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1 Introduction 

The prediction and characterization of outbreaks of infectious diseases remains an open and 

important problem [1]. Influenza, with nearly annual outbreaks in temperate regions of the world, 

provides an ideal test domain [2]. 

This paper describes a framework for detecting and characterizing outbreaks of influenza and the 

results of testing it on data from ten real outbreaks collected from two locations over five years. 

Like several other systems, we model outbreaks with compartment models [3-5]. We differ from 

this past work in that we use the full text of patient care reports, rather than just chief complaints 

[6], counts of syndromes from sentinel physicians [5], counts of internet queries [7], etc. Doing so 

provides a rich source of evidence that may provide an early signal of an outbreak. 

We use the evidence to reason about likelihoods, such as P(findings|influenza) or P(findings|RSV), 

rather than just simple counts. The approach is quite general, since the findings can include any 
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evidence about a patient's disease status, including history, symptoms, signs, labs, and other 

information. 

This paper extends our previous work [8] by using a more sophisticated model of non-influenza 

influenza-like illness (NIILI), modeling a probability distribution over influenza outbreak start 

dates, and testing on a set of real outbreak data collected over five years at two locations widely 

separated in the United States. 

2 System Architecture 

We have developed an end-to-end framework for outbreak detection and [9]. It starts with patient 

care reports, extracts findings with natural language processing (NLP), assigns likelihoods to each 

patient case with a case-detection system (CDS), and constructs a model with an outbreak-

detection system (ODS) that can be used for prediction and characterization. 

A patient's care report contains the most detailed and complete record of their present illness 

available. Much of the information in it (including chief complaint, history of present illness, a 

detailed patient assessment, treatment, and response to treatment) is in free-text. Other information, 

such as laboratory findings, is codified. In our system, such data, including symptoms and signs, 

are extracted using natural language processing software [10]. Some patient care reports include a 

laboratory test for influenza which can provide a definitive diagnosis of influenza. 

The findings (free-text derived and coded) for each patient are passed to CDS which derives the 

probability of those findings given each of influenza, NIILI, and other. NIILI implicitly includes 

several diseases, such as respiratory syncytial virus (RSV) and parainfluenza, and other includes 

everything else such as trauma, appendicitis, etc. CDS uses a Bayesian network that represents the 

joint probability distribution of each patient's findings (including laboratory results) and the three 

disease categories just mentioned [11]. As mentioned, it provides the likelihoods 

P(E(p,d)|influenza), P(E(p,d)|NIILI), and P(E(p,d)|other), where E(p,d) is the set of findings for 

patient p on day d. That is, the probability of the patient's findings given they have each of influenza, 

NIILI, or other. 

ODS takes all of the evidence from the first day of the monitored period through the present, 

evaluates thousands of possible outbreak models against the data, and makes projections about the 

future. Let M1,…,Mn be a representative set of models and E(1:c) be all of the data available 

through the current day c. ODS computes the expected number of influenza cases on each day d, 

with: 

Expected Number of Influenza Cases on Day d =  ∑ Mi
n
i=1 (d)P(Mi|E(1: c))   (1) 

where P(Mi|E(1:c)) is the probability of model Mi given the data up to the current day, and Mi(d) 

is the number of influenza cases predicted by model Mi on day d. Typically, d>c since we want to 

predict the future, but we can assess the past with d<c. ODS is based on an earlier system described 

in [8]. 
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Most patients spend only a few hours in the ED and their report is completed and available shortly 

after they leave. However, a significant number of reports take several days to complete 

(sometimes spread over multiple follow-up reports) and are not immediately available to a real-

time system. We avoid data leakage (when the system is tested using data that are theoretically—

but not actually—available each day [12]) by using only the records that are available at the time 

of evaluation, then retroactively augmenting previous evidence as records become available, and 

recomputing previous likelihoods. 

3 Modeling Influenza 

We model immunizing infectious diseases like influenza with SEIR models [13] that divide the 

population into four compartments: 

• Susceptible individuals who could become infected. 

• Exposed individuals who have the disease but cannot yet transmit it. 

• Infectious individuals who have the disease and can transmit it. 

• Recovered individuals who are immune to contracting the disease. 

Typically, a large part of the population is initially susceptible, a significant number may be 

recovered, and the infection is introduced by a small number of infectious individuals. 

