
Operational Research in Engineering Sciences: Theory and Applications 
Vol. 5, Issue 1, 2022, pp. 90-106 
ISSN: 2620-1607 
eISSN: 2620-1747 

 DOI: https://doi.org/10.31181/oresta180222016p 

 
* Corresponding author. 
2017476603@ufs4free.ac.za (D. Pavolo), Chikobvu@ufs.ac.za (D. Chikobvu) 

 

ESTIMATING RUBBER COVERED CONVEYOR BELTING 
CURE TIMES USING MULTIPLE SIMULTANEOUS 

OPTIMISATIONS ENSEMBLE  

Domingo Pavolo*, Delson Chikobvu 

Department of Mathematical Statistics and Actuarial Science, Faculty of Natural and 
Agricultural Sciences, University of the Free State, South Africa 

 
Received: 15 July 2021  
Accepted: 08 November 2021  
First online: 18 February 2022 

Research paper  

Abstract: Multiple response surface methodology (MRSM) has been the favorite method 
for optimizing multiple response processes though it has two weaknesses which 
challenge the credibility of its solutions. The first weakness is the use of experimentally 
generated small sample size datasets, and the second is the selection, using classical 
model selection criteria, of single best models for each response for use in simultaneous 
optimization to obtain the optimum or desired solution. Classical model selection 
criteria do not always agree on the best model resulting in model uncertainty. The 
selection of single best models for each response for simultaneous optimization loses 
information in rejected models. This work proposes the use of multiple simultaneous 
optimizations to estimate multiple solutions that are ensembled in solving a conveyor 
belting cure time problem. The solution is compared with one obtained by simultaneous 
optimization of single best models for each response. The two results were different. 
However, results show that it is possible to obtain a more credible solution through 
ensembling of solutions from multiple simultaneous optimizations.   

Key words: Multiresponse surface methodology, ensembling, credibility of results, 
solution uncertainty, small sample size problems, simultaneous optimisation 

1. Introduction 

The mining industry is at the heart of the Southern African Development 
Community (SADC) region’s economic activities and development. Conveyor belts are 
critical for conveyance of bulk ore over distances and through various stages of 
processing. The regional product quality standard minimum requirements for general 
purpose rubber covered conveyor belts for the mining industry were amended. The 
component adhesion requirement was increased from 5N/mm to 7N/mm. However, 
key customers were insisting on a minimum of 10N/mm adhesion and 60⁰ Shore A 
rubber compound cover hardness. After redesigning of the specifications of rubber 
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compounds, a client manufacturing company required optimum cure times (Tc), which 
would ensure a minimum of 12N/mm adhesion and 60⁰ Shore A hardness, to be 
determined for the vulcanisation of different conveyor belt thicknesses (Rt) for use in 
shop-floor work instructions. 

 

Figure 1. Illustrating the conveyor belting vulcanization process problem 

Given the illustrated process in Figure 1, it was thus intended to estimate credible 
cure times (Tc) for given rubber thicknesses (Rt), as shown in Table 1 below.  

Table 1. Showing the expected solution  
𝐑𝐭(𝐦𝐦) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
𝐓𝐜(𝐦𝐢𝐧. ) 𝐓𝟕 𝐓𝟖 𝐓𝟗 . . . . . . . . . . 𝐓𝟐𝟎 

For manufacturers, optimum cure time (Tc) is critical for product quality and 
production process productivity. Good adhesion between conveyor belt components 
(covers, skims and reinforcement fabrics) ensures that they do not separate during 
heavy duty operations in the mines. The top and bottom rubber covers protect the 
reinforcement fabrics, therefore hardness is essential for wear resistance to the 
abrasive mining operational environments. The separation of belting components 
during heavy duty operation and excessive rubber cover wear are the two major 
failures of conveyor belting during mining operations. Increasing adhesion between 
belting components and cover hardness ensures more belting life and therefore lower 
mining operational costs. Beyond just providing a solution to the client company, the 
study sought to recommend to the conveyor belt manufacturing industry a credible 
and efficient tool for converting changes in product standard requirements to 
production process input parameters. Quality and productivity are critical 
manufacturing industry competitive factors and the speed of successfully 
implementing change is critical in any industry as it gives first mover advantages. This 
work is of interest, therefore, to operations researchers, industrial engineers and 
business management strategists in the conveyor belting manufacturing industry. 
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The authors could not find anywhere in literature were cure times per given 
conveyor belt thickness were estimated for the vulcanisation process of general 
purpose rubber covered conveyor belting. Literature only gives methodologies for 
estimating the cure times of different rubber compounds. A rubber covered conveyor 
belt is constructed from a rubber cover compound, a rubber skim compound (which 
provides the bonding strength between components) and reinforcement fabric. These 
components individually contribute to the overall vulcanization time due to different 
heat conductivities.  

In this work, the sufficiency of the contemporary multiple response surface 
methodology (MRSM) framework in estimating a credible solution to the problem was 
critiqued and two major weaknesses identified. Firstly, it is statistically difficult to 
extract credible process information from small sample size MRSM datasets. Secondly, 
the selection of single best models for each response for simultaneous optimization is 
prone to (1) loss of information in the rejected response models and (2) model 
uncertainty as model selection criteria do not always agree on the best model. This 
work proposes the use of multiple simultaneous optimizations to estimate multiple 
solutions that are then ensembled, to account for the two weaknesses in the MRSM 
framework, in solving the conveyor belting cure time problem. Results suggest that 
the proposed ensemble system can provide a credible solution to the problem. 

