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Abstract: Decision making process in stock trading is a complex one. Stock market is a 
key factor of monetary markets and signs of economic growth. In some circumstances, 
traditional forecasting methods cannot contract with determining and sometimes data 
consist of uncertain and imprecise properties which are not handled by quantitative 
models. In order to achieve the main objective, accuracy and efficiency of time series 
forecasting, we move towards the fuzzy time series modeling. Fuzzy time series is 
different from other time series as it is represented in linguistics values rather than a 
numeric value. The Fuzzy set theory includes many types of membership functions. In 
this study, we will utilize the Fuzzy approach and trapezoidal membership function to 
develop the fuzzy generalized auto regression conditional heteroscedasticity (FGARCH) 
model by using the fuzzy least square techniques to forecasting stock exchange market 
prices. The experimental results show that the proposed forecasting system can 
accurately forecast stock prices. The accuracy measures RMSE, MAD, MAPE, MSE, and 
Theil-U-Statistics have values of 18.17, 15.65, 2.339, 301.998, and 0.003212, 
respectively, which confirmed that the proposed system is considered to be useful for 
forecasting the stock index prices, which outperforms conventional GARCH models. 

Key words: Fuzzy time series, Membership function, trapezoidal fuzzy approach, 
GARCH model, Forecasting. 

1. Introduction 

Forecasting is a significant feature in economics, commerce, various branches of 
science and marketing. It is a technique that predicts the future behavior of output 
on the basis of present and past output of yield and past trends. The economy of a 
nation to a great extent relies on upon capital business sector on upon capital 
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business sector, forecasting of stock market and their drifts are important factor in 
attaining significant gains in financial market. In capital and derivative pricing, 
investment plans, fund distribution and risk control processes, the accurately 
computation and prediction of financial- volatility plays a vital role (Franke & 
Westerhoff, 2011; Haugom, Langeland, Molnár, & Westgaard, 2014; A. Y. Huang, 
2011), also fuzzy-Garh models for forecasting financial volatility (Hung, 2011a, 
2011b; Maciel, Gomide, & Ballini, 2016). The stock price has deep impact in financial 
event of the country and large-scale economics approach. However, predicting and 
forecasting the stocks trading, prices and movement is not an easy task because of 
the serious impact of full-scale financial variable, including general monetary 
condition, political interference, financial specialist’s decision, sudden and 
unexpected change in security exchanges. Apart from the statistical models that have 
been used to understand and forecast variations in the stock market, a lot of 
attention has also been shifted to the applications of various soft computing 
application.  There are different time series models proposed by the different 
researchers. Due to appropriateness and efficiency Fuzzy time series models are 
used in different studies (Bisht, Joshi, & Kumar, 2018; Iqbal & Zhang, 2020; Yu, 
2005). Fuzzy set theory, provides an authoritative framework to handle with vague 
or ambiguous problems and can express linguistic values and human subjective 
decisions of natural language, (Zadeh, 1965). Fuzzy time series was first presented 
by (Song & Chissom, 1993, 1994). Furthermore, many fuzzy time series models were 
developed by researchers using different theories (Chen & Tanuwijaya, 2011; 
Egrioglu, Bas, Yolcu, & Chen, 2020; Hassan et al., 2020; Iqbal, Zhang, Arif, Hassan, & 
Ahmad, 2020; Lu, Chen, Pedrycz, Liu, & Yang, 2015; Wang, Lei, Fan, & Wang, 2016; 
Xiao, Gong, & Zou, 2009). Some analysts developed FTS forecsting models using 
probabilistic fuzzy set theory and reported significant results (Gupta & Kumar, 2019; 
W.-J. Huang, Zhang, & Li, 2012). Some fuzzy forecasting models in the environment of 
intuitionistic fuzzy set theory with equal length intervals are developed by 
(Abhishekh, Gautam, & Singh, 2018),(Bas, Yolcu, & Egrioglu, 2021) and also some 
work with unequal length intervals introduced by (Lei, Lei, & Fan, 2016) and (Iqbal & 
Zhang, 2020). In Addition, a novel method to forecast time series data was 
introduced by (Soto, Melin, & Castillo, 2018), using ensembles of IT2FNN models 
with fuzzy integrator optimization. There also some studies in which fuzzy based 
forecasting techniques are compared with classical models like ARIMA (Iqbal, Zhang, 
Arif, Wang, & Dicu, 2018). Technical analysis is a tool to predict future stock value 
developments by analyzing the past succession of stock costs. The generalized 
autoregressive conditional heteroscedasticity (GARCH) model is one of the famous 
econometric models used to estimates the volatility in financial market, stock 
markets. GARCH model is an econometric model, to describe an appropriate 
approach to estimate the in-monetarist markets volatility in monetarist markets, 
(Engle, 1982).  

