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Abstract: In this paper, we have applied an Adaptive Neuro-Fuzzy Inference System 
(ANFIS) approach to the prediction of workpiece surface roughness for end milling 
process. A small number o f fuzzy rules are used for building an ANFIS model with the 
help o f the subtractive clustering method (ANFIS-Subtractive clustering model). The 
predicted values are found to be in an excellent agreement with the experimental data 
with average error values in the range o f 3.47-3.49%. Also, we have compared the 
proposed ANFIS model to other Artificial Intelligence (AI) approaches. The results show 
that the proposed model has high accuracy in comparison to the other AI approaches in 
literature. Therefore, we can use the ANFIS model to predict and control workpiece 
surface roughness for end milling process.
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1 Introduction

Nowadays, accuracy is one of the most important characteristics of current 
manufacturing, which is manifested not only in the dimensions of a workpiece, but 
also in the surface roughness of the workpiece to be manufactured. The workpiece 
surface roughness has been an important factor in predicting the performance 
measure of any machining process (Chandrasekaran, Muralidhar, Krishna, & Dixit,
2010). Artificial Intelligence (AI) techniques can be used in the machining area for 
prediction and control of the performance parameters as well as for optimization of 
the process (Chandrasekaran, et al., 2010). For instance, researchers have attempted 
to control surface roughness by using artificial neural networks (Khorasani & Yazdi, 
2017; Markopoulos, Manolakos, & Vaxevanidis, 2008), fuzzy logic (Kovac, Rodic, 
Pucovsky, Savkovic, & Gostimirovic, 2013) and ANFIS (Dong & Wang, 2011; Ho, Tsai, 
Lin, & Chou, 2009; Lo, 2003; Maher, Eltaib, Sarhan, & El-Zahry, 2014; Sharkawy,
2011), mostly for end milling operations (Lo, 2003; Tangjitsitcharoen, Thesniyom, &
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Ratanakuakangwan, 2017). In milling, the surface roughness is influenced by 
machining parameters such as spindle speed, feedrate, depth of cut, etc. These 
parameters can be considered as inputs to model the workpiece surface roughness.

Lo (Lo, 2003) used an ANFIS model to predict workpiece surface roughness 
after end milling process. Spindle speed, feed rate, and depth of cut were considered 
as input variables. The triangular and trapezoidal functions were used to describe the 
membership degree of these inputs. The number of the membership functions was 
three for each input and, in total, 27 rules were obtained to define their relationship 
with surface roughness. The average error of the surface roughness prediction by the 
ANFIS with the triangular membership function was only 4%, reaching an accuracy of 
96%. In contrast, the average error by the ANFIS with the trapezoidal membership 
function was relatively higher at 6.7%, with a lower accuracy of 93.3%.

Ho et al. (Ho, et al., 2009) also used the ANFIS with the GA algorithm to control 
workpiece surface roughness. Based on the same experimental data of Lo (Lo, 2003), 
a total of 48 samples were used for training purpose, and other 24 samples were used 
for testing stage. The results show that their approach using the Gaussian 
membership function gives similar results as the ANFIS model with the triangular 
membership function obtained by Lo (Lo, 2003) (average error was 4.06%). 
Sharkawy (Sharkawy, 2011) used three types of AI approaches to model surface 
roughness in the end milling process with the same dataset presented in (Lo, 2003) 
(Ho, et al., 2009). Three models were built using radial basis function neural network 
RBFNs, ANFIS, and genetically evolved fuzzy inference systems G-FISs. The average 
error of the surface roughness prediction by these three models was in the range of 4­
5%. A later work by (Paturi, Devarasetti, Fadare, & Narala, 2018) used ANN model 
and response surface methodology (RSM) in modeling of surface roughness. The 
outcome of their study demonstrates that both statistical and AI modeling can make a 
potential alternative to time-consuming experimental work, while minimizing costly 
machining test trials. Clearly, using a neural network involves a moderately tedious 
trial and error effort for obtaining the network structure, especially involving the 
middle layer nodes. Instead, the nodes and the hidden layers can be determined 
precisely by the fuzzy inference techniques in the ANFIS approach.

