
INTRODUCTION

The realization that species distributions are signifi-
cantly influenced by climate has placed considerable 
emphasis on the need to acquire information con-

cerning the ways in which the present distributions 
of organisms will be affected by climate change. In 
response to this challenge, the issue of vector dis tri-
bution has recently received much attention. Nu mer-
ous studies (Sutherst & Maywald 1985; Nix 1986; 
Perry, Lessard, Norval, Kundert & Kruska 1990; Nor-
val, Perry & Young 1992; Rogers & Randolph 1993; 
Sutherst, Maywald & Skarratt 1995; Randolph & 
Rogers 1997; Estrada-Peña 1999; Rogers & Ran-
dolph 2000; Randolph 2001, 2002; Erasmus, Ksha-
triya, Mansell, Chown & Van Jaarsveld 2000; Eras-
mus, Van Jaarsveld, Chown, Kshatriya & Wessels 
2002; Olwoch, Rautenbach, Erasmus, Engelbrecht 
& Van Jaarsveld 2003; Van Staden, Erasmus, Roux, 
Wingfield & Van Jaarsveld 2004; Thomas, Cameron, 
Green, Bakkenes, Beaumont, Collingham, Erasmus, 
Ferrierra, Grainger, Hannah, Hughes, Huntley, Van 
Jaarsveld, Midgley, Miles, Ortega-Huerta, Peterson, 
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The suitability of present and future climates for 30 Rhipicephalus species in Africa are predicted us-
ing a simple climate envelope model as well as a Division of Atmospheric Research Limited-Area 
Model (DARLAM). DARLAM’s predictions are compared with the mean outcome from two global cir-
culation models. East Africa and South Africa are considered the most vulnerable regions on the 
continent to climate-induced changes in tick distributions and tick-borne diseases. More than 50 % of 
the species examined show potential range expansion and more than 70 % of this range expansion is 
found in economically important tick species. More than 20 % of the species experienced range shifts 
of between 50 and 100 %. There is also an increase in tick species richness in the south-western re-
gions of the sub-continent. Actual range alterations due to climate change may be even greater since 
factors like land degradation and human population increase have not been included in this modelling 
process. However, these predictions are also subject to the effect that climate change may have on 
the hosts of the ticks, particularly those that favour a restricted range of hosts. Where possible, the 
anticipated biological implications of the predicted changes are explored.
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Philips & Williams 2004) have attempted to predict 
the distribution of species based on the major envi-
ronmental factors that would influence this. 

This approach neither disregards the need for fur-
ther detailed and comprehensive eco-physiological 
studies nor does it pretend to predict the future. 
What it does is define the role of climate as a factor 
in determining the potential for future vector estab-
lishment when all other elements are excluded (Suth-
erst 2003). This paper also accents the necessity of 
acquiring more detailed information concerning the 
biology and environmental sensitivities of each spe-
cies in the light of likely climate change. In the ab-
sence of such information, relatively straightforward 
statistical methods that seek correlations between 
environmental factors and the presence of animals 
or plants are likely to remain the best pragmatic ap-
proach for exploring the expected future distribu-
tions of large numbers of species. This study focuses 
on climate induced changes likely to occur in the 
dis tribution of some species of an economically im-
portant African arthropod, namely the tick genus 
Rhipi cephalus. 

The intimate relationship between climate and the 
requirements of ticks for survival is well documented 
(Tukahirwa 1976; Rechav 1981, 1982; Short & Nor-
val 1981; Minshull & Norval 1982; Norval, Walker & 
Colborne 1982; Dipeolu 1989; Perry et al. 1990; Nor-
val et al. 1992; Okello-Onen, Tukahirwa, Perry, Row-
lands, Nagda, Musisi, Heinonen, Mwayi & Opuda-
Asibo 1999). This has led to several studies using 
climate as a means of predicting the distributions of 
African ticks (Rogers & Randolph 1993; Randolph 
1993, 2001; Randolph & Rogers 1997; Norval, Suth-
erst, Kurki, Kerr & Gibson 1997; Cumming 2000a, 
b; Estrada-Peña 2001; Olwoch et al. 2003). Collec-
tively the results obtained from these works, some 
of which used data garnered mainly from interpo-
lated climate databases at 25 km resolution (Perry 
et al. 1990) or 6 x 6 km resolutions (Cumming 2000b), 
suggest that accurate predictions of tick distributions 
at different temporal and spatial scales should be 
feasible. This approach would be especially useful 
for predicting the distribution of species in poorly sam-
pled species in poorly sampled regions of Africa. 