GARCH models are useful across an extensive range of applications, also they do 
have boundaries as this model is only part of a solution. Although these models are 
usually applied to return series, financial decisions are rarely based solely on 
expected returns and volatilities. These models are parametric specifications that 
operate best under relatively stable market conditions. GARCH is explicitly designed 
to model time-varying conditional variances, Generalized Auto-Regressive 
Conditional Heteroscedasticity models often failed to capture highly irregular 
phenomena, including wild market fluctuations (e.g., crashes and subsequent 
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rebounds), and other highly unanticipated events that can lead to significant 
structural change. GARCH models often fail to fully capture the fat tails distribution 
observed in asset return series. A fat-tailed distribution is a probability distribution 
that has the property, along with the other heavy-tailed distributions, that its 
revelations excess skewness or kurtosis. This comparison is often made relative to 
the normal distribution, or to the exponential distribution. Heteroscedasticity 
explains some of the fat tail behavior, but typically not all of it. Fat tail distributions, 
such as student-t, have been applied in GARCH modeling, but often the choice of 
distribution is a matter of trial and error. For this purpose, fuzzy model is proposed 
known as Fuzzy Generalized Auto-Regressive Conditional Heteroscedasticity 
(FGARCH) model in this paper. Although several fuzzy GARCH models based on 
different statistical and machine learning approaches are developed, such as (Hung, 
2009, 2011a; Popov & Bykhanov, 2005), and (Maciel et al., 2016), but our proposed 
Fuzzy Generalized Auto-Regressive Conditional Heteroscedasticity (FGARCH) model 
is the best option because it is useful in investment on assets returns but also 
operates best under wide market fluctuation. 

In this paper, a new fuzzy model is proposed known as Fuzzy Generalized Auto-
Regressive Conditional Heteroscedasticity (FGARCH) with fuzzy least square 
techniques and fuzzy trapezoidal approach. The motivation to use trapezoidal 
membership function is that it outperforms the different types of membership 
functions when it comes to develop a fuzzy-model for decision making and applicable 
to real-world applications.   The proposed fuzzy model is the best option because it is 
useful in investment on assets returns but also operates best under wide market 
fluctuation. The objectives of the current study are explained as: (i) to estimate the 
unknown parameter by using the Generalized Auto-Regressive Conditional 
Heteroscedasticity and forecasting fuzzy models, (ii) to articulate the fuzzy model by 
using the fuzzy least square technique, (iii) to evaluate the comparison between 
forecast produced from classical model and proposed fuzzy model and also select the 
best performance model from them.  

The remaining paper comprises in the following stages. First section describes 
the introduction part. Second section briefly explains the earlier work done by the 
researchers in classical and fuzzy forecasting model. In third section, briefly 
described the methodology of the classical econometric model “Generalized Auto-
Regressive Conditional Heteroscedasticity (GARCH)” and fuzzy model “Proposed 
Fuzzy Generalized Auto-Regressive Conditional Heteroscedasticity (FGARCH)”by 
using fuzzy least square method. This section also comprises concept of limitation in 
Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH), perceptive to 
move towards fuzzy model. Fourth section included the results obtained from 
classical and proposed models with comparing the efficiency of the both models by 
using different endorsements. 

2. Basic Theories 

2.1. Fuzzy Set 

A fuzzy set Z˜ in the universe of information U can be defined as a set of ordered 
pairs and it can be represented mathematically as 
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  (1) 

Here (x) is degree of membership of x, which assumes values in the range from 0 

to 1, i.e.,  (x) ∈ [0,1]. 