Dong et al. (Dong & Wang, 2011) used the ANFIS with a leave-one-out cross­
validation (LOO-CV) approach to predict workpiece surface roughness. Based on the 
same experimental data, the predictive result of their ANFIS model outperforms the 
models reported recently in the literature with average error of 3.62%. Therefore, the 
ANFIS can be taken as an alternative promising method for future modeling and 
control of surface roughness for end milling process.

The ANFIS model construction requires the division of the input-output data 
into rule patches. This can be achieved by using a number of methods such as grid 
partitioning, subtractive clustering method and fuzzy c-means (FCM) (Guillaume, 
2001). According to Jang (Jang, 1993), the grid partition is only suitable for problems 
with a small number of input variables (e.g. fewer than 6). In this paper, the proposed 
models have three inputs. It is reasonable to apply the ANFIS-Grid partition method. 
A model with three inputs with three fuzzy sets per input produces a complete rule 
set of 27 rules as in above-mentioned studies. It is important to note that an effective 
partition of the input space can decrease the number of rules and thus increase speed 
in both the learning and the application phases. Therefore, using the subtractive 
clustering with the ANFIS can be regarded as knowledge extraction from the
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experimental data. This is important since knowledge can be easily gathered in 
linguistic terms as a collection of “IF-THEN” rules. This is significant because the 
learning strategies can start from the point where the risk of entrapment in a local 
minimum is reduced in comparison to that when the initial parameters are chosen at 
random (which is often the case for ANNs).

The goal of this work is to make the intelligent system readily applicable to 
predict and control workpiece surface roughness with minimal effort. In this article, 
the ANFIS will be used for building two surface roughness prediction models: ANFIS 
by dividing the data space into rectangular sub-spaces (ANFIS-Grid) and ANFIS by 
using the subtractive clustering method (ANFIS-SCM). This combined methodology 
can help us improve robustness of the proposed model, and reduce the number of 
rules. Data needed for development of the ANFIS models are obtained from the 
literature. Comparisons of the predicted surface roughness with that using other AI 
techniques have also been made in this paper. This paper is organized as follows: in 
the next section, i.e. Section 2, the theoretical background of ANFIS is described. 
Section 3 shows the data we use for our investigations. In Section 3.2, we test and 
validate the proposed models in Section 3.1. Finally, conclusions and further research 
aspects are discussed in Section 4.

2 Adaptive Neuro Fuzzy Inference System (ANFIS)

The Adaptive Neuro Fuzzy Inference System (ANFIS), was first introduced by 
Jang (Jang, 1993). According to Jang, the ANFIS is a neural network that is 
functionally the same as the Takagi-Sugeno type inference model. The ANFIS is a 
hybrid intelligent system that takes advantages of both the ANN and the fuzzy logic 
theory in a single system. By employing the ANN technique to update the parameters 
of the Takagi-Sugeno type inference model, the ANFIS is given the ability to learn 
from training data, the same as ANN. The solutions mapped out onto a Fuzzy 
Inference System (FIS) can therefore be described in linguistic terms. In order to 
explain the concept of ANFIS structure, five distinct layers are used to describe the 
structure of an ANFIS model. The first layer in the ANFIS structure is the fuzzification 
one; the second layer acts as the rule base layer; the third layer performs the 
normalization of membership functions (MFs); the fourth and fifth layers are the 
defuzzification and summation ones, respectively. More information about the ANFIS 
structure is given in (Jang, 1993). Fig. 1 shows basic structure of the ANFIS with two 
inputs.

Ti T  2

Fig. 1 Basic structure o f ANFIS model
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2.1 Extraction of the initial fuzzy model

In order to start the modeling process, an initial fuzzy model has to be derived. 
This model is required for selecting input variables and for input space partitioning 
(or clustering), for choosing the number and type of membership functions of the 
inputs as well as for creating fuzzy rules, their premise and conclusion parts. For a 
given dataset, different ANFIS models can be constructed using different 
identification methods such as grid partitioning and fuzzy subtractive clustering 
(Guillaume, 2001).

A. The ANFIS-Grid partition method is the combination of grid partition and 
ANFIS. The data space is divided into rectangular sub-spaces using axis-paralleled 
partitions based on a pre-defined number of MFs and their types in each dimension 
(Haddad & Al Kobaisi, 2012). The limitation of this method is that the number of rules 
rises rapidly as the number of input variables increases. For example, if the number 
of input sensors is n and the partitioned fuzzy subset for each input sensor is m, then 
the number of possible fuzzy rules is mn. While the number of variables raises, the 
number of fuzzy rules increases exponentially; this requires a large computer 
memory. According to Jang (Jang 1993), the grid partition is only suitable for 
problems with a small number of input variables (e.g. fewer than 6).