After the entire population has been partitioned into these four compartments, they move through 

the compartments according to several parameters: 

• R0 is the expected number of individuals that an infectious person would infect if he 

were introduced into an entirely susceptible population. 

• Latent Period is the average amount of time before an exposed individual becomes 

infectious. 

• Infectious Period is the average amount of time an individual is infectious. 

When modeling an outbreak of influenza, ODS generates thousands of possible SEIR models and 

uses each one according to Equation 1. These models are generated by randomly and uniformly 

drawing values from Table 1. These ranges have been determined by expert opinion and past 

outbreaks of as reported in the literature [2,13,14]. 
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Table 1: SEIR Parameter Ranges 

Parameter Minimum Value Maximum Value 

Initial S 0.0*population 1.0*population 

Initial E 0 0 

Initial I 1 100 

R0 1.1 1.9 

Latent Period 1 3 

Infectious Period 1 8 

Although ODS models influenza in the general population, its evidence comes from hospital ED's, 

which represent only a fraction of the actual number of influenza cases. To adjust for that 

difference, we estimate that 1% of people infected with influenza in the general population actually 

go to an ED based on estimates reported in [15]. 

4 Outbreak Detection and Characterization 

Equation 1 relies on the value P(Mi|E(1:c)) for each Mi. We can find this probability using Bayes’ 

rule: 

𝑃(𝑀𝑖|𝐸(1: 𝑐)) =
𝑃(𝐸(1: 𝑐)|𝑀𝑖)𝑃(𝑀𝑖)

𝑃(𝐸(1:𝑐))
   (2) 

We can interpret P(E(1:c)|Mi) as how well Mi explains the data. Note that P(E(1:c)) is the same 

for every model and P(Mi|E(1:c)) is proportional to the numerator. 

4.1 The Prior Probability of a Model 

In temperate climates, such as the United States, outbreaks of influenza occur nearly every year. If 

an outbreak does occur, it can peak as early as October 1 or as late as April 1, but typically influenza 

outbreaks peak during the winter months. 

Peak dates depend on start dates. We model the distribution of start dates with the following 

procedure: 

1. Create 100,000 models with start dates between June 1 and the following March 1. 

2. Save the set S of models with peak infectious counts that occur between October 1 

and April 1 of the following year. 

3. Create a probability distribution over the start dates in S by setting P(d) to the fraction 

of models in S that start on day d. 

We assume that the probability an influenza outbreak will occur in any given year is 0.9. We create 

a special non-outbreak model, M0 with M0(d)=0 for any day d, and set P(M0=0.1). Let Mi be an 
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outbreak model that starts on day d. For each possible start day d, ODS samples and evaluates n 

equiprobable outbreak models that start on that day, so: 

𝑃(𝑀𝑖) =
𝑃(𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘)×𝑃(𝑑)

𝑛
    (3) 

where P(outbreak)=0.9. 

 

4.2 The Posterior Probability of a Model 

In Equation 2 we need P(E(1:c)|Mi) for each model. Assuming that the evidence on each day E(d) 

is independent of any other day given a model of influenza, we have: 

𝑃(𝐸(1: 𝑐)|𝑀𝑖) = ∏ ∑ [𝑃(𝐸(𝑑)|𝑟)𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟|𝑀𝑖(𝑑), 𝜃)]  (4)

𝑝𝑡𝑠(𝑑)

𝑟=0

𝑐

𝑑=1

 

Here, pts(d) is the total number of patients in the ED on day d, binomial(r|Mi(d),𝜃 ) is the 

probability that exactly r people with influenza go to the ED given there are Mi(d) people in the 

population who independently choose to go the ED with probability 𝜃 . We sum over all the 

possibilities. 

If we assume that on each day the patients in the ED present independently of each other, we have: 

𝑃(𝐸(𝑑)|𝑟) = ∏ 𝑃(𝐸(𝑝, 𝑑)|𝑟)   
𝑝𝑡𝑠(𝑑)
𝑝=1  (5) 

That is, the probability of all of the evidence E(d) on day d is the product of the probability of the 

evidence of each patient E(p,d) on that day. 