2. Literature Review 

2.1. Rubber technology perspective 

A number of techniques have been proposed in rubber technology literature to 
estimate the cure time of rubber products such as nuclear magnetic resonance 
spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, 
adaptive neuro-fuzzy inference systems, equivalent cure concept, and artificial neural 
networks and finite element analysis (Gatos and Karger-Kocsis, 2004; Karaagâc et al., 
2011; Gough, 2017). The accepted basic tool of cure time estimation is the rheograph 
(Appendix A) which shows how the shear strength of a sample of rubber changes with 
time during vulcanisation. The rheograph does not consider the case where there are 
different layers of constituent rubber compounds and other materials such as 
conveyor reinforcement fabric (nylon and/or polyester). The conveyor belting case 
requires a multiple factor and multiple response simultaneous optimisation solution 
methodology, hence the shift to multiple response surface methodology (MRSM). 

2.2 Multiple response surface methodology (MRSM) 

 

Figure 2. Showing the contemporary MRSM framework 
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MRSM is an important tool for optimising manufacturing processes in industry. It 
is a collection of mathematical and statistical techniques that are useful for the 
modelling and analysis of problems in which multiple responses are influenced by 
several variables and the objective of the analysis is to optimize the responses by 
determining the best settings of the input variables (Myers et al., 2016; Hejazi et al., 
2017; Khuri, 2017). In Figure 2, the MRSM dataset generation stage, stage (1),  involves 
designing and running screening and MRSM experiments (Myers et al., 2016). The 
stage (3) are the solution methodologies for estimating the operating conditions that 
optimise all the responses or at least keep them in desired ranges.  

MRSM experimental designs are constructed to eliminate or minimise correlations 
between chosen variables which allows independent estimation of variable effects and 
their potential interactions (Myers et al., 2016; Khuri, 2017; Mäkelä, 2017).  Examples 
include central composite designs (CCD), Box-Behnken, Orthogonal Arrays, Placket-
Burman, and computer-generated optimal designs (Myers et al., 2016; Khuri, 2017; 
Alhorn et al., 2019). The strength of MRSM is in efficient experimental designs (Khuri, 
2017). However, statistically, it is difficult to extract credible population information 
from small sample size datasets (Rawlings et al., 1998; Yuan and Yang, 2005; Xu and 
Goodacre, 2018; Jenkins and Quintana-Ascencio, 2020). This is the first weakness that 
requires to be accounted for to obtain credible solutions. 

Optimisation in MRSM is multi-objective in nature, and is performed after 
regression modelling and model selection of single “best” models for each response 
(Myers et al., 2016; Khuri, 2017). MRSM solution methodologies rely heavily on 
classical model selection criteria for choosing the best model for each response for 
simultaneous optimisation. This the second weakness of the contemporary MRSM 
framework. Problems associated with the contemporary MRSM contextual framework 
are presented in Figure 3 below. 

 

Figure 3. Problems related to the current MRSM contextual framework 
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In this paper, the authors proposed and utilised a novel solution methodology that 
accounted for the two weaknesses to obtain a credible solution.  

3. Solution Methodology  

The MRSM dataset generation for the rubber covered conveyor belting problem is 
explained in detail in Pavolo and Chikobvu (2020). The dataset was adopted as is and 
is shown in Table 2. 

Table 2. The two-factor CCD experiment MRSM dataset 
Run T (min.) Rt (mm) Ave. Hardness (0shore A) Ave. Adhesion(N/mm) 

1 16 7.2 60 10.60 
2 30 7.2 63 13.34 
3 16 22.8 53 6.20 
4 30 22.8 61 12.10 
5 23 15 58 11.80 
6 23 15 58 12.10 
7 13 15 44 6.5 
8 33 15 63 13.30 
9 23 4 63 13.30 

10 23 26 56 3.50 
11 23 15 58 12.20 
12 23 15 57 12.30 
13 23 15 58 12.10 

Ensemble-based systems have been recommended for small sample size situations 
in literature (Kittler, 1998; Burnham and Anderson, 2002; Polikar, 2006; Yang et al., 
2016; Ahangi et al., 2019). An ensemble system was considered the best option for 
accounting for the weaknesses of the contemporary MRSM framework and delivering 
a credible solution. The solution methodology is summarised in Figure 4. 

 

Figure 4. Showing the solution methodology flow diagram 
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At response surface analysis, the one hardness model with response surface 
conformity was adopted as is from Pavolo and Chikobvu (2020). However, in this 
work, all the adhesion response models were assumed to be response surface 
conforming. 

The estimated cure time solution was compared with one from a methodology 
structured after the contemporary MRSM contextual framework. Figure 5 shows the 
strategies used in the solution methodology to deal with each problem listed in Figure 
3.  

 

Figure 5. Showing the strategies employed to deal with problems 

Figure 6 summarises the problems of the contemporary solution methodologies 
and presents the advantages of the ensembling methodology from literature.  

 

Figure 6. The advantages of the solution methodology vs. problems of contemporary 
MRSM 
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The formulae used for computation of theoretical accuracy are shown below. 
Validation was computed against the minimum targeted response values as the 
sample size was too small to be split into a fitting set and a validation set. 

