 0.12 0.56 1288 30.2 6.3 37.2

A1 (Z1) 0.14 0.53 1286 28.6 6.0 35.6

A2 (Z2) 0.18 0.59 1272 28.0 5.9 35.1

V, DBH 0.06 0.57 1304 33.0 7.0 41.0

1/SI, V 0.36 0.46 1302 25.2 5.4 31.4

V/Age, A0 (Z0) 0.17 0.59 1277 28.9 6.1 35.7

V/Age, A1 (Z1) 0.18 0.56 1279 27.8 5.9 34.6

V/Age, A2 (Z2) 0.23 0.63 1264 27.2 5.7 34.1

1/SI, V/Age 0.38 0.46 1300 24.7 5.3 31.0

1/SI, A0 (Z0) 0.48 0.52 1278 23.2 4.9 28.0

1/SI, A1 (Z1) 0.49 0.52 1275 22.6 4.8 28.0

1/SI, A2 (Z2) 0.56 0.57 1258 20.9 4.4 26.2

1/SI, V, DBH 0.39 0.49 1297 24.6 5.2 30.8

1/SI, V, A0 (Z0) 0.52 0.56 1268 21.8 4.6 27.1

1/SI, V, A1 (Z1) 0.52 0.56 1269 21.8 4.6 27.2

1/SI, V, A2 (Z2) 0.58 0.61 1251 19.9 4.2 25.4

1/SI, V/Age, A0 (Z0) 0.55 0.56 1263 21.0 4.4 0.35

1/SI. V/Age, A1 (Z1) 0.54 0.56 1265 21.1 4.5 26.7

1/SI, V/Age, A2 (Z2) 0.60 0.61 1248 19.4 4.1 25.0
1 Only models for which all explanatory variables, X, are significant are shown. SI = Site Index; V = acoustic velocity; A0 = mean 
amplitude; A1 = mean adjusted amplitude shifted by the mean rolling minimum amplitude within 100 mm of bark; A2 = mean 
adjusted amplitude shifted by the mean amplitude within 100 mm of bark; Z0, Z1, Z2 are standardised equivalents of A0, A1, 
A2 respectively (and can replace the non-standardised values with no change in fit statistics); DBH = diameter at breast height.

TABLE 3: Performance metrics of mixed-effects models for estimating wood density, grouped by the number 
of explanatory variables. The two best metrics, used for candidate model selection, within each 
group, are shown in bold font.



performance metric in the top two of that metric. For 
these candidate models R2

marg ranged from 0.48 to 0.56, 
MAE from 20.9 to 23.2 kg.m-3, MAPE from 4.4 to 4.9%, 
and RMSE from 26.2 to 28.0 kg.m-3. One further candidate 
model with fixed effects X = [V/Age, A2], had the second-
best AIC, but other statistics were comparatively low 
(R2

marg = 0.23).
Amongst single-variable models, transformed site 

index had the best R2
marg (0.33), MAE (26.0 kg.m-3), MAPE 

(5.5%) and RMSE (32.2 kg.m-3). However, the best AIC 
was associated with the model with amplitude (A2, or 
equivalently Z2) as the sole predictor of wood density. 
Though also having the second-best R2

marg, MAE and 
MAPE, these statistics, especially R2

marg, were somewhat 
lower (0.18, 28.0 kg.m-3 and 5.9% respectively). 

Candidate model performance with external data
Performance metrics of all candidate models evaluated 
with the external dataset are shown in Table 4. Metrics 
for models with non-standardised mean amplitudes 
(A0, A1, A2) are provided for comparative purposes 
only. Standardised micro-drill amplitudes recorded 
substantially better performance statistics than their 
non-standardised counterparts. This was expected since 
the standardisation procedure converts values of the 
two tools to the same scale (whist retaining distribution 
properties). The comparison clearly demonstrates the 
need for standardisation. Hereafter, the focus is on the 
standardised amplitude variants.

The optimal model, X = [1/SI, V/Age, Z2], had the 
best performance metrics amongst the three-variable 
candidate models, however was second best in terms 
of the performance metrics MAE, MAPE, and RMSE. The 
model with the best performance metrics comprised 1/
SI and Z0, the unadjusted amplitude.
Based on evaluation with the external dataset, the two 
candidate models selected were:

• The optimal model in the in-sample dataset,  
with X = [1/SI, V/Age, Z2] and

• The simpler 2-variable model, with X = [1/SI, Z0].