Finally, we need the probability of each patient's evidence given there are r influenza patients in 

the ED. If we assume that influenza, NIILI, and other are mutually exclusive and exhaustive for a 

single patient, then: 

𝑃(𝐸(𝑝, 𝑑)|𝑟) = 𝑃(𝐸(𝑝, 𝑑)|𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎)𝑃(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎|𝑟) 

                         + 𝑃(𝐸(𝑝, 𝑑)|𝑁𝐼𝐼𝐿𝐼)𝑃(𝑁𝐼𝐼𝐿𝐼|𝑟)  
                                         + 𝑃(𝐸(𝑝, 𝑑)|𝑜𝑡ℎ𝑒𝑟)𝑃(𝑜𝑡ℎ𝑒𝑟|𝑟)                              (6) 

We estimate P(influenza|r) as r/pts(d). We describe our method to estimate P(NIILI|r) later. 

Finally, P(other|r)=1-(P(influenza|r)+P(NIILI|r)). 

4.3 The Probability that an Outbreak is Occurring 

The probability that an outbreak has started by day c is simply 1-P(M0|E(1:c)) where M0 is the 

non-outbreak model. (Recall that M0 is the non-outbreak model with M0(d)=0 for each day d.) But 
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even if an outbreak has started by day c, that does not mean that it is occurring on day c, since it 

may have already ended. We want the probability that some outbreak is occurring on day c. 

The probability that an arbitrary individual in the population has influenza on day c given model 

Mi is: 

𝑃(𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎 𝑜𝑛 𝐷𝑎𝑦 𝑐|𝑀𝑖) =
𝐸𝑀𝑖

(𝑐)+𝐼𝑀𝑖
(𝑐)

𝑁
       (7) 

where 𝐸𝑀𝑖
(𝑐) is the number of exposed people and 𝐼𝑀𝑖

(𝑐) is the number of infectious people on 

day c for model Mi, and N is the total population in the region being monitored. We can now 

compute the probability that an outbreak is occurring on day c for model Mi as: 

 

𝑃(𝑂𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝐼𝑠 𝑂𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑜𝑛 𝐷𝑎𝑦 𝑐|𝑀𝑖) 

= ∏ [1 − (1 − 𝑃(𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎 𝑜𝑛 𝐷𝑎𝑦 𝑑|𝑀𝑖))𝑁]𝑐
𝑑=𝑠𝑡𝑎𝑟𝑡(𝑀𝑖)              (8) 

The term 1 − 𝑃(𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎 𝑜𝑛 𝐷𝑎𝑦 𝑑|𝑀𝑖) is the probability that an arbitrary individual in the 

population is not infected, (1 − 𝑃(𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎 𝑜𝑛 𝐷𝑎𝑦 𝑑|𝑀𝑖))𝑁 is the probability that nobody is 

infected, and 1 − (1 − 𝑃(𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎 𝑜𝑛 𝐷𝑎𝑦 𝑑|𝑀𝑖))𝑁  is the probability that at least one 

individual is infected, given model Mi. The product is the probability that at least one individual 

in the population is infected on each day from the start of Mi to the current day c. Finally, the 

probability there is an ongoing outbreak on day c is: 

𝑃(𝑂𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝐼𝑠 𝑂𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑜𝑛 𝐷𝑎𝑦 𝑐) 

= ∑ [𝑃(𝑂𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝐼𝑠 𝑂𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑜𝑛 𝐷𝑎𝑦 𝑐|𝑀𝑖)𝑃(𝑀𝑖|𝐸)]𝑀𝑖
            (9) 

where Mi ranges over the entire set of models. 

4.4 Estimating NIILI 

By definition, NIILI—non-influenza influenza-like illness—presents like influenza. Furthermore, 

some forms of NIILI, such as RSV, display outbreak activity. Properly recognizing outbreaks of 

influenza requires us to account for NIILI. (Equation (6 specifies how we incorporate an estimate 

of NIILI to score models.) Appendix A describes a technical approach to estimating the level of 

NIILI during the summer and throughout the influenza season. 