2.2. Trapezoidal membership function 

Trapezoidal membership function is described using the following equation 

T  =  (2) 

Where, x represents real value within the universe of discourse. a, b, c, d 
represent a x- coordinates of the four heads of trapezoidal and values should validate 
the following condition a<b<c<d. 

2.3. Fuzzy Time Series 

The first time (Zadeh, 1965), proposed the fuzzy set theory, it provides a 
authoritative framework to handle with vague or ambiguous problems and can 
express linguistic values and human subjective decisions of natural language. Time 
series models had failed to consider the application of forecasting theory until fuzzy 
time-series was defined by (Song & Chissom, 1993, 1994). 

3. Proposed Fuzzy-Based Methodology 

3.1. Generalized Auto-Regressive Conditional Heteroscedasticity (p,q) Model 

The generalized autoregressive conditional heteroscedasticity (GARCH) process 
is an econometric term proposed in 1982 by Robert F. Engle, an economist. In the 
year 2003, awarded by the Nobel Memorial Prize for Economics, to propose an 
approach to econometric model to estimate volatility in monetary markets. 

Engle (Engle, 1982) and (Bollerslev, 1986) proposed the Generalized ARCH (p,q) 

model. The general representation of GARCH (p,q) process (  is defined as,  

, (3) 

where is white noise with  and  
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Where, in Eq. (4), 0  is a constant,
=

−

q

i

ti

1

2

1  shows the Auto-regressive 

conditional heteroscedasticity term, 
=

−

p

j

tih
1

1  shows the generalized autoregressive 

conditional heteroscedasticity term with the parameters 
q ,...,, 10

 and  

p ,...,, 10
 . If , the shocks have a decaying impact of the 

future volatility (Fryzlewicz, 2007). 

The general process for a GARCH model involves three steps. The first is to 
estimate a best-fitting of Auto-regressive model. The second is to compute Auto-
correlations of the error terms. The third step is to test for implication. Two other 
widely used approaches to estimate and predict the financial volatility are the 
classic historic volatility method, and the exponentially weighted moving 
average volatility method. 

Heteroscedasticity describes the irregular pattern of variation of an error terms, 
or variable, in a statistical model. In data where heteroscedasticity present, 
observations do not confirm to a linear pattern, instead, they tend to clusters. The 
result is that the conclusions and predictive values drawn from the model will not be 
reliable. GARCH an econometric model, that can be used to analyze a number of 
different types of financial data series, for instance, macroeconomic data. Financial 
institutions classically use this model to estimate the volatility of stock returns, 
bonds and market indices. They resulting information helps to determine the pricing 
and as well as supports to judge that, which assets will potentially provide higher 
returns. Furthermore, it helps to forecast the returns of current investments to 
support in their asset allocation, hedging, risk management and portfolio 
optimization decisions. 

3.2. Fuzzy Generalized Auto-Regressive Conditional Heteroscedasticity 

Proposed fuzzy Generalized Auto-Regressive Conditional Heteroscedasticity 
Model is given as follows with fuzzy parameters: 

ptpttqtqttt hhhh −−−−−− ++++++++=  ~...~~~...~~~
2211

22

22

2

110  (5) 

In the Eq. (5) th
~

 is the estimated fuzzy variable used as output variable,   

( qpq ++  ~,...,~,...,~,~
121 ) are the parameters with q term known as fuzzy Auto-

correlation parameters and fuzzy parameters with p term known as fuzzy partial- 
Autocorrelation. The impreciseness and conciseness have been tackled by 
connecting parameters with p and q order into fuzzy parameters. 