The genus Rhipicephalus is the fourth largest in the 
Family Ixodidae (Walker, Keirans & Horak 2000), 
and there are 74 species currently recognized. It is 
essentially an African genus with approximately 63 
species recorded only in the Afro-tropical region and 
ten species outside the region. One species, Rhipi-
cephalus evertsi evertsi Dönitz, 1910, whose distri-
bution was originally confined to the Afro-tropical 

region has now gained a foothold on the Arabian 
Peninsula and its distribution is expected to spread 
even further (Walker et al. 2000). Only 30 species 
are included in this paper. They are those whose 
ecological, life history strategies and climatic require-
ments are relatively well known and, as two distribu-
tion data sets have been used, the current distribu-
tion of these ticks are relatively well plotted. The way 
in which these distributions will be influenced by cli-
mate change is poorly documented and forms the 
essence of this paper.

The use of climate-matching models to predict 
tick distributions

One of the earliest climate matching approaches 
was CLIMEX, which calculates the climatic suitability 
of geographic regions for species using a tempera-
ture-dependent growth index moderated by four 
growth indices: hot, cold, dry and wet (Sutherst & 
Maywald 1985). The use of CLIMEX in northern 
Australia was considered a great success for pre-
dicting the distribution of the tick Boophilus micro-
plus (Canestrini, 1887), and it was anticipated that 
this initial success could be translated into predict-
ing distributions of African tick species. However, 
early studies tended to over-estimate the distribu-
tion of B. microplus across Africa, and the predicted 
high incidence of Rhipicephalus appendiculatus Neu-
mann, 1901 in West Africa was at complete variance 
with the tick’s absence in this region. 

Moreover, when the distributions of Amblyomma 
spp. in Africa were modelled using CLIMEX, these 
were found to be dissimilar to their known distribu-
tions. These conflicting results led Norval, Perry, 
Melt zer, Kruska & Boothroyd (1994) to conclude 
that the predicted climatic suitability of regions for 
Amblyomma hebraeum Koch and Amblyomma vari-
egatum Fabricius, 1794, is almost the opposite of 
the actual distribution of these ticks, both in Zim ba b-
we and in the rest of Africa (Norval, Perry, Gebreab 
& Lessard 1991; Norval et al. 1992).

BIOCLIM was the second climate-based approach 
employed to model tick distributions (Nix 1986; 
Norval et al. 1992). BIOCLIM generates 24 climatic 
attributes from which annual and seasonal mean 
conditions, extreme values and intra-year seasonal-
ity are derived, for each of a selection of geographic 
points throughout the distribution range of a tick 
species. Computer-selected thresholds and limits 
for each of the indices are matched across a geo-
graphical grid to predict potential species distribu-
tion. This model generally provided a better fit be-
tween the predicted and known distributions of R. 



47

J.M. OLWOCH et al.

appendiculatus, although at a finer scale the match 
in some areas of the East African highlands was 
unsatisfactory (Norval et al. 1992). The climate data-
base used was interpolated at an increased resolu-
tion (8 km), and this factor alone may explain the 
improved accuracy when compared to the earlier 
CLIMEX-based attempts. A subsequent logistic re-
gression approach (Cumming 2000c), based on 
inter polated climate and elevation data for Africa 
with a resolution of 25 km (Hutchinson, Nix, Mac-
Mahon & Ord 1996) achieved even better accuracy. 
Such an approach, however, normally requires the 
existence of a training data set that includes pres-
ence and absence information (Estrada-Peña 2003). 
While it is relatively easy to ascertain where ticks 
have been collected, it is more difficult to confirm the 
reliability of surveys in which a tick species is cited 
as not present. Consequently the assumption that 
non-presence always implies absence may limit the 
application of this modelling approach (Estrada-
Peña 2003).

The use of an Advanced Very High-Resolution Radi-
o meter (AVHRR) mounted on the National Oceanic 
and Atmospheric Administration’s (NOAA’s) meteo-
rological satellites was given preference in the 1990s. 
This instrument allowed the direct detection of envi-
ronmental factors at an 8 km resolution (Lessard et 
al. 1990). The main predictor in this procedure is the 
satellite-derived maximum mean monthly Normal-
ized Difference Vegetation Index (NDVI). However, 
this technique was reportedly very complicated when 
used to predict the distribution of R. appendiculatus 
(Kruska & Perry 1991). There are, however, initia-
tives to revive confidence in the NDVI approach as 
a predictive tool in research (Randolph 2002). 