5 Experimental Results 

Our datasets consisted of 5 years of data from 2010-2015 for both Allegheny County (AC), 

Pennsylvania and Salt Lake County (SLC), Utah. We assume that a new influenza season starts on 

June 1 of a given year. Thus, the first season is defined to span from June 1, 2010 through May 31, 

2011, the second season spans from June 1, 2011 through May 31, 2012, and so on through May 

31, 2015. 
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Table 2: ODS Peak Date Errors 

 

 

 

 
Date of Prediction Relative to Actual Peak 

-6 weeks -4 weeks -2 weeks 0 weeks 

2010-2011 AC 7 (1.00) 13 (1.00) 7 (1.00) 5 (1.00) 

2011-2012 AC 18 (0.15) 25 (0.08) 33 (0.16) 43 (0.96) 

2012-2013 AC 53 (0.10) 61 (0.10) 23 (1.00) 28 (1.00) 

2013-2014 AC 19 (0.29) 14 (1.00) 19 (1.00) 17 (1.00) 

2014-2015 AC 8 (0.60) 9 (1.00) 13 (1.00) 8 (1.00) 

AC Average Absolute Error 7.5 12.0 15.5 20.2 

2010-2011 SLC 14 (0.28) 2 (1.00) 12 (1.00) 7 (1.00) 

2011-2012 SLC -4 (0.79) 2 (1.00) 1 (1.00) 6 (1.00) 

2012-2013 SLC 41 (0.12) -7 (0.74) 3 (1.00) 7 (1.00) 

2013-2014 SLC 48 (0.21) 3 (1.00) 5 (1.00) 1 (1.00) 

2014-2015 SLC 55 (0.12) 56 (0.20) 5 (1.00) -1 (1.00) 

SLC Average Absolute Error 4.0 3.5 5.2 4.4 

Overall Average Absolute Error 6.33 7.14 9.78 12.3 

Our gold standard for determining the actual peak of an outbreak in the population is laboratory-

confirmed cases of influenza associated with emergency department visits. According to this 

standard, the peak of an outbreak is the maximum of a seven day central moving average of the 

daily positive lab test counts. We refer to this as the laboratory-peak. 

Appendix B shows the counts of positive influenza lab tests, along with the CDS expected number 

of ED influenza cases, for each influenza season from 2010-2015 for both regions. These results 

give an indication of the relative size and shape of each outbreak. Note that these include graphs 

that appear symmetric and look like SEIR curves (as in Figure 1), graphs that include two distinct 

peaks (as in Figure 2), graphs that are asymmetric (as in Figure 6), and graphs that display little or 

no outbreak activity (as in Figure 3). 

We ran ODS on each day from August 2 through the following June 1 for each influenza season 

in each region. On a given day, ODS uses CDS data through the previous day, so running ODS on 

June 1 uses data through May 31, consistent with our definition of the end of an influenza season. 

We started running ODS on August 2 (using data through August 1) because the data from June 1 

through July 31 is used to compute the initial influenza and NIILI priors used by ODS. (See 

Appendix A.) 
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Our metric for quantifying ODS performance is the absolute error between the ODS-expected peak 

date and the actual peak date determined from the gold standard (positive lab tests). Table 2 shows 

the peak date error for each influenza season and region at different time points relative to the 

actual peak date. In parentheses next to each peak date error is the probability of outbreak 

computed by ODS. The error value is the difference between the ODS-computed expected peak 

date and the actual peak date. Thus, a positive error means that the ODS-predicted peak is later 

than the actual peak. Predictions made with greater then 50% probability are shown in bold. The 

average absolute error values are for predictions with greater than 50% probability. In general, we 

would only trust a peak prediction by ODS when its probability of an outbreak is high at that point. 

For example, for the 2013-2014 season for AC, at a point 6 weeks before the actual peak, the ODS 

predicted peak was 19 days after the actual peak. At this point we can see the probability of 

outbreak was computed to be only 0.29. 

ODS sampled 100 models per day on each of the 274 possible outbreak start days for a total of 

27,400 outbreak models and one non-outbreak model. ODS required approximately 45 minutes of 

runtime to analyze all the data for a given year (corresponding to a single row in Table 2 when 

using a Macbook Pro with a single Intel 2.2GHz i7 processor. 

The research protocol was approved by both institutional IRBs (University of Pittsburgh: 

PRO08030129; Intermountain Healthcare: 1024664). All patient data were de-identified and 

analyzed anonymously. No consent was given. 

6 Limitations 

The work reported here has some limitations. The data is limited to hospital emergency 

departments (EDs) and does not include clinics or private practices. Furthermore, these EDs are 

urban and suburban, and do not include rural areas. ODS relies on natural language processing 

software to extract findings from patient care reports and a case-detection system to produce 

likelihoods, so we rely on the accuracy of those systems. 