MSPEval(min.): The validation minimum mean squared prediction error 
(MSPEval(min.)) of a response model measures the minimum squared deviation of the 
model predictions from the targeted. MSPEval(min.) is given below for a sample size n. 

MSPEval(min.)=
∑ (𝒏

𝒊=𝟏 𝒀𝒊−𝒀𝑻)𝟐

𝒏
 , (1) 

where 𝒀𝒊 is the ith estimated response, 𝒀𝑻 is the a response value. 

MSPEsimul: The mean squared prediction error at simultaneous optimisation 
(MSPEsimul) of a response model in an adhesion – hardness model pair indicates the 
mean squared deviation of the model predictions from the targeted and is given below 
for a sample size n as: 

MSPEsimul=
∑ (𝒏

𝒊=𝟏 𝒀𝒊−𝒀𝑻)𝟐

𝒏
 , (2) 

where 𝒀𝒊 is the ith estimated response value at simultaneous optimisation. 

The MSPEsimul bias-variance decomposition estimates were integrated by 
arithmetic averaging to estimate the bias-variance-covariance decomposition of the 
MSPEsimul of the ensembled results (Geman et al., 1992; Ueda and Nakano, 1996).  

MSE(𝑓) = bias(𝑓)2 + var(𝑓) (3) 

And the expected ensemble MSE is, 

E{MSE(𝑓𝑒𝑛𝑠. )} = Bias2 + (
1

𝑘
) ×Variance + (1- 

1

𝑘
) ×Covariance (4) 

Where k is the number of base models in the ensemble. 

Prediction Accuracy Compromise: Define Prediction Accuracy Compromise (PAC) 
as the difference between MSPEsimul and the MSPEval(min.) of a response model. PAC 
gives a picture of how models compromise their accuracy in the process of 
simultaneous optimisation. Then % PAC will be the percentage change in MSPEval(min.) 
to achieve simultaneous optimisation. 

% PAC = 100% x (MSPEsimul - MSPEval(min.)) / MSPEval(min.) (5) 

Relative accuracy: The Relative Accuracy is computed for each base model in the 
ensemble relative to the ensemble result and is given by: 

Relative Accuracy = 
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑩𝒂𝒔𝒆 𝑴𝒐𝒅𝒆𝒍 𝒐𝒓 𝑬𝒏𝒔𝒆𝒎𝒃𝒍𝒆 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔
 (6) 
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4. Results 

4.1 All possible regression modelling results 

Tables 3 and 4 below show the all possible ordinary least squares (OLS) regression 
models for both responses after removal of response models that did not conform to 
the recommendations of the screening experiment at dataset generation.  

Table 3. The twenty-five OLS adhesion all possible regression response models  
MODEL 𝛃𝟎 𝛃𝟏 𝛃𝟐 𝛃𝟏𝟐 𝛃𝟏𝟏 𝛃𝟐𝟐 

Tc.Rt 12.2600     -0.0039     
Tc, Rt 7.9500 0.3244 -0.3127       

Tc, Tc .Rt 3.2600 0.5100   -0.0124     
Tc, Rt2 6.1800 0.3244       -0.0111 
R, Tc.Rt 15.4100   -0.7910 0.0208     
Rt, Tc 2 11.6700   -0.3127   0.0067   

Tc.Rt, Tc 2 8.9600     -0.0119 0.0105   
Tc.Rt, Rt2 10.4970     0.0203   -0.0258 
Tc 2, Rt2 9.9100       0.0066 -0.0111 

Tc, Rt, Tc.Rt 12.9400 0.1070 -0.6460 0.0145     
Tc, Rt, Tc 2 2.4100 0.8350 -0.3127   -0.0111   
Tc, Rt, Rt 2 3.6100 0.3244 0.3800     -0.0231 

Tc, Tc.Rt, Tc 2 -2.2800 1.0200   -0.0124 -0.0111   
Tc, Tc.Rt, Rt 2 9.1400 0.0910   0.0156   -0.0224 
Tc, Tc 2, Rt 2 -0.2500 0.9190     -0.0129 -0.0112 

Rt, Tc.Rt, Tc 2 15.2400   -0.7710 0.0199 0.0003   
Rt, Tc.Rt, Rt 2 11.0800   -0.0980 0.0208   -0.0231 
Rt, Tc 2, Rt 2 7.5200   0.3580   0.0066 -0.0224 

Tc.Rt, Tc 2, Rt 2 10.3900     0.0189 0.0005 -0.0249 
Tc, Rt, Tc.Rt, Tc 2 7.4000 0.6180 -0.6460 0.0145 -0.0111   
Tc, Rt, Tc.Rt, Rt 2 8.6100 0.1070 0.0470 0.0145   -0.0231 
Tc, Rt, Tc 2, Rt 2 -4.2500 1.0210 0.4300   -0.0151 -0.0248 

Tc, Tc.Rt, Tc 2, Rt 2 1.9500 0.7590   0.0168 -0.0149 -0.0234 
Rt, Tc.Rt, Tc 2, Rt 2 11.2100   -0.1130 0.0215 -0.0003 -0.0232 