Parameters of the two selected candidate models are 
provided in Table 5. Random effects due to site were 
negligible (i.e. close to zero) for the optimal model, X = 
[1/SI, V/Age, Z2], and ranged from -8.9 to 7.7 kg.m-3 for 

the simpler model, X = [1/SI, Z0]. In contrast, random 
effects due to plot ranged from -1.2 to 1.4 kg.m-3 for 
the optimal model and were negligible for the simpler 
model. Residual plots of the two models shown in Figure 
3 appear to be reasonably random. Though there is a 
small degree of asymmetry in both residual plots, overall 
there are no clear patterns. The simpler model with just 
two predictor variables X = [1/SI, Z0], though having 
an outlier with a residual of -82 kg.m-3, does not appear 
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Explanatory 
variables, X

MAE 
(kg.m-3)

MAPE 
(%)

RMSE 
(kg.m-3)

1/SI 53.7 8.8 64.1
A2 182.0 30.6 185.0
Z2 107.8 18.1 111.0
V/Age, A2 179.4 30.2 183.0
V/Age, Z2 55.1 9.1 110.0
1/SI, A0 100.8 16.8 107.0
1/SI, Z0 51.6 8.5 59.3
1/SI, A1 112.5 18.8 117.8
1/SI, Z1 56.4 9.3 63.4
1/SI, A2 130.4 21.8 135.0
1/SI, Z2 53.3 8.8 60.2
1/SI, V, A2 131.5 22.0 136.0
1/SI, V, Z2 55.0 9.1 61.9
1/SI, V/Age, A2 130.3 21.8 135.0
1/SI, V/Age, Z2 52.4 8.7 59.5

TABLE 4: Performance metrics for the external 
dataset, grouped by the number of 
explanatory variables in the model. The 
two best metrics within each group are 
shown in bold. Grey font indicates the 
non-standardised amplitudes; shown for 
comparative purpose only.

SI = Site Index; V = acoustic velocity; A0 = mean amplitude; 
A1 = mean adjusted amplitude shifted by the mean rolling 
minimum amplitude within 100 mm of bark; A2 = mean 
adjusted amplitude shifted by the mean amplitude within 
100 mm of bark; Z0, Z1, Z2 are standardised equivalents of 
A0, A1, A2 respectively.

Model description Explanatory variable Value SE DF t-value p-value
Optimal Intercept 240.8 24.1 86 10.0 0.0000
 Z2 18.5 2.2 86 8.3 0.0000

1/SI 6346.0 613.8 3 10.3 0.0019

V/Age 862.3 238.0 86 3.6 0.0005

Best 2-var candidate Intercept 294.3 35.0 87 8.4 0.0000
Z0 14.8 2.5 87 5.8 0.0000

1/SI 6587.9 1216.6 3 5.4 0.0124

TABLE 5: Parameters and statistics of two candidate models for predicting wood density in standing trees.

Z0, Z2 = standardised mean resistograph amplitudes (unadjusted and adjusted respectively); SI = site index; V = acoustic velocity.



to be markedly worse than the more complex model. 
Therefore, for operational purposes, the simpler model 
was selected as the model of choice.

Confidence and prediction intervals determined using 
the model of choice (with X = [1/SI, Z0] and parameters 
as in Table 5) are demonstrated in Figure 4 for each of 
the sites. Both Z0 and A0 are indicated on the figures, 
along with the measured densitometric values. The 
influence of site index is clear. 

In general, the model of choice estimated wood density 
with a good degree of accuracy (Figure 5). Nearly all trees 
in the in-sample dataset (93%) were within 50 kg.m-3 of 
their true values, and well over half (62%) were within 25 
kg.m-3 of their true values. For external data, extrapolation 
of the model beyond 570 kg.m-3 resulted in wood density 
being under-estimated (Figure 5). Estimates beyond 600 
kg.m-3 were amongst the worse, particularly for those 
trees on plots which had been fertilised and/or thinned. 
All external dataset trees on control plots which had 
neither been thinned nor fertilised were within 54 kg.m-

3 of their true values. For both in-sample and external 
datasets, 84% of all predictions were within 50 kg.m-3 of 
their true values, and 53% within 25 kg.m-3 of their true 
values. Overall, 87% of all predictions were within 10% 
of their true values, and more than half (54%) within 5% 
of their true values.