B. The ANFIS-Subtractive clustering method combines the subtractive 
clustering method and the ANFIS. The subtractive clustering initially proposed by 
Chiu (Chiu, 1994) considers data points as candidates for the centre of clusters and 
computes the density at each point. One of the important aspects of the subtractive 
clustering algorithm is the determination of the cluster radius (R) which defines the 
number of clusters and, consequently, the number of rules. A small radius leads to 
many smaller clusters in the data space, which results in more rules. After clustering 
the data space, the number of fuzzy rules is determined and so is that of premise 
fuzzy MFs. Then the linear squares estimate is used to determine the consequence in 
the output MFs, resulting in a valid FIS.

In order to obtain a small number of fuzzy rules, a fuzzy rule generation 
technique that integrates ANFIS with the subtractive clustering method can be used, 
where the SCM is used to systematically identify the fuzzy MFs and the fuzzy rule 
base for the ANFIS model. In this paper, to identify premise membership functions, 
two afore-mentioned methods are used and compared.

3 Results and discussion

In order to build the proposed ANFIS models, spindle speed (Sp), feed rate 
(Fe), and depth of cut (Dep) are considered as input variables (see Table 1, Figs. 2 and
3, respectively). Fig. 2 shows experimental data used for training stage (48 samples), 
and Fig. 3 shows separate experimental data used for testing stage (24 samples). In 
this Section, the aim is to use the structure of the data-driven models described in the 
previous subsections in order to predict workpiece surface roughness. Moreover, 
comparison will be made between the estimates provided by the proposed models 
and the other models presented in literature. Based on the same experimental data of 
Lo (Lo, 2003), the available data set in Table 2 is divided into two sets; one is used for 
the ANFIS training (48 samples, about 66%, see Fig. 2), while the other for testing 
performance (24 samples, about 34%, see Fig. ) . The optimized ANFIS models are

4



selected based on the minimal Root-Mean-Square Error (RMSE) value as will be 
discussed in the next section.
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Table 1: The symbols used in the tables

Parameter Definition Unit
Sp Spindle speed Revolutions per minute (rpm)
Fe Feed rate Inch per minute (ipm)
Dep Depth of cut Inch (in)
Ra Roughness Micro inch (^in.)

Table 2: Experimental data (Lo, 2003)

Experimental results (training data Experimental results (training data
set) set)
T no s p Fe Dep Ra T no sp Fe Dep Ra
1 750 6 0.01 65 1 750 9 0.01 109
2 750 6 0.03 63 2 750 9 0.05 95
3 750 6 0.05 72 3 750 15 0.03 122
4 750 12 0.01 144 4 750 15 0.05 104
5 750 12 0.03 102 5 750 21 0.01 178
6 750 12 0.05 94 6 750 21 0.03 163
7 750 18 0.01 185 7 750 21 0.05 150
8 750 18 0.03 147 8 1000 9 0.01 92
9 750 18 0.05 121 9 1000 15 0.03 108
10 750 24 0.01 187 10 1000 21 0.01 149
11 750 24 0.03 170 11 1000 21 0.03 145
12 750 24 0.05 172 12 1000 21 0.05 112
13 1000 6 0.01 58 13 1250 15 0.01 106
14 1000 6 0.03 78 14 1250 15 0.03 96
15 1000 6 0.05 62 15 1250 21 0.01 125
16 1000 12 0.01 130 16 1250 21 0.03 100
17 1000 12 0.03 84 17 1250 21 0.05 105
18 1000 12 0.05 92 18 1500 9 0.03 73
19 1000 18 0.01 138 19 1500 15 0.01 106
20 1000 18 0.03 124 20 1500 15 0.03 83
21 1000 18 0.05 86 21 1500 15 0.05 99
22 1000 24 0.01 163 22 1500 21 0.01 118
23 1000 24 0.03 153 23 1500 21 0.03 102
24 1000 24 0.05 142 24 1500 21 0.05 113
25 1250 6 0.01 50
26 1250 6 0.03 63
27 1250 6 0.05 71
28 1250 12 0.01 101
29 1250 12 0.03 99
30 1250 12 0.05 85
31 1250 18 0.01 115
32 1250 18 0.03 92
33 1250 18 0.05 95
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34 1250 24 0.01 155
35 1250 24 0.03 109
36 1250 24 0.05 121
37 1500 6 0.01 37
38 1500 6 0.03 56
39 1500 6 0.05 56
40 1500 12 0.01 88
41 1500 12 0.03 82
42 1500 12 0.05 94
43 1500 18 0.01 119
44 1500 18 0.03 87
45 1500 18 0.05 104
46 1500 24 0.01 119
47 1500 24 0.03 103
48 1500 24 0.05 109
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Fig. 2: Experimental results for training data