Tc, Rt, Tc.Rt, Tc 2, Rt 2 0.7400 0.8040 0.0970 0.0145 -0.0151 -0.0248 

Table 4. The twenty-five OLS hardness all possible regression response models 

MODEL 𝛃𝟎 𝛃𝟏 𝛃𝟐 𝛃𝟏𝟐 𝛃𝟏𝟏 𝛃𝟐𝟐 
Tc.Rt 56.1800     0.0040     
Tc, Rt 48.4600 0.5130 -0.1800       

Tc, Tc .Rt 45.7500 0.6040   0.0061     
Tc, Rt2 46.5300 0.5130       -0.0030 
R, Tc.Rt 60.2500   -0.9610 0.0339     
Rt, Tc 2 54.8400   -0.1800   -0.0097   

Tc.Rt, Tc 2 52.8900     0.0045 -0.0111   
Tc.Rt, Rt2 55.0800     0.0209   -0.0181 
Tc 2, Rt2 52.9000       0.0097 -0.0030 

Tc, Rt, Tc.Rt 57.5000 0.0320 -0.7180 0.0321     
Tc, Rt, Tc 2 18.0000 3.3200 -0.1800   -0.0610   
Tc, Rt, Rt 2 57.5100 0.5130 -1.6290     0.0483 

Tc, Tc.Rt, Tc 2 15.3000 3.4100   -0.0061 -0.0610   
Tc, Tc.Rt, Rt 2 41.9300 0.8760   -0.0242   0.0146 
Tc, Tc 2, Rt 2 15.9000 3.3400     -0.06160 -0.0034 

Rt, Tc.Rt, Tc 2 65.0600   -1.4960 0.0572 -0.00860   
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Rt, Tc.Rt, Rt 2 69.3100   -2.4090 0.0339   0.0483 
Rt, Tc 2, Rt 2 64.0100   -1.6610   0.0098 0.0494 

Tc.Rt, Tc 2, Rt 2 52.6600     -0.0094 0.0127 0.0039 
Tc, Rt, Tc.Rt, Tc 2 29.1000 2.8400 -0.9180 0.0321 -0.0610   
Tc, Rt, Tc.Rt, Rt 2 68.6000 0.0320 -2.3660 0.0321   0.0483 
Tc, Rt, Tc 2, Rt 2 13.4000 3.5300   -0.0196 -0.0592 0.0108 

Tc, Tc.Rt, Tc 2, Rt 2 29.4200 3.0020 -1.4500   -0.0541 0.0423 
Rt, Tc.Rt, Tc 2, Rt 2 73.31000   -2.8470 0.0540 -0.0074 0.0048 

Tc, Rt, Tc.Rt, Tc 2, Rt 2 40.5000 2.5210 -2.1870 0.0321 -0.0541 0.0423 

Hardness response model [Tc, Rt, Tc.Rt, Tc2] was the only hardness model with a 
conforming response surface. 

4.2. Simultaneous optimisation results 

Table 5 shows the simultaneous optimisation of the adhesion-hardness model pair 
[Tc.Rt, Rt2] - [Tc, Rt, Tc.Rt, Tc2] using an Excel spreadsheet tool. The rest of the adhesion 
response models were similarly optimised with the same hardness model. 

Table 5. Showing simultaneous optimisation on an Excel spreadsheet 
Tc Rt   Adhesion     Hardness   

(min.)  (mm)   [T*Rt, Rt2] e2   [T, Rt, T* Rt, T2 ] e2 
21 7 12 12.2169 0.0470 60 60.1317 0.0173 
22 8 12 12.4186 0.1752 60 60.3616 0.1308 
22 9 12 12.4266 0.1820 60 60.1498 0.0224 
23 10 12 12.5860 0.3434 60 60.3540 0.1253 
23 11 12 12.5111 0.2612 60 60.1743 0.0304 
24 12 12 12.6282 0.3946 60 60.3528 0.1245 
24 13 12 12.4704 0.2213 60 60.2052 0.0421 
24 14 12 12.2610 0.0681 60 60.0576 0.0033 
25 15 12 12.3045 0.0927 60 60.2425 0.0588 
25 16 12 12.0122 0.0001 60 60.1270 0.0161 
26 17 12 12.0134 0.0002 60 60.2862 0.0819 
27 18 12 12.0036 0.0000 60 60.3876 0.1502 
29 19 12 12.3685 0.1358 60 60.4041 0.1633 
30 20 12 12.3570 0.1274 60 60.3000 0.0900 

    Ave. 12.3270 MPSE:0.1464   Ave.: 60.2525 MPSE: 0.0755 

    Bias: 0.3270 Var.: 0.0394   Bias: 0.2525 Var.: 0.0117 

Table 6 shows cure time estimates which each adhesion response model gave at 
simultaneous optimisation. 