We used the number of laboratory-confirmed influenza cases as a gold standard because we want 

to recognize and characterize influenza, as opposed to influenza-like illnesses in general. However, 

the total number of laboratory-confirmed cases of influenza is relatively small. Furthermore, we 

assumed that the rate of testing is constant throughout an outbreak, but it is possible that testing 

policies change as an outbreak develops. 

We also assume that an outbreak can be modeled with a single SEIR model with constant 

parameters. We will address this assumption below. 

7 Discussion 

Table 2 shows that ODS's peak date predictions are almost always late. An examination of the 

graphs of counts of positive influenza lab tests in Appendix B provides a clue why: the outbreaks 

are not symmetric. (Allegheny County 2012-2013 in Figure 5 is a good example.) To explain this 
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asymmetry, we need to reexamine our basic assumption that there is a single outbreak of influenza 

each year that can be modeled by a SEIR model. 

Table 3: Influenza A and B Peaks 

Year Region Influenza A Influenza B B/A Offset (weeks) 

2010-2011 3  (includes AC) 815 148 0.18 1 

2011-2012 3  (includes AC) 183 42 0.23 5 

2012-2013 3  (includes AC) 1533 274 0.18 11 

2013-2014 3  (includes AC) 566 119 0.21 11 

2014-2015 3  (includes AC) 1757 113 0.06 13 

2010-2011 8 (includes SLC) 391 278 0.71 0 

2011-2012 8 (includes SLC) 419 13 0.03 4 

2012-2013 8 (includes SLC) 780 254 0.33 0 

2013-2014 8 (includes SLC) 976 39 0.04 20 

2014-2015 8 (includes SLC) 1429 177 0.12 14 

There is rarely a single outbreak of influenza each year. Typically, there is an outbreak of influenza 

A, followed by a smaller outbreak of influenza B. Table 3 compares the relative sizes of influenza 

A and B outbreaks for HHS region 3 (which includes Allegheny County) and region 8 (which 

includes Salt Lake County), according to data from the CDC's FluView [16]. For instance, the first 

row states that for the influenza year 2010-2011 in region 3, there were 815 laboratory-confirmed 

cases of influenza A at its peak, and 148 laboratory-confirmed cases of influenza B at its peak. 

Also, the influenza B peak was 18% as large as the influenza A peak and occurred one week later. 

Notice that in Table 2, ODS's worst results were for Allegheny County 2011-2012, 2012-2013, 

2013-2014. Also, in Table 3 there was a substantial outbreak of influenza B that peaked several 

weeks after influenza A in exactly those years. 

We believe that the presence of a second, smaller outbreak of influenza B explains most of the 

deviation of ODS's predictions from the actual peak dates. However, there are other factors that 

can affect the prediction of the peak of an outbreak. The basic parameters of the model—especially 

R0—can change based on social or environmental factors [17]. This could happen, for instance, if 

individuals in the population self-quarantine or increase hand washing as an outbreak progresses. 

Immunization programs and individual decisions about whether and when to be vaccinated could 

also change the course of the outbreak [18]. These changes would have the effect of reducing the 

number of individuals in the Susceptible compartment of the SEIR model. Note that in both of 

these examples, the original predicted peak is later than the peak when the changes are taken into 

consideration. To help address this problem, we could learn the relationships between social and 

environmental conditions and the parameters of a SEIR model. For instance, we could learn the 

relationship between R0 and school closings by comparing deviations of the number of infectious 
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from standard SEIR models with known patterns of holidays, school closings, etc. A simple way 

to learn such a relationship could start with the assumption that the value of R0 changes daily 

according to the number of people affected by school closings. That is, R0(d)=f(c(d)), where c(d) 

is the number of people affected by school closings on day d. It would be reasonable to assume 

that f is a linear function since 𝑅0 = 𝛽𝐷𝑁 where 𝛽 is the rate at which any two individuals come 

into effective contact, D is the duration of infectiousness, and N is the population. We can then set 

the parameters of f to the values that maximize P(E(d)|R0(d)=f(c(d))) over all of the available 

training data. Of course, R0 depends on more than just social mixing, and f may be a nonlinear, 

multi-parameter function; in that case, we could investigate ways to approximate it. 

Properly modeling outbreaks of influenza will require models that incorporate multiple outbreaks 

as well as parameters that vary according to day-to-day information. The current work provides a 

baseline from which to proceed, and insights into which directions to take. 