The present study used a single species distribution 
modelling procedure (Erasmus et al. 2000), original-
ly developed by Jeffree & Jeffree (1994, 1996), for 
predicting species distribution patterns and for eval-
uating the relative performance of predicted future 
climate data sets. This model was subsequently 
modified to accept multivariate inputs to yield prob-
ability of presence maps for species (Erasmus et al. 
2000). When used to predict the contemporary po-
tential distribution of African ticks (Olwoch et al. 
2003) the model achieved positive predictions of 
more than 70 % for the four tick species tested.

Climate data used for predicting African tick 
distributions

The principal sources of climate data for predictive 
distribution modelling are climate surfaces, gener-
ated by interpolating data sampled at varying inten-

sities across a region. Consequently, differences 
between these climate surfaces can usually be attrib-
uted to spatial and temporal evenness of the data 
used for interpolation. Most modern interpolation 
techniques are pattern based and statistically incor-
porate horizontal as well as vertical (altitudinal) ad-
justments (Hutchinson 1989, 1991; Hutchinson & 
Gessler 1994). These climate surfaces are, how ever, 
relatively smooth because of extensive interpolation 
between low-resolution point observations.

Another source of climate data is Global Circulation 
Models (GCMs). These are coupled ocean-atmos-
phere models that provide three-dimensional simu-
lations of the atmosphere. To date GCMs have pro-
duced climate data at a horizontal resolution that is 
generally too coarse for use in predictive species 
modelling (> 100 x 100 km grid point resolution), 
especially for species that are habitat specialists or 
that are influenced by fine-scale environmental gra-
dients. Computational requirements usually preclude 
GCMs being run at meso-scale grid resolutions 
(10–100 km). 

The present study used a Division of Atmospheric 
Research Limited Area Model (DARLAM) as the 
main climate data set. DARLAM is a potential alter-
native source of high-resolution climate data that 
involves the nesting of a high-resolution limited area 
model within a GCM over the area of interest (for 
review see McGregor 1997). The GCM supplies the 
limited area model with initial and boundary condi-
tions. With a grid resolution of 10–100 km, the lim-
ited area model is able to simulate some of the 
meso-scale properties of the circulation model. This 
technique provides a viable fine scale alternative to 
the use of observed or interpolated climate surfaces 
or very coarse scale GCMs climate surfaces. The 
resolution attained by this dynamic modelling pro-
cess is essentially limited by the computing power 
available to the modellers. The implication of using 
these datasets for predicting current tick distribu-
tions has been assessed by Olwoch et al. (2003). In 
this study, DARLAM’s future predictions are com-
pared with those obtained by using mean climates 
from two GCMs (CGCM and Centre for Climate Sys-
tem Research/National Institute for Environ  mental 
Studies [CCSR/NIES]). 

MATERIALS AND METHODS

Study area

The study area covers sub-Saharan Africa (Fig. 1) 
and was divided into 3 000 grids cells of 60 x 60 km 
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resolution. This resolution was determined by the 
DARLAM climate data.

Tick data

Point localities of tick recoveries were obtained from 
Cumming (1999), who compiled the data that he 
used from various collections of ticks, and from re-
cent collections made by one of us (I.G.H.). Com-
bining data sets from different sources frequently 
compounds identification and distribution errors and 
for this reason data congruence with Walker et al. 
(2000), who provide well-illustrated distributions of 
Rhipicephalus species, was used to assess data 
quality in the final compiled dataset. Synonyms pro-
vided by the latter authors also solve the common 
dataset problem of referring to one species, but us-
ing different names, or referring to a group of spe-
cies as a single species. The tick species selected 
for this study belong to the ixodid genus Rhipi ceph-
alus. Species point localities were assigned to partic-
ular 60 km x 60 km grid cells by means of a spatial 
intersect in ArcView GIS. A conservative estimate of 
the accuracy of these point localities is 0.2 ° (G.S. 
Cumming, personal communication 2003) and con-
sequently this approximation is considered reason-
able. The Rhipicephalus species selected are those 
whose distribution and life history strategies are rel-
a tively well known and it is our hope that these re-

sults will provide a baseline model for future model-
ling of other tick species.

Predictive species modelling

A simple climate envelope model was used to pre-
dict the future distribution of the focal species (Eras-
mus et al. 2000, 2002). The input data comprised 
3 000 grid cells of 60 x 60 km size populated with 
climate variables covering sub-Saharan Africa. Reli-
able presence records of the selected tick species 
and the present climate values at these locations 
were used to construct a climate envelope, using a 
principal components-type approach. This climate 
envelope represents the range of climates within 
which a particular tick is known to occur, and can be 
interpreted as the realized niche, as defined solely 
by climate. To arrive at a predicted distribution in a 
climate change scenario, the existing climate enve-
lope is applied to a climate surface representing fu-
ture climates, and a new geographical interpretation 
of distribution is derived [see Erasmus et al. (2000, 
2002) and Olwoch et al. (2003) for a more detailed 
explanation]. This approach was used as a stand-
ardized base for evaluating the relative perform-
ances of the DARLAM and the mean GCM climate 
data sets, and allows the creation of a probability 
surface of climate suitability for each species mod-
elled.