Table 6. Showing the cure time estimate results for each adhesion response model  
 Rt (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Tc.Rt 21 22 22 23 24 25 26 26 27 28 29 30    

Tc, Tc.Rt 21 22 22 23 24 25 26 27 28 29 30       
Tc,  Rt 2 21 22 22 23 23 24 24 25 26 27 28 30    

Rt ,Tc.Rt, 21 22 22 23 24 25 26 27 28 28 29 29 30 30 
Tc,  Rt 2 21 22 22 23 24 25 26 27 28 29 30 30     

Tc.Rt, Tc 2 22 23 23 24 25 26 26 27 28 29 30       
Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 25 26 27 29 30 
 Tc 2, Rt 2 21 22 22 23 24 25 26 27 28 29 30 30     

Tc, Rt, Tc.Rt 21 22 22 23 24 25 26 27 27 28 29 30 30 31 
Tc ,Rt, Tc 2 21 22 22 23 24 25 26 27 28 29 30       
Tc, Rt, Rt 2 22 22 22 23 23 24 24 24 25 26 27 28 30 31 

Tc, Tc.Rt, Tc 2, 21 22 22 23 24 25 26 27 28 29 30       
Tc, Tc.Rt, Rt

 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 



Pavolo & Chikobvu/Oper. Res. Eng. Sci. Theor. Appl. 5(1) (2022) 90-106 

 

99 
 

Tc, Tc
 2, Rt

 2 21 22 22 23 23 23 24 24 25 26 28 30     
Rt ,Tc.Rt, Tc

 2 21 22 22 23 24 25 26 27 28 28 29 29 30 30 
Rt ,Tc.Rt, Rt

 2 21 22 22 23 23 24 24 24 25 26 26 28 29 30 
Rt, Tc 2, Rt 2 22 22 22 22 23 23 24 25 26 27 28 29 30 31 

Tc.Rt, Tc
 2, Rt

 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 
Tc, Rt, Tc.Rt, Tc

 2 21 22 22 23 23 24 25 26 27 28 29 30     
Tc, Rt, Tc.Rt, Rt

 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 
Tc, Tc.Rt, Tc 2, Rt 

2 
21 22 22 23 23 24 24 24 25 25 26 27 29 30 

Tc,  Tc.Rt, Tc
 2, Rt

 

2 
21 22 22 23 23 23 24 24 25 25 26 27 30 

  
Rt, Tc.Rt, Tc 2, Rt 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 
Tc, Rt, Tc.Rt, Tc

 2, 
Rt

 2 
21 22 22 23 23 24 24 24 25 25 25 27 28 31 

Table 7 shows the remaining thirteen adhesion response models with their cure 
time estimates after dropping those results that did not give estimates for the full 
rubber thickness range. 

Table 7. Showing the adhesion response models with simultaneous optimisation cure 
time estimates for the full rubber thickness range 

 Rt(mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
MODEL                             
Rt ,Tc.Rt, 21 22 22 23 24 25 26 27 28 28 29 29 30 30 
Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 25 26 27 29 30 

Tc, Rt, Tc.Rt 21 22 22 23 24 25 26 27 27 28 29 30 30 31 
Tc, Rt, Rt 2 22 22 22 23 23 24 24 24 25 26 27 28 30 31 

Tc, Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 
Rt ,Tc.Rt, Tc 2 21 22 22 23 24 25 26 27 28 28 29 29 30 30 
Rt ,Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 26 26 28 29 30 
Rt, Tc 2, Rt 2 22 22 22 22 23 23 24 25 26 27 28 29 30 31 

Tc.Rt, Tc 2, Rt 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 

Tc, Rt, Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 

Tc, Tc.Rt, Tc 2, Rt 2 21 22 22 23 23 24 24 24 25 25 26 27 29 30 
Rt, Tc.Rt, Tc 2, Rt 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 
Tc, Rt, Tc.Rt, Tc 2, 

Rt 2 
21 22 22 23 23 24 24 24 25 25 25 27 28 31 

A frequency analysis of the occurrence of the different cure time results is given in 
Table 8. There were only seven possible cure time estimate solutions in Table 7. The 
solution with the highest occurrence had a frequency of five. 

Table 8. Showing frequency of occurrence of cure time estimates results 

Rt 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Frequency 

1 21 22 22 23 24 25 26 27 27 28 29 30 30 31 1 

2 22 22 22 23 23 24 24 24 25 26 27 28 30 31 1 

3 22 22 22 22 23 23 24 25 26 27 28 29 30 31 1 
4 21 22 22 23 23 24 24 24 25 25 25 27 28 31 1 

5 21 22 22 23 24 25 26 27 28 28 29 29 30 30 2 

6 21 22 22 23 23 24 24 24 25 25 26 27 29 30 2 
7 21 22 22 23 23 24 24 24 25 26 27 28 29 30 5 
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4.3 Integration results 

Table 9 shows the results of integrating the cure time estimates of Table 6 using 
arithmetic averaging (A. Ave.) and majority vote (M. Vote).  

Table 9. Showing the integration of the thirteen cure time estimate results 
  7 8 9 10 11 12 13 14 15 16 17 18 19 20 Rel. 