3.1 Development of the ANFIS models

In the ANFIS-Grid partition model structure, we can only use the Sugeno fuzzy 
rules, where the output is a linear combination of inputs. Different ANFIS models are 
evaluated using the RMSE in order to measure the deviation between the measured 
and the predicted values. By testing various ANFIS structures with a different number 
of MFs, we have obtained the optimal structure with 2 MFs for the spindle speed 
variable, 2 MFs for the feed rate variable, and 3 MFs for depth of cut variable, which
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adds up to the total of 12 rules. Also, we have tested all types of MFs such as Bell, 
Sigmoid, Triangle, Trapezoid and Gaussian. The Bell membership function in 
comparison with the others has the least error value. It is also observed that after 
using 5 epochs, the performance does not improve any further. The final ANFIS 
architecture used in this study is illustrated in Table 3. The corresponding rules of the 
optimal model are provided in Table 4.

Table 3: ANFIS-Grid model parameters

Parameters ANFIS model
Type Sugeno/ANFIS-Grid
Inputs/Outputs 3-1
Number of input membership function 2x2x3 for Sp, Fe and Dep, respectively
Number of output membership 
function

12

Input membership function Types Bell
Output membership function Types Linear
Rules Weight 1
Number of fuzzy rules 12
Number of epochs 5

Table 4: Linguistic rules

Linguistic rules_______________________________________________________________
1. If (Sp is Low) and (Fe is Low) and (Dep is Low) then (Ra is out1mf1)
2. If (Sp is Low) and (Fe is Low) and (Dep is Medium) then (Ra is out1mf2)
3. If (Sp is Low) and (Fe is Low) and (Dep is High) then (Ra is out1mf3)
4. If (Sp is Low) and (Fe is High) and (Dep is Low) then (Ra is out1mf4)
5. If (Sp is Low) and (Fe is High) and (Dep is Medium) then (Ra is out1mf5)
6. If (Sp is Low) and (Fe is High) and (Dep is High) then (Ra is out1mf6)
7. If (Sp is High) and (Fe is Low) and (Dep is Low) then (Ra is out1mf7)
8. If (Sp is High) and (Fe is Low) and (Dep is Medium) then (Ra is out1mf8)
9. If (Sp is High) and (Fe is Low) and (Dep is High) then (Ra is out1mf9)
10. If (Sp is High) and (Fe is High) and (Dep is Low) then (Ra is out1mf10)
11. If (Sp is High) and (Fe is High) and (Dep is Medium) then (Ra is out1mf11)
12. If (Sp is High) and (Fe is High) and (Dep is High) then (Ra is out1mf12)__________

Next, different ANFIS models are constructed using the subtractive clustering 
method. In the ANFIS-SCM model, it is essential to obtain an optimal number of 
clusters. For this purpose, several ANFIS models can be constructed with a different 
number of cluster radiuses (R). The ANFIS model with R=0.8 is found to exhibit the 
lowest error after 5 epochs. The characterization of the ANFIS model is illustrated in 
Table 5. The corresponding rules of the optimal model are provided in Table 6.
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Table 5: ANFIS-SCM model parameters

Parameters ANFIS model
Type
Inputs/Outputs
Number of input membership function
Number of output membership function
Input membership function Types
Output membership function Types
Rules Weight
Number of fuzzy rules
Number of epochs___________________