FIG. 1 Study area

National boundaries
km
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DARLAM present and future climate data

The Australian Commonwealth Scientific and Indus-
trial Research Organisation (CSIRO) developed the 
high-resolution limited-area model DARLAM for use 
in both short-term meso-scale atmospheric studies 
and longer-term climate simulation experiments 
(Walsh & McGregor 1995). In the present study ten 
separate 30-day simulations were performed for both 
January and July for separate 10-year periods. The 
periods selected are the 1990s and 2020. The sim-
ulations were performed at a horizontal grid resolu-
tion of 60 x 60 km using a domain of 100 x 100 grid 
points that cover sub-Saharan Africa. The month ly 
average of the ten simulations constitutes the model 
climatology for the month. The CSIRO Mark 2 GCM 
was used to force DARLAM at its lateral bounda-
ries. The GCM was integrated for the period 1960–
2100, with greenhouse gas forcing corresponding 
to the A2 SRES (Special Report on Emission Sce-
nario, issued by the Intergovernmental Panel on 
Climate Change) scenario. 

Engelbrecht, Rautenbach, MacGregor & Katzfey 
(2002) illustrated that DARLAM is capable of simu-
lating the regional characteristics of atmospheric 
variables such as near-surface temperature, low-
level wind patterns and rainfall over sub-Saharan 
Africa with considerable detail. The model does, 
however, tend to overestimate total rainfall over re-
gions with a steep topography. The DARLAM simula-
tions were performed at the Laboratory for Research 
in Atmospheric Modelling (LRAM) at the University 
of Pretoria on a Pentium III workstation with two 550 
MHz processors. 

GCM future climate data

The GCM climate data used in this study were 
downloaded from the IPCC/DDC website. Through 
various stages in ArcView GIS, the original GCM 
data were processed to fit the 60 x 60 km resolution 
of DARLAM. The Canadian Global Coupled Model 
(CGCM2) was the first GCM climate used in this 
study. It is based on the earlier CGCM1, but with 
some improvements aimed at addressing shortcom-
ings identified in the first version. In particular, the 
ocean mixing parameterization has been changed 
(Gent & McWilliams 1990), and following Flato & 
Hibler (1992) sea-ice dynamics has been included. 
The version of GCM2 used for control and doubled 
CO2 experiments has ten vertical levels with the low-
est prognostic level located at approximately 200 m 
above the surface. A description of CGCM2 and a 
comparison, relative to CGCM1, of its response to 
increasing greenhouse-gas forcing can be found in 

Flato & Boer (2001). The climate change projec-
tions used in this study are those from the newer 
IPCC SRES A2 scenario.

The second GCM model used was developed by 
the Center for Climate System Research/National 
Institute for Environmental Studies, (Japan) (CCSR/
NIES) CGCM (Nozawa, Emori, Numaguti, Tsushima, 
Takemura, Nakajima, Abe-Ouchi & Kimoto 2001). 
This model is also based on Emission Scenarios 
(SRES) of the Intergovernmental Panel on Climate 
Change (IPCC). It is a Transient Coupled Ocean-
Atmosphere Model, which was developed to inves-
tigate the direct and indirect climate impacts of the 
anthropogenic sulphate and carbonaceous aerosols 
in future projections of climate change. The data 
used here are from the A2 scenarios. Direct radia-
tive forcing of the carbonaceous aerosols nearly nul-
lifies that of the sulphate aerosols for all scenarios. 
Estimated total indirect radiative forcing is about 
–1.3 Wm-2 for the A1, B1, and B2 scenarios, and is 
about –2.0 Wm-2 for the A2 scenario in the latter 
half of the 21st Century. Global and annual averages 
of the surface air temperature increase for all sce-
narios because of the dominance of the radiative 
forcing of the increased CO2. Global warming is de-
celerated with an increase in the anthropogenic sul-
phate and carbonaceous aerosols, because indirect 
forcing due to the aerosols has a significant cooling 
effect. Geographical distribution of the surface warm-
ing does not depend much on the scenarios. Cloud 
feedback becomes dominant in the latter half of the 
21st Century, and this introduces further warm ing at 
the surface.