MODEL                Acc. 
Rt ,Tc.Rt, 21 22 22 23 24 25 26 27 28 28 29 29 30 30 36% 
Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 25 26 27 29 30 79% 

Tc, Rt, Tc.Rt 21 22 22 23 24 25 26 27 27 28 29 30 30 31 29% 
Tc, Rt, Rt

 2 22 22 22 23 23 24 24 24 25 26 27 28 30 31 86% 
Tc, Tc.Rt, Rt

 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 100% 
Rt ,Tc.Rt, Tc

 2 21 22 22 23 24 25 26 27 28 28 29 29 30 30 36% 
Rt ,Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 26 26 28 29 30 100% 
Rt, Tc 2, Rt 2 22 22 22 22 23 23 24 25 26 27 28 29 30 31 29% 

Tc.Rt, Tc 2, Rt 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 100% 
Tc, Rt, Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 100% 

Tc, Tc.Rt, Tc 2, Rt 2 21 22 22 23 23 24 24 24 25 25 26 27 29 30 79% 
Rt, Tc.Rt, Tc 2, Rt 2 21 22 22 23 23 24 24 24 25 26 27 28 29 30 100% 
Tc, Rt, Tc.Rt, Tc 2, 

Rt
 2 

21 22 22 23 23 24 24 24 25 25 25 27 28 31 64% 

AVE 21 22 22 23 23 24 24 25 26 26 27 28 29 30  

M. Vote 21 22 22 23 23 24 24 24 25 26 27 28 29 30  

Three observations to note: (1)The two integration methods did not agree on two 
cure time estimates for rubber thicknesses 14 and 15 mm; (2) Some adhesion-
hardness pairs had relative accuracy less than 50%; and (3) The majority vote result 
was equivalent to the result with the highest frequency in Table 8.  

Table 10 shows the bias-variance-covariance decomposition of the MSPEsimul of the 
ensemble of results. 

Table 10. Showing the bias-variance-covariance decomposition of the MSPEsimul  
 MSPE Bias Var. Covar MSPE Bias Var. Covar. 

MODEL         
Rt ,Tc.Rt, 0.1430 0.3849 0.0609  0.1841 0.4015 0.0229  
Tc.Rt, Rt 2 0.1464 0.3270 0.0394  0.0755 0.2500 0.0117  

Tc, Rt, Tc.Rt 0.1298 0.2980 0.0410  0.1726 0.3738 0.0329  
Tc, Rt, Rt 2 0.1121 0.2878 0.0292  0.1048 0.2890 0.0202  

Tc, Tc.Rt, Rt 2 0.1417 0.3543 0.0162  0.0957 0.2852 0.0144  
Rt ,Tc.Rt, Tc

 2 0.1297 0.2636 0.0602  0.1841 0.4015 0.0229  
Rt ,Tc.Rt, Rt 2 0.1513 0.3699 0.0144  0.0957 0.2852 0.0144  
Rt, Tc 2, Rt 2 0.5463 0.3323 0.0161  0.0957 0.2852 0.0144  

Tc.Rt, Tc 2, Rt 2 0.1051 0.3006 0.0147  0.0957 0.2852 0.0144  
Tc, Rt, Tc.Rt, Rt 2 0.0992 0.2774 0.0223  0.0957 0.2852 0.0144  

Tc, Tc.Rt, Tc 2, Rt 2 0.4951 0.6186 0.1125  0.0755 0.2500 0.0117  
Rt, Tc.Rt, Tc 2, Rt 2 0.1265 0.3323 0.0161  0.0957 0.2852 0.0144  

Tc, Rt, Tc.Rt, Tc 2, Rt 2 0.1561 0.6155 0.1373  0.0651 0.2200 0.0117  
AVE 0.21864 0.3586 0.0446 0.0937 0.1105 0.2998 0.0174 0.0209 

There were six adhesion-hardness model pairs that have the same accuracy values 
on the hardness side. Generally, for a high adhesion side MSPEsimul, there was a low 
MSPEsimul on the hardness side. This pattern, however, did not seem to have any 
significant relationship with the accuracy of the cure time estimates. 
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Table 11 gives the percentage accuracy compromise of the base model pairs of the 
ensemble at simultaneous optimisation. 

Table 11. Showing the PAC results at simultaneous optimisation 
Rt MSPEvalmin MSE PAC(H) PAC(A) 

Adhesion Model   % % 
Rt, Tc.Rt 0.0242 2.3855 310 487 
Tc.Rt, Rt2 0.0321 1.3382 69 357 

Tc, Rt, Tc.Rt 0.0405 2.3441 285 221 
Tc, Rt, Rt 2 0.0458 1.4710 145 134 

Tc, Tc.Rt, Rt 2 0.0456 1.2815 114 211 
Rt, Tc.Rt, Tc 2 0.0194 2.5300 114 569 
Rt, Tc.Rt, Rt 2 0.0226 1.3200 114 220 
Rt, Tc 2, Rt 2 0.0445 1.8069 114 1128 

Tc.Rt, Tc 2, Rt 2 0.0474 1.3377 114 219 
Tc, Rt, Tc.Rt, Rt 2 0.0407 1.2789 113 144 

Tc, Tc.Rt, Tc 2, Rt 2 0.0348 0.9842 33 1323 
Rt, Tc.Rt, Tc 2, Rt 2 0.0345 1.3689 114 267 

Tc, Rt, Tc.Rt, Tc 2, Rt 2 0.0366 0.9762 69 1323 

Table 11 shows that it’s very difficult, were simultaneous optimisation is 
concerned, to find a model pair that has all the model accuracy criteria aligning. 

➢ The response model pair with best MSPEvalmin (0.0194) had the worst MSE 
(2.53). 

➢ The adhesion response model with the best MSE (0.9762) compromised the 
worst (% accuracy compromise, PAC(A) = 1323%) to achieve simultaneous 
optimisation. 

➢ The response model pair with the best PAC on the hardness side (33%), had 
the worst PAC on the adhesion side (1323%). 