Discussion
The ability to non-destructively evaluate and predict 
wood quality is of great importance and has been 
reported by many authors for a variety of tools (Cown 

1978; Wessels et al. 2011) and a variety of purposes 
such as assessing young trees for genetic heritability 
(Gantz 2002; Fundova et al. 2019), determining effects 
of silvicultural practices on product quality (Wang 1999; 
Briggs et al. 2008), and evaluating wood composites 
(Winistorfer et al. 1995). Many studies have done so 
in stands that are more homogenous in terms of age, 
geographic location, and genetic composition (Desponts 
et al. 2017). Because many tools and techniques are 
labour intensive, not field-based, or are too destructive, 
the micro-drill for non-destructively determining wood 
quality attributes has attracted attention. It meets the 
requirements of being portable, inexpensive to use, and 
has little impact on tested trees.

So, can micro-drill resistance tools alone provide 
accurate assessments of wood density for a diverse set 
of trees? In our study, mean resistograph amplitude 
was highly significant as an explanatory variable for 
predicting wood density, however, the correlation 
between wood density and amplitude was weak (0.42, 
based on R2

marg = 0.18). This correlation was a little lower 
than found in the literature for less diverse cohorts; e.g. 
R2 = 0.22, based on a correlation of 0.47 for 32-year-old 
Douglas-fir trees from four comparable sites (El-Kassaby 
et al. 2011), a range in R2 from 0.21 to 0.44 for 11 year-
old loblolly pines (Isik & Li 2003), and R2 = 0.38, based 
on a correlation of 0.62, for a single stand of 25-year-
old Douglas-fir trees (Chantre & Rozenberg 1997). Our 
performance statistics with in-sample data (Table 3) 
indicate that estimates of wood density of a tree from 
within these stands (i.e. within the stands of the in-
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FIGURE 3: Residual plots of selected models for predicting wood density, with explanatory variables as indicated. Z0, 
Z2 = standardised mean resistograph amplitudes (unadjusted and adjusted respectively); SI = site index; V = 
acoustic velocity.
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sample dataset) will, on average, have an error of about 
28 kg.m-3, or equivalently 6% (Table 3). However, there 
will be a lot of scatter around this average, some trees 
will have greater error, others less. If trees are selected 
from other stands, i.e. new data, then larger errors could 
be expected. Statistics for our external dataset (Table 4; 
models shown in blank font) indicated an average error 
of about 61 kg.m-3, or equivalently 10%. This is quite 
large, and possibly too large for assessing wood density 
in individual trees.

Improvements in accuracy were obtained when site 
index was included in the predictive models. This is 
consistent with findings of Walker et al. (2019). The best 
accuracy was achieved with a three-variable model, the 
optimal model, that in addition to adjusted amplitude, 
included site index and the quotient of acoustic velocity 
and age. R2

marg was 0.60, equivalent to a correlation of 
0.77. With this model we could expect accuracy to be 
within 20 kg.m-3 (MAE was 19.4 kg.m-3), or equivalently 
4.1%. RMSE was 25.0 kg.m-3, indicating good proximity 
between estimated and true means. In comparison to 
the model in amplitude alone, statistics for our external 
dataset were greatly improved and approximately 
halved (MAE 52.4 kg.m-3, MAPE 8.7%, RMSE 59.5 kg.m-3). 

As noted in the literature, an optimal model for in-
sample data may have a lower predictive ability for 
new/external data than a sub-optimal model (e.g. 
Shmueli 2010). This was found to be true in our study, 
and a simpler model, recorded the best accuracy for the 

external dataset (MAE 51.6 kg.m-3, MAPE 8.5%, RMSE 
59.3 kg.m-3). These statistics, while only marginally 
better than those for the optimal model, are based on a 
very simple model, X = [1/SI, Z0], requiring input of just 
site index and mean unadjusted standardised amplitude. 
We observe that differences in performance metrics 
within each A0, A1, A2 model triplet (Table 3) are quite 
small; similarly, for the two-variable group in Table 4. 
Thus, with the simpler model we forgo the need to adjust 
the amplitude signal prior to determining the mean. 