Predicting current and future distribution of 
Rhipicephalus species 

The predicted current distributions were initially ob-
tained using current climate predicted by DARLAM. 
This represents a useful comparison between pre-
dicted distributions and known records (see Olwoch 
et al. 2003). To obtain predicted future distributions 
the grid cells are populated with future climate vari-
ables. The predicted current distributions were ob-
tained using the predictive species model (Erasmus 
et al. 2000) and six climate variables of current and 
future mean maximum temperature, mean minimum 
temperature and mean rainfall of January and July 
provided by DARLAM. The predicted future distribu-
tions were obtained by using both DARLAM and the 
mean GCM climates. The predictive modelling was 
executed in S-Plus (S-Plus 2000), while maps of the 
results were drawn in ArcView GIS. The resultant 
potential distribution maps represent the probability 
values of their suitability for ticks based on climate. 
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Analysis of predicted tick range changes

A number of analyses were performed to compare 
the predicted current and future distributions of 
ticks. These included:

(i) Analysis of species range expansion

(ii) An analysis of range contraction

(iii) Change in species richness pattern

(iv) Species range shifts

(v) An assessment of overlap between DARLAM 
and GCM predicted future distributions.

These range changes were initially analysed for the 
whole study area and subsequently, in some cases, 
on a regional basis. In the second analysis, ticks 
were grouped into the following regions depend ing 
on their principal regional distribution, namely East 
Africa, Central Africa and southern Africa, and a 
fourth group of ticks that were termed “general” 
ticks. 

The East African tick species include Rhipicephalus 
aquatilis Walker, Keirans & Pegram, 1993, Rhipi ceph-
alus armatus Pocock, 1900, Rhipicephalus bequaer ti 
Zumpt, 1949, Rhipicephalus carnivoralis Walker, 
1966, Rhipicephalus humeralis Rondelli, 1926, Rhipi-
cephalus kochi Dönitz, 1905, Rhipicephalus ma -
culatus Neumann, 1901, Rhipicephalus muehlensi 
Zumpt, 1943, Rhipicephalus planus Neumann, 1907 
and Rhipicephalus pulchellus Gerstäcker, 1873. 

The Central African species include Rhipicephalus 
complanatus Neumann, 1911, Rhipicephalus com-
positus Neumann, 1897, Rhipicephalus dux Dönitz, 
1910, Rhipicephalus longus Neumann, 1907, Rhipi-
cephalus lunulatus Neumann, 1907, Rhipicephalus 
masseyi Nuttall & Warburton, 1908, Rhipicephalus 
punctatus Warburton, 1912, Rhipicephalus senega-
lensis Koch, 1844, Rhipicephalus supertritus Neu-
mann, 1907 and Rhipicephalus ziemanni Neumann, 
1904. 

The southern African species include ticks of the 
Rhipicephalus capensis group (Rhipicephalus cap-
ensis Koch, 1844; Rhipicephalus follis Dönitz, 1910 
and Rhipicephalus gertrudae Feldman-Muhsam, 
1960), Rhipicephalus distinctus Bedford, 1932, Rhipi-
cephalus exopthalmos Keirans & Walker, 1993, 
Rhipicephalus oculatus Neumann, 1901, Rhipi ceph-
alus zambeziensis Walker, Norval & Corwin, 1981 
and the subspecies Rhipicephalus evertsi mimeti-
cus Dönitz, 1910.

There are also species that have wide ranging dis-
tributions that overlap in various regions of Africa. 

These species, termed “general” ticks include R. 
appendiculatus, R. evertsi evertsi Neumann, 1897, 
Rhipicephalus pravus Dönitz, 1910 and Rhipi ceph-
alus simus Koch, 1844. The above groupings are 
presented to facilitate interpretation of the current 
findings and do not imply that the ticks placed in 
particular geographical regions are restricted to 
these areas, but rather localise their distribution with 
extensions into neighbouring regions. 

Range expansion and contraction

In order to obtain range changes in terms of contrac-
tions or expansions, predicted current or future dis-
tributions were first obtained. The predicted current 
or future distributions were taken as the number of 
grid cells in which the probability of occurrence is 
equal to or greater than 50 %. The difference in the 
number of grid cells between the predicted present 
distribution (DP) and predicted future distribution 
(DF) constitutes distribution range change (DC). 
These range changes may either represent contrac-
tions or expansions. We initially performed this anal-
ysis on a sub-Saharan scale and later on a regional 
scale in order to establish which regions in Africa 
would experience greater changes in predicted tick 
distribution ranges (current and future) and there-
fore appear more vulnerable to climate change. We 
analysed the differences between the predicted dis-
tributions using the Kolmogorov-Smirnoff two-sam-
ple test. Furthermore, we divided the ticks into eco-
nomically important and unimportant species. A 
com  parison of range changes between the current 
and future predictions was performed on this latter 
grouping to assess which of the two groups is more 
vulnerable to climate change.