➢ There were six adhesion-hardness model response pairs with the same 
PAC(H) value. These six were not necessarily the same ones with similar 
MSPEsimul values on the hardness side. 

The average PAC(H) was lower compared to the PAC(A). This suggests that 
response models do not necessary compromise the same to achieve simultaneous 
optimisation. 

4.4 Ensemble review results 

Elimination of model pairs with relative accuracy less than 50% left nine adhesion-
hardness pairs in the ensemble. The arithmetic average and majority vote results of 
the reviewed ensemble were equal throughout the whole rubber thickness range as 
shown in Table 12. 
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Table 12. Showing the result of eliminating response models with relative 
accuracy<50% 

Rt (mm) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Rel. 
Model                             Acc. 

Tc.Rt, Rt 2 21 22 22 23 23 24 24 24 25 25 26 27 29 30 79% 
Tc, Rt, Rt

 2 22 22 22 23 23 24 24 24 25 26 27 28 30 31 86% 
Tc, Tc.Rt, 

Rt 2 
21 22 22 23 23 24 24 24 25 26 27 28 29 30 

100% 
Rt ,Tc.Rt, 

Rt
 2 

21 22 22 23 23 24 24 24 25 26 27 28 29 30 
100% 

Tc.Rt, Tc
 2, 

Rt 2 
21 22 22 23 23 24 24 24 25 26 27 28 29 30 

100% 
Tc, Rt, 

Tc.Rt, Rt
 2 

21 22 22 23 23 24 24 24 25 26 27 28 29 30 
100% 

Tc, Tc.Rt, 
Tc

 2, Rt
 2 

21 22 22 23 23 24 24 24 25 25 26 27 29 30 
79% 

Rt, Tc.Rt, 
Tc 2, Rt 2 

21 22 22 23 23 24 24 24 25 26 27 28 28 30 
100% 

Tc, Rt, 
Tc.Rt, Tc

 2, 
Rt 2 

21 22 22 23 23 24 24 24 25 25 25 27 28 31 
64% 

AVE 21 22 22 23 23 24 24 24 25 26 27 28 29 30  
M. Vote 21 22 22 23 23 24 24 24 25 26 27 28 29 30  

Table 13 shows that the accuracy results at simultaneous optimisation significantly 
improved, but more on the hardness side than the adhesion side. 

Table 13. Showing the accuracy results of the reviewed ensemble 
 MSPE Bias Var. Covar MSPE Bias Var. Covar. 

MODEL         
Tc.Rt, Rt 2 0.1464 0.3270 0.0394  0.0755 0.2500 0.0117  
Tc, Rt, Rt 2 0.1121 0.2878 0.0292  0.1048 0.2890 0.0202  

Tc, Tc.Rt, Rt 2 0.1417 0.3543 0.0162  0.0957 0.2852 0.0144  
Rt ,Tc.Rt, Rt 2 0.1513 0.3699 0.0144  0.0957 0.2852 0.0144  

Tc.Rt, Tc 2, Rt 2 0.1051 0.3006 0.0147  0.0957 0.2852 0.0144  
Tc, Rt, Tc.Rt, Rt 2 0.0992 0.2774 0.0223  0.0957 0.2852 0.0144  

Tc, Tc.Rt, Tc 2, 
Rt 2 

0.4951 0.6186 0.1125  0.0755 0.2500 0.0117  

Rt, Tc.Rt, Tc 2, Rt 

2 
0.1265 0.3323 0.0161  0.0957 0.2852 0.0144  

Tc, Rt, Tc.Rt, Tc 

2, Rt 2 
0.1561 0.6155 0.1373  0.0651 0.2200 0.0117  

Arithmetic Ave 0.2104 0.3870 0.0447 0.0619 0.0888 0.2706 0.0148 0.0157 

If the base models were the five adhesion response models with the same cure time 
estimates the theoretical accuracy of the ensemble would be as shown in Table 14. It 
appeared, for this problem, that when the cure time estimates for different adhesion-
hardness pairs were the same, the theoretical accuracy on the hardness response side 
was the same. 

 

 



Pavolo & Chikobvu/Oper. Res. Eng. Sci. Theor. Appl. 5(1) (2022) 90-106 

 

103 
 

Table 14. Accuracy results of the ensemble with five base models with similar Tc 
estimates 

 MSPE Bias Var. Covar MSPE Bias Var. Covar. 
MODEL         

Tc, Tc.Rt, Rt 2 0.1417 0.3543 0.0162  0.0957 0.2852 0.0144  
Rt, Tc.Rt, Rt 2 0.1513 0.3699 0.0144  0.0957 0.2852 0.0144  

Tc.Rt, Tc 2, Rt 2 0.1051 0.3006 0.0147  0.0957 0.2852 0.0144  
Tc, Rt ,Tc.Rt, Rt 2 0.0992 0.2774 0.0223  0.0957 0.2852 0.0144  
Rt, Tc.Rt, Tc 2, Rt 

2 
0.1265 0.3323 0.0161  0.0957 0.2852 0.0144  

Arithmetic Ave 0.1248 0.3269 0.0167 0.0182 0.0957 0.2852 0.0144 0.0144 

4.5 Multiple MS criteria best model selection methodology results 

The first result was for the selection of the best model using majority vote of fifteen 
different model selection criteria. The formulae used to compute the criteria values 
are shown in the Appendix. Table 15 shows the model selection criteria values and 
their votes. 