8 Conclusions 

We have described a system—ODS—that can predict and characterize outbreaks of influenza, and 

the results of testing it on ten datasets collected over five years at two locations. Our analysis 

showed that ODS can reliably detect the presence of an outbreak, but systematically predicts the 

peak later than it actually occurred. We believe this is primarily due to the inability of SEIR models 

to correctly model the influenza A and B outbreaks that occur most years. Further work with ODS, 

or similar systems, needs to be based on outbreak models that can describe multiple, overlapping 

outbreaks of influenza. 
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Appendix A Modeling NIILI 

We compute the level of NIILI in three stages. First, we compute summer baseline levels of NIILI. 

Then, we compute the level of NIILI during influenza season using a Bayesian time-series. Finally, 

we adjust the level of NIILI to account for the increased level of apparent NIILI during an outbreak 

of influenza. 

We compute baseline levels of influenza and NIILI in the summer when it is highly unlikely there 

is an outbreak. Because they present similarly, and one can be explained by the possible presence 

of the other, we need to compute them in tandem. Let S be the set of all possible pairs of influenza 

and NIILI prior probabilities. Let si be a specific pair of priors {Pi(influenza),Pi(NIILI)}. We have: 

𝑃𝑖(𝑜𝑡ℎ𝑒𝑟) = 1 − (𝑃𝑖(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎) + 𝑃𝑖(𝑁𝐼𝐼𝐿𝐼))         (10) 

Since the si are mutually exclusive and exhaustive, we can compute the probability of the data on 

day d with: 

𝑃(𝐸(𝑑)) = ∑ [𝑃(𝐸(𝑑)|𝑠𝑖)𝑖 𝑃(𝑠𝑖)]         (11) 

Assuming there are n P(si) and they are uniformly equal: 

𝑃(𝐸(𝑑)) =
1

𝑛
∑ 𝑃(𝐸(𝑑)|𝑠𝑖)           𝑖  (12) 

We can now compute the expected probability of influenza on day d as: 

𝑃(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎|𝐸(𝑑)) =
𝑃(𝐸(𝑑)|𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎)𝑃(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎)   

𝑃(𝐸(𝑑))
                   (13) 

Again assuming the P(si) and are equal: 

𝑃(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎|𝐸(𝑑)) = ∑
𝑃(𝐸(𝑑)|𝑠𝑖)𝑃𝑖(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎)

𝑃(𝐸(𝑑)|𝑠𝑖)𝑖                        (14) 
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https://doi.org/10.1371/journal.pbio.1000316
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We can compute P(NIILI|(E(d)) and P(other|E(d)) similarly. Finally, let summer be all the days of 

summer. Then: 

𝑃𝑠𝑢𝑚𝑚𝑒𝑟(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎) =
1

|𝑠𝑢𝑚𝑚𝑒𝑟|
∑ 𝑃(𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎|𝐸(𝑑))              𝑑∈𝑠𝑢𝑚𝑚𝑒𝑟  (15) 

and: 

𝑃𝑠𝑢𝑚𝑚𝑒𝑟(𝑁𝐼𝐼𝐿𝐼) =
1

|𝑠𝑢𝑚𝑚𝑒𝑟|
∑ 𝑃(𝑁𝐼𝐼𝐿𝐼|𝐸(𝑑))𝑑∈𝑠𝑢𝑚𝑚𝑒𝑟                  (16) 

That is, we estimate the background probability of influenza and NIILI as their mean daily 

probabilities during a summer period. 

Given the summer baseline levels of NIILI and influenza, we now compute the probability of NIILI 

during the remainder of the year with a Bayesian time-series. Let E(p,d) be the evidence for patient 

p on day d, E(d) be all of the evidence on day d, and Nd be the number of patients on day d. Also, 

let Pd(influenza), Pd(NIILI), and Pd(other) denote the prior probabilities for NIILI, influenza, and 

other for day d. Let us first assume that we have prior probabilities Pd(NIILI), Pd(influenza), and 

Pd(other) for day d. We can then derive the posterior probability of NIILI for patient p on day d as: 

𝑃(𝑁𝐼𝐼𝐿𝐼|𝐸(𝑝, 𝑑)) =
𝑃(𝐸(𝑝, 𝑑)|𝑁𝐼𝐼𝐿𝐼)𝑃𝑑(𝑁𝐼𝐼𝐿𝐼)