In all the above analyses we assessed the propor-
tion of species that experienced expanded or con-
tracted range changes and the degree of the pre-
dicted expansion/contraction.

Analysis of change in species richness pattern 
and degree of range shifts 

Species richness patterns were calculated as the 
number of species in the predicted current or future 
distribution per grid cell following Erasmus et al. 
(2002). This analysis was performed for the whole 
of sub-Saharan Africa. Range shifts were calculated 
as the number of additional grid cells in the predict-
ed future distribution as a proportion of the current 
predicted distribution. We used the current predict-
ed distribution instead of current known records be-
cause most regions in Africa are poorly sampled.
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Comparing predicted future distributions of 
ticks based on climates simulated by DARLAM 
and GCM 

The accuracy of any climate model is as good as 
the initial conditions that are used to configure it. 
Since there is no climate model that provides an ac-
curate projection of the future, it seemed prudent to 
use the results from more than one climate model in 
this study. A comparison was therefore made to as-
sess the differences between the predicted future 
climate suitability for tick species using a regional 
climate provided by DARLAM and a mean of two 
GCMs described above. The analysis was performed 
on a sub-Saharan scale and also on a regional scale. 
We assessed the degree of proportional overlap be-
tween the predicted current distribution and the pre-
dicted future distribution (DARLAM and GCM) by 
means of the proportional overlap method (Prender-
gast, Quinn, Lawton, Eversham & Gibbons 1993; 
Reyers, Van Jaarsveld & Krüger 2000). In this case 
the proportional overlap was calculated as Nc/Ns 
where Nc is the number of common grid cells be-
tween a pair of areas under comparison and Ns is the 
number of grid cells containing data for both groups 
or the maximum number of overlapping grid cells 
possible. 

RESULTS

Model Validation was not performed in this study be-
cause the same climate envelope model had previ-
ously been subjected to rigorous evaluation using 
presence-absence data re sulting from a coordinat-
ed and systematic survey effort. Erasmus et al. 
(2002) used the distribution records of 34 bird spe-
cies and tested performance of the model using re-
ceiver operator characteristic analyses (Fielding & 
Bell 1997). The model performed sig nificantly better 
than a random model with no discriminatory ability. 
It also accurately predicted the complete known dis-
tributions for 24 of the 34 bird species, using a 20 % 
sub-sample of the known rec ords (Erasmus et al. 
2002). This satisfactory documented performance 
of the model and the relatively good predictions that 
were obtained when it was used to predict the cur-
rent distributions of four Afri can ticks (Olwoch et al. 
2003) are sufficient reasons to consider the model 
adequate for the present study.

Future climate—DARLAM

The climatological anomalies for the 2020s vs the 
1990s as predicted by DARLAM are depicted in Fig. 
2. January minimum and maximum temperatures 

are simulated to increase by more than 2 °C over 
certain regions of sub-Saharan Africa. Many of the 
eastern regions are expected to become drier with 
an associated pattern of higher sea-level pressure, 
whilst the western subcontinent is expected to be-

Maximum temperature (°C)

Minimum temperature (°C)

Mean sea-level pressure (hPa)

Rainfall (mm/day)

FIG. 2 DARLAM’s climatological anomalies for the 2020s v. 
1990s
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come wetter. An interesting feature of the July anom-
aly fields is that parts of the central subcontinent are 
simulated to become cooler and wetter. 

Species distribution changes 

Broad scale range changes (Fig. 3A, B)

The predicted current and future distributions of the 
selected Rhipicephalus spp. using DARLAM are 
provided in figures 10–39. On a sub-Saharan scale, 
the ranges of 46 % of the tick species, namely R. 
appendiculatus, R. capensis group, R. distinctus, R. 
humeralis, R. kochi, R. longus, R. masseyi, R. ocu-
latus, R. planus, R. punctatus, R. senegalensis, R. 
simus, R. zambeziensis and R. ziemanni are pre-
dicted to contract. The ranges of 54 % of the spe-
cies, namely R. aquatilis, R. armatus, R. bequaerti, 
R. carnivoralis, R. complanatus, R. compositus, R. 
dux, R. evertsi evertsi, R. evertsi mimeticus, R. exop-
thalmos, R. lunulatus, R. maculatus, R. muehlensi, 
R. pravus, R. pulchellus and R. supertritus are pre-
dicted to expand over the same period (Fig. 3A, B). 
These results translate into an area expansion of 
3 502 800 km2 (12 %) in total tick range with a total 
reduction of 640 800 km2 (2 %). 