Parameters of the optimal and simpler models 
indicate that, as site index increases, wood density 
decreases (due to the inverse relationship, 1/SI), and 
as amplitude increases wood density increases. Wood 
density also increases as the ratio of velocity to age 
increases. Therefore, within a given stand of trees of the 
same age, wood density increases as acoustic velocity 
increases. Parameters of the simpler 2-variable model, 
X = [1/SI, Z0], indicate that for each unit increase in site 
index, a decrease in wood density of about 6 kg.m-3 could 
be expected, and for each 0.1 increase in the z-value 
associated with the standardised (unadjusted) micro-
drill amplitude, an increase in wood density of about 1.5 
kg.m-3 could be expected. 

The simple procedure of standardisation provided 
large improvements in accuracy of estimates with our 
external dataset. In the scenario that another Douglas-
fir dataset becomes available in the future, then all that is 
required is the computation of mean amplitude for each 

FIGURE 4: Confidence and prediction intervals of wood density by site index, augmented with data used in this study. 
Mean amplitude of the inside-bark resistance profiles are shown with both unadjusted (A0) and standardised 
(Z0) scales.
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tree, and thereupon the mean and standard deviation of 
amplitudes to calculate the z-score. This data, together 
with site index, could then be evaluated as a further 
external dataset for the simpler model with X = [1/SI, 
Z0]. Therefore, though we anticipate this model to be 
portable, more data from a greater range of site indices 
would be required, as are a greater range in tree ages to 
further test model portability. 

For all predictive models, evaluating performance 
with other datasets is a crucial step in gauging practical 
usefulness, yet despite its importance, the primary 
focus in predictive modelling studies has centred on 
how models were developed and on their explanatory 
accuracy. We suggest a greater focus be given to their 
predictive accuracy through external verification to 
assess the usefulness of the model in practice.

With all tools, including micro-drills, many factors 
can cause measurement error. When using micro-drills, 
care needs to be taken to obtain accurate profiles. The 
angle of penetration of the bit determines the amplitude 
profile (Rinn 2012) and due to the bit’s flexibility, can be 
influenced by operator movement, thereby altering the 
profile (Ukrainetz & O’Neill 2010). Profiles in turn may 
be affected by moisture content (Isik & Li 2003; Lin et 
al. 2003) which increases drilling resistance (Kahl et al. 
2009). However, in the case of small conditioned wood 
specimens, the effect of moisture content above fibre 
saturation (~32% MC) was not evident (Sharapov et al. 

2019b). Air temperature (Ukrainetz & O’Neill 2010) and 
wood properties such as reaction wood, resin pockets, 
and branches/knots, can also affect the profiles (Eckard 
et al. 2010). 

As forest management objectives shift, there is an 
increased need to better understand the resource for 
the products/services it can provide. The focus for 
industrial landowners has been primarily on volume 
yield for revenue generation. Wood quality, which 
has a negative relationship with growth (Jozsa & 
Middleton 1994; Kennedy 1995), is not often taken into 
consideration. While it can be challenging to predict 
future customer needs, land managers interested in 
marketing trees to mills manufacturing products that 
require a certain wood density level, the ability to plant, 
grow, manage, and harvest the trees at the optimal time 
will be of economic benefit. Understanding the effect of 
land management regimes and integrating production 
of selected attributes along the value chain from raw 
materials to products promotes best use allocation of the 
forest resource in the future while providing information 
on how to grow and tend trees for specific end uses.

Conclusions
We have provided evidence that wood density estimates 
of individual Douglas-fir trees derived from micro-
drilling alone are insufficient for obtaining accurate 

FIGURE 5: Comparison of measured wood density with predictions. Dark and light grey bands represent differences 
of up to 25 kg.m-3 and 50 kg.m-3 respectively. The vertical line indicates the maximum density within the in-
sample dataset. 



wood density estimates from a diverse set of trees. 
Site effects need to be considered too and with the 
simple inclusion of site index in models, wood density 
predictions improve considerably. Another simple 
procedure, that of standardising mean amplitudes to 
z-scores, extends portability of models to future datasets 
that may use different micro-drills or may operate micro-
drills at different speeds. External data are critical to 
determining how well a model will perform in practice.
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