Adhesion response model [Tc.Rt, Rt2] is the obvious best with a vote of 10. This 
minimises uncertainty. Model [Tc, Tc.Rt, Tc2, Rt2] follows behind with a vote of 6. 

Table 15. Showing multiple MS criteria selections 
MODEL Tc, Rt, Tc.Rt, Tc 2, 

Rt 2 
Tc, Tc.Rt, Tc 2, 

Rt 2 
Rt, Tc.Rt, 

Rt 2 
Tc.Rt,   
Rt 2 

Tc, Rt, 
Rt 2 

Tc, 
Tc.Rt, 

R2 (pr.) 26.5 51.5 49.9 65.4 49.4 52 
Adeq.  pr. 10.4 4.1 5.7 1.8 11.9 5.4 

Cp-k 1.0 0.1 0 0 2.1 0 
PRESS 88.1 59.3 81.3 42.1 62.2 58.6 

AIC 11.7 9.8 11.6 9.8 13 17.3 
BIC 15.1 12.6 13.9 11.5 15.3 19 

AICc 20.2 14.8 14.3 11 15.7 18.5 
APCp 2.9 2.4 2.6 2.9 2.6 4.0 
SBC 1.9 1.7 4.9 4.8 6.1 11.9 
HQc 1.1 1.1 4.3 4.5 5.6 11.5 
KICc 87.3 64.4 51.2 38.1 52.6 45.6 
HQ 0.5 0.5 4.2 4.2 5.6 11.7 
KIC 20.7 17.8 18.6 15.8 20 23.3 

MKIC 18.2 12 9.1 5.4 9.8 10.7 
TIC 13.7 11.8 13.6 11.8 15 19.3 

VOTE 2 6 1 10 1 1 

The simultaneous optimisation results of both response models [Tc.Rt, Rt2] and [Tc, 
Tc.Rt, Tc2, Rt2] are shown in Tables 12 and 13. The two have the same cure time estimate 
and theoretical accuracy results on the hardness side. The cure time estimate result, 
however, was different from the multiple simultaneous optimisations ensemble one. 

5. Conclusion 

The dilemma of choosing from two different solutions, see Table 16, both of which 
standing on strong positions makes the problem at hand challenging. However, an 
objective analysis and critic of each position helps in separating the two.  
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Table 16. Multiple MS criteria solution (S6) vs. Ensemble solution (S7) 
Rt 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vote 
S6 21 22 22 23 23 24 24 24 25 25 26 27 29 30 2 
S7 21 22 22 23 23 24 24 24 25 26 27 28 29 30 5 

The multiple simultaneous optimisations ensemble cure time estimate solution 
(S7) shows credibility in that (i) it is the most frequent solution from the adhesion-
hardness model pairs, (ii) there is agreement between the two integration 
methodologies used, and (iii) by design, it fairly accounts for all the listed problems of 
the contemporary MRSM contextual framework. It accounts for dataset uncertainty, 
loss of information, model over-/underfitting, and model parameter bias by utilising 
multiple models and minimising discarded models. It minimises model uncertainty 
and small sample size inefficiency by totally avoiding the use of classical model 
selection criteria.  

On the other hand, seven of the ten model selection criteria that voted for the best 
single adhesion response model [Tc.Rt, Rt2] are information criteria and three are 
prediction model selection criteria. This implies that the response model has the best 
parsimonious fit to the MRSM dataset, of all the 25 OLS adhesion response models, and 
has good prediction capability. However, the cure time estimate solution (S6) is not 
considered the best in credibility because (i) model selection criteria have a small 
sample size inefficiency problem, (ii) they do not deal with the problem of model 
parameter bias, (iii) dataset uncertainty and (iv) since the methodology is structured 
as the contemporary MRSM framework, it loses information in discarded models by 
the selection and use of one model per response in simultaneous optimisation. It 
should be emphasised that where the model with the best parsimonious fit to the 
dataset is required, response model [Tc.Rt, Rt2] is the model. 

The arguments above clearly separate the most credible cure time solution (S7) 
from the model with the best parsimonious fit to the MRSM dataset (S6]. The multiple 
simultaneous optimisations ensemble, therefore, is both logically and empirically a 
better way of obtaining credible results compared to the current MRSM contextual 
framework which must first select a best model for each response before simultaneous 
optimisation. The multiple simultaneous optimisations ensemble is thus 
recommended to the rubber covered conveyor belting manufacturing industry for use 
in reviewing cure times when adhesion and cover hardness minimum quality standard 
requirements change. 

The use of targeted values in validation is worth mentioning here, as well, since the 
size of the MRSM dataset is small and it would be senseless to split it. The other option 
would have been to use cross validation which would have taken back the solution 
methodology to the weakness of the contemporary MRSM framework. In itself, the 
practice is worth considering where targeted quality values have to be effectively 
converted to production process parameters. 

Noting the fact that the multiple simultaneous optimisations ensemble worked 
well on a two factors and two responses problem, it then makes it imperative to 
investigate its generalisability to other more complex MRSM problems. As the number 
of factors and responses increase, the number of models to deal with quickly 
multiplies. This will definitely require software and intelligent algorithms to manage 
complexity and still achieve credible results. 
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