Central African species (Fig. 4A, B, 16,17, 19, 25, 
26, 28, 34, 35 and 39)

Fifty-five percent of species in central Africa are pre-
dicted to show range reductions (R. longus, R. mas-
seyi, R. punctatus, R. senegalensis and R. zie manni) 
while 45 % (R. complanatus, R. compositus, R. dux 
and R. lunulatus) are predicted to show range ex-
pansions. Although the ranges of the majority of tick 
species are predicted to contract, the total area of 
contraction is only 19 %, while the total area of expan-
sion by the remaining species is 81 %. The tick spe-
cies predicted to expand its range most in this region 
is R. lunulatus with a total expansion of 252 000 km2. 

East African species (Fig. 5A, B, 11, 12, 13, 15, 23, 
24, 27, 29, 31 and 33)

In East Africa 30 % of the species (R. humeralis, R. 
kochi and R. planus) are predicted to show range 
contractions, while 70 % (R. aquatilis, R. armatus, 
R. bequaerti, R. carnivoralis R. maculatus, R. mueh-
lensi and R. pulchellus) are predicted to show range 
expansions. This translates into a total expansion of 
1 760 400 km2 (91 %) with a mere 169 200 km2 (9 %) 
reduction in total area. The predicted greater expan-
sions are mainly attributable to R. bequaerti which 
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FIG. 3 Rhipicephalus species in sub-Saharan Africa that are 
predicted to show (A) range size contraction and (B) 
range size expansion

FIG. 4 Rhipicephalus species in Central Africa that are pre-
dicted to show (A) range size contraction and (B) range 
size expansion
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more than doubles its present range and R. pulchel-
lus, which is predicted to expand its range by some 
921 600 km2 (49 %). 

Southern African species (Fig. 6A, B, 14, 18, 21, 
22, 30 and 38)

In southern Africa some 66 % (R. capensis group, 
R. distinctus, R. oculatus and R. zambeziensis) of 
the tick species are predicted to contract their rang-
es. Although only 33 % (R. evertsi mimeticus and R. 
exopthalmos) of the ticks are predicted to expand 
their current ranges, the total range expansion is 
439 200 km2 (23 %) while the total range reduction 
is only 64 800 km2 (1 %). Most of the expansion in 
this region is attributable to R. evertsi mimeticus.

“General” tick species (Fig. 7A, B, 10, 20, 32 and 
36)

The “general” ticks are those Rhipicephalus species 
that are widely distributed with current distributions 
overlapping within various geographical regions of 
the subcontinent. This does not necessarily mean 
that these species are not specialists with regard to 
their ecological requirements, e.g. R. appen diculatus 
is confined to parts of eastern, central and south-

eastern Africa (Walker et al. 2000). It is a species of 
significant economic importance in Africa because it 
transmits Theileria parva, the cause of East Coast 
fever (ECF), which is a major cause of cattle mortal-
ity and also causes considerable production losses 
in cattle in most African countries (Okello-Onen et al. 
1999). The only tick species predicted to contract its 
range in this group is R. appendiculatus, which is 
predicted to contract its range by 212 400 km2 (5 %). 
The ranges of 75 % of the ticks in this category, 
namely R. evertsi evertsi, R. pravus and R. simus 
are predicted to expand. The total range expansion 
in this region is equivalent to 864 000 km2 (7 %). This 
expansion is mainly associated with R. simus, which 
is predicted to expand its range by 601 200 km2 

(70 %). 

Changes in species richness patterns and 
range shifts

The future climate predicted by DARLAM will alter 
the species richness distribution pattern of African 
Rhipicephalus. Compared to the current pattern 
(Fig. 8A) the predicted pattern is spatially different 
and broader (Fig. 8B) with encroachment of ticks 
into new regions. These regions, which include An-

FIG. 5 Rhipicephalus species in East Africa that are predicted 
to show (A) range size contraction and (B) range size 
expansion

FIG. 6 Rhipicephalus species in southern Africa that are pre-
dicted to show (A) range size contraction and (B) range 
size expansion
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gola, Namibia, Botswana and the Northern Cape 
Province of South Africa, are forecast to experience 
a more than 50 % increase in tick species richness 
(Fig. 8C). This could be related to increased rainfall 
in these regions, rendering the south-western re-
gions of sub-Saharan Africa more suitable for ticks. 
The general west-east shift in species ranges re-
ported by Erasmus et al. (2002) is not supported in 
this study on ticks, in which varying degrees of shift 
in different directions appears to be the emergent 
pattern for this taxon. Analysis of range shifts fur-
ther indicates that 80 % of species show less than a 
50 % range shift, while 20 % of species show a range 
displacement of more than a 100 %. The latter spe-
cies are mainly those that populate the western arid 
regions of Africa (Fig. 8).