Sugeno
3-1
8 for all inputs 
8
Gaussian
Linear
1
8
5

Table 6: Linguistic rules for ANFIS-SCM

Linguistic rules_______________________________________________________________
1. If (Sp is SpCluster1) and (Fe is FeCluster1) and (Dep is DepCluster1) then (Ra is 
RaCluster1)
2. If (Sp is SpCluster2) and (Fe is FeCluster2) and (Dep is DepCluster2) then (Ra is 
RaCluster2)
3. If (Sp is SpCluster3) and (Fe is FeCluster3) and (Dep is DepCluster3) then (Ra is 
RaCluster3)
4. If (Sp is SpCluster4) and (Fe is FeCluster4) and (Dep is DepCluster4) then (Ra is 
RaCluster4)
5. If (Sp is SpCluster5) and (Fe is FeCluster5) and (Dep is DepCluster5) then (Ra is 
RaCluster5)
6. If (Sp is SpCluster6) and (Fe is FeCluster6) and (Dep is DepCluster6) then (Ra is 
RaCluster6)
7. If (Sp is SpCluster7) and (Fe is FeCluster7) and (Dep is DepCluster7) then (Ra is 
RaCluster7)
8. If (Sp is SpCluster8) and (Fe is FeCluster8) and (Dep is DepCluster8) then (Ra is 
RaCluster8)__________________________________________________________________

3.2 Validation of the proposed models

In this section, the aim is to use the structure of the ANFIS models described in 
the previous section to predict the surface roughness. With the purpose of evaluating 
the prediction performance of the models, the remaining data set (testing data set) is 
used for running the proposed models. The performance of the models used in this 
study is computed using percentage error and average percentage error 
defined in equations (1) and (2), respectively, as follows:

where and ‘̂ nP ™' stand for experimental values and predicted values,
respectively; m is the samples number to be predicted.
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It is observed from Table 6 that for the best models obtained by Lo (Lo, 2003), 
Ho et al. (Ho, et al., 2009), and Dong et al. (Dong & Wang, 2011), the maximum 
average errors are approximately 4.65% (for Triangular MF) and 7.31% (for 
Trapezoidal MF), 4.06%, and 3.62%, respectively; therefore, the error values are in 
the range of 3.62-7.31%. For the best ANFIS configuration obtained in this study, the 
maximum average errors are approximately 3.47% (for an ANFIS-Grid model, see Fig. 
3) and 3.49% (for ANFIS-SCM model, see see Figure 4), respectively; therefore, the 
average error values are in the range of 3.47-3.49%.

From these results, it is clear that the surface roughness prediction by using 
the proposed ANFIS models outperforms the models presented in (Lo, 2003) (Ho, et 
al., 2009) (Dong & Wang, 2011), with the benefit of lower rules.

In this work, it can be clearly seen that the ANFIS model structure 
demonstrates several advantages. It provides a natural framework to include expert 
human being knowledge in the form of linguistic fuzzy “IF-THEN” rules. This 
knowledge can be easily gathered with the rules, which are automatically obtained 
from the data sets that describe the system. Therefore, the two main objectives to be 
addressed in this article are interpretability and accuracy. Generally speaking, the 
ideal model should satisfy both the criteria (interpretability and accuracy) to a high 
degree but since they are contradictory issues, this is generally impossible. Under the 
circumstances, one of them can be selected depending on the nature of the problem to 
be solved.
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T e s te s t  no.

Fig. 4: The measured Ra and predicted Ra for testing dataset using ANFIS-Grid

T e s t  no.

Fig. 5 The measured Ra and predicted Ra for testing dataset using ANFIS-SCM
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4 Conclusions

In this paper, an adaptive Neuro-Fuzzy inference system for the modeling and 
control of workpiece surface roughness for end milling process is presented. The 
comparison between the experimental and the predicted values of the proposed 
ANFIS models shows that there is an excellent agreement between the predicted 
surface roughness and the experimental results with average error values in the 
range of 3.47-3.49%. This means that the proposed model can simulate workpiece 
surface roughness for end milling process with an excellent level of accuracy and 
lower rules. The results obtained with the proposed ANFIS models are superior to the 
Lo (Lo, 2003), Ho et al. (Ho, et al., 2009), and Dong et al. (Dong & Wang, 2011) 
models. Further work is required to validate the model using disparate cycles on 
multiple machines.
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