∑ 𝑃(𝐸(𝑝,𝑑)|𝑑𝑥)𝑃𝑑(𝑑𝑥)𝑑𝑥
        (17) 

where dx ranges over influenza, NIILI, and other. Now we derive the posterior probability of NIILI 

on day d as the expected fraction of patients who have NIILI on that day: 

𝑃(𝑁𝐼𝐼𝐿𝐼|𝐸(𝑑)) =
1

𝑁
∑ 𝑃(𝑁𝐼𝐼𝐿𝐼|𝐸(𝑝, 𝑑))

𝑁𝑑
𝑝=1                   (18) 

We derive Pd(influenza|E(d)) and Pd(other|E(d)) similarly. Finally, we assume that the prior 

probability of NIILI on day d+1 is the posterior probability of NIILI on day d: 

𝑃𝑑+1(𝑁𝐼𝐼𝐿𝐼) = 𝑃𝑑(𝑁𝐼𝐼𝐿𝐼|𝐸(𝑑)) (19) 

We can derive Pd+1(influenza) and Pd+1(other) similarly. Thus, starting with the baseline 

probabilities for influenza, NIILI, and other computed in the summer, we update them each day 

with the available evidence. 

The probability of NIILI rises and falls with the probability of influenza. This is an artifact of the 

data: since NIILI and influenza have similar symptoms, P(E(p,d)|NIILI) will increase for patients 

with influenza, causing the likelihoods for NIILI to shadow the likelihoods for influenza. We will 

modify the computation of NIILI above with the goal of keeping the NIILI priors lower during an 

outbreak of influenza since we do not expect a simultaneous NIILI outbreak. Given the NIILI priors 

Pd(NIILI) computed above, we will derive a new sequence of NIILI priors P’d(NIILI). Set 

P’1(NIILI)=P1(NIILI) and assume c>1. We run ODS for day c and derive P(Mi|E(1:c)) for each 

model Mi using the NIILI priors P’1(NIILI),…,P’c(NIILI). Let Pc(outbreak|E(1:c)) be the 
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probability that an outbreak is occurring on day c given E(1:c), and Pc(outbreak|Mi) be the 

probability that an outbreak is occurring on day c given model Mi (as defined by Equation 8). We 

compute P’c+1(NIILI) with: 

𝑃′𝑐+1(𝑁𝐼𝐼𝐿𝐼) = (1 − 𝑃𝑐(𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘|𝐸(1: 𝑐))𝑃𝑐+1(𝑁𝐼𝐼𝐿𝐼) 

+ ∑ 𝑃𝑐(𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘|𝑀𝑖)𝑃(𝑀𝑖|𝐸(1: 𝑐))𝑃𝑠𝑡𝑎𝑟𝑡(𝑀𝑖)(𝑁𝐼𝐼𝐿𝐼)𝑖  (20) 

This equation says that we use the original NIILI prior on day c, Pc+1(NIILI), weighted by the 

probability of no outbreak on day c, plus the sum over all models of the original NIILI prior on the 

start day of a model, 𝑃𝑠𝑡𝑎𝑟𝑡(𝑀𝑖)(𝑁𝐼𝐼𝐿𝐼), weighted by the probability an outbreak is occurring on 

day c given model Mi, Pc(outbreak|Mi) and the posterior of model Mi given the evidence through 

day c, P(Mi|E(1:c)). The result of using Equation 20 is that when an influenza outbreak is occurring, 

the NIILI priors are weighted toward the values at the start of the most likely ongoing outbreak 

models, and do not have the behavior of increasing due to influence of the influenza outbreak. 

  



The design and evaluation of a Bayesian system for detecting and characterizing outbreaks of  
Influenza 
 

 

 

Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * 11(2):e6, 2019 

OJPHI 

Appendix B Counts of Positive Influenza Lab Tests 

Figure 1: Allegheny County 2010-2011 

Figure 2: Salt Lake County 2010-201 
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Figure 3: Allegheny County 2011-2012 

 

Figure 4: Salt Lake County 2011-2012 
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Figure 5: Allegheny County 2012-2013 

 

Figure 6: Salt Lake County 2012-2013  
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Figure 7: Allegheny County 2013-2014 

 

Figure 8: Salt Lake County 2013-2014  
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Figure 9: Allegheny County 2014-2015 

  

Figure 10: Salt Lake County 2014-2015 