Species range changes and tick-borne disease 
implications

Thirty percent of the ticks included in this study are 
classified as economically important because they 
are vectors of diseases of domestic livestock or other 
animals (Table 1). Although R. appendiculatus, the 
principal Rhipicephalus vector of disease in Afri ca 

shows range contraction, the remaining vectors are 
responsible for 52 % of the predicted range expan-
sion under future climate conditions. The non-vec-
tor species are responsible for 48 % of future tick 
range expansions.

Predicted future distributions using DARLAM 
and GCM climate data

The predictions of future climate suitability for ticks 
when DARLAM is used are generally more exten-
sive than those generated when using the combined 
GCM climates. With the exception of four species 
(R. compositus, R. evertsi mimeticus, R. exopthal-
mos and R. oculatus), and the R. capensis group, 
DARLAM predicts wider ranges of climatic suitability 
than the combined GCM climate surfaces. DAR-
LAM’s total predictions are 31 % broader than the 
GCMs. The average difference in the range sizes 
predicted for DARLAM and GCM is 511 200 km2. 
Stat is tically there is no significant difference between 
the predictions by DARLAM and GCM using a Kol-
mogorov-Smirnov test (P > 0.1, n = 30). However, 
when the climate data simulated by DARLAM and 
GCM are analysed for statistical significance, there 

FIG. 7 Rhipicephalus species in the “General” ticks that are pre-
dicted to show (A) range size contraction and (B) range 
expansion
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FIG. 8 Species richness pattern of Rhipicephalus species in sub-
Saharan Africa: (A) current; (B) future; and (C) areas with 
more than 50 % increase
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TABLE 1  Rhipicephalus spp. and the diseases with which they or the toxins they produce are associated

Disease and causal agents Animal affected Vectors

East Coast fever (Theileria parva) Cattle R. appendiculatus
R. zambeziensis

Tick toxicosis Cattle R. appendiculatus

Corridor disease or Buffalo disease (Theileria parva) Cattle, buffalo R. appendiculatus
R. zambeziensis

Gall sickness (Anaplasma marginale) Cattle R. evertsi evertsi
R. simus

Equine biliary fever or equine piloplasmosis (Babesia caballi, Theileria equi) Horses, mules, donkeys R. evertsi evertsi

Spring lamb paralysis Lambs, calves R. evertsi evertsi

Canine biliary fever or canine tick fever (Babesia canis), rickettsiosis 
(Ehlichia canis)

Dogs R. sanguineus

Paralysis Sheep, lambs, calves R. lunulatus

Nairobi sheep disease (Bunyaviridae) Sheep R. pulchellus

TABLE 2 Proportional overlaps between pairs of grid cells between the predicted ranges from DARLAM and the ranges predicted us-
ing mean values for two GCMs

“General” tick species DARLAM 2030 GCM 2030 Common grids Proportional overlap value (%)

R. appendiculatus
R. evertsi evertsi
R. pravus
R. simus

969
1 220
1 300
1 209

858
945
868
858

476
611
621
597

55
65
29
60

East Africa

R. aquatilis
R. armatus
R. bequaerti
R. carnivoralis
R. humeralis
R. kochi
R. maculatus
R. muehlensi
R. planus
R. pulchellus

33
153
215
205

79
797
425
699
719
841

17
116

40
111

33
491
173
678
413
217

5
29
11
67
12

326
98

315
278
179

29
25
28
60
55
29
56
67
55
25

Central Africa

R. complanatus
R. compositus
R. dux
R. longus
R. lunulatus
R. masseyi
R. punctatus
R. senegalensis
R. ziemanni

626
699
201

1 020
897
450
458
803
611

595
737*
192
990
518
338
440
622
558

400
443

77
642
308
202
262
415
352

67
60
40
25
28
60
28
56
72

South Africa

R. capensis group
R. distinctus
R. evertsi mimeticus
R. exopthalmos
R. oculatus
R. zambeziensis

485
707
423
212
386
299

547*
352
577*
236*
434*
226

309
254

49
116
293
169

56
72
49
15
49
60

Bold* = GCM predictions wider than those of DARLAM
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FIG. 9 Box plots based on the Kolmogorov-Smirnov test that compared climate predicted by DARLAM 
and a combined GCM
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FIG. 10 R. appendiculatus FIG. 11 R. aquatilis

FIG. 10–39 Predicted probability distribution of Rhipicephalus species using DARLAM and GCM future climates: (A) DARLAM; (B) 
GCM
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FIG. 14 R. capensis group FIG. 15 R. carnivoralis
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FIG. 10–39 Continued