3.2.1. Fuzzy Least Square Approach 

Fuzzy least square approach is an accumulation form of ordinary least square 
technique. This technique incorporates of goodness of fit and requires a distance 
between the fuzzy values estimated by the model and vague data that is really 
pragmatic. Mathematically it is expressed as: 

https://www.investopedia.com/terms/a/autoregressive.asp
https://www.investopedia.com/terms/a/autocorrelation.asp
https://www.investopedia.com/terms/a/autocorrelation.asp
https://www.investopedia.com/terms/e/errorterm.asp
https://www.investopedia.com/terms/s/statistical-significance.asp
https://www.investopedia.com/terms/h/historicalvolatility.asp
https://www.investopedia.com/terms/e/ema.asp
https://www.investopedia.com/terms/e/ema.asp
https://www.investopedia.com/terms/h/heteroskedasticity.asp
https://www.investopedia.com/terms/l/linearrelationship.asp
https://www.investopedia.com/terms/m/marketindex.asp
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where  are two fuzzy numbers.  is a trapezoidal fuzzy number with 

four points such as  vurm aaaa 00000 ,,,=  and  is another trapezoidal fuzzy 

number with four points such that  vurm aaaa 11111 ,,,= , and  is the 

weighting function for determining the distance square between two fuzzy numbers.  

In both fuzzy numbers , parameters mm aa 10 ,  represent the left fuzzy 

points, mr aa 10 , represent the left center points, mu aa 10 ,  represent the right center 

fuzzy points, mv aa 10 , represented the right fuzzy points. 

3.2.2. Estimation of Parameter of Model by Fuzzy Least Square Approach 

The parameter of model is estimated by using the fuzzy least square method to 
gain a unique solution. The fuzzy least square method is defined by the sum of error 

distance between observed value )(tO  and estimated output value . 

Mathematically sum of error distance is represented as: 

2
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Where, in Eq. (6) ))(),((  tt EOd  is mathematically represented as:   
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where index  denotes the non-fuzzy series of data used in observed value input 

)(tO and estimated output value . 
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 Now from the equation, each fuzzy parameter converted into a generalized auto-
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where in the above equations,  represent the left point function,  

represent the left center point function,  represent the right center function, 

and   represent the right point function. 

Now, estimated output value  expressed on  = ],[ 10 LL , with α-cut 

fuzzy interval for trapezoidal number can be represent as: 

)}],()({)(),()}()([{)( uvvmmrt afafafafafafE −−+−= 
  (12) 

Similarly, observed value is )(tO  expressed on )(tO  = ],[ 10 LL , such as  

)},()({)(),()}()({ 10 uvvmmr afafafLafafafL −−=+−= 
 (13) 

where represent the lower bound and  represent the higher bound. 

Now using the values, the observed and estimated output value is obtained by the 

sum of square error distance: 2

1
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= , In the above expression, 

)](),([  tt EOd  stands the square distance between the observed and estimated 

output which is shown as given below: 
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Now putting the above expression and weighting function in sum of square error 
(SSE) equation which is given below: 
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Using the equation (12) for finding the partial derivation with respect to 

 to the get simplified form of equations given as: 
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Now by solving the integral of the above equations and putting the values in the 
equations, encompassing the following equation: 
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Where 0ix =1 and pj ,2,1,0=  after simplification, the standard form of above 

equation is given as: 
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Where 0ix =1   and pj ,2,1,0=  after simplification, the standard form of 

above equation is: 
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Where 0ix =1   and pj ,2,1,0=  after simplification, the standard form of 

above equation is: 
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Where 0ix =1 and pj ,2,1,0=  after simplification, the standard form of above 

equation is: 


===

+++
q

i

ijivij

q

i

ivij

q

i

iv xxaxxaxxa
11

1

1

0 10 
 ij

q

i

i xs
=

=
1 ,  (20) 

In these above equations i=1, 2…, q,  are the outcomes of 
integral calculation of the above equations. These simple form of equations (15), 
(16), (17), (18) are represented in the form of matrix. 

 (21) 

In Eq. (21), m represents the left point matrix, r represents the left center point 
matrix, u represent the right center point matrix, v and represent the right center 
point matrix of trapezoidal membership function. Where C, K, G and S represent the 
matrix which are obtained after solving the integral. These matrixes are represented 
as:  
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where  and  matrix, X is a data matrix and A is 

the positive definite with rank = n+1. If matrix , then inverse of matrix A 

can be easily determined. Then equation problem consists of unique solution: 
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CAm 1−=   ,                      KAr 1−= ,             
,1GAu −= SAv 1−=  

4. Computational Analysis 

The stock prices index of Gold as input variable from year 2009 to 2017 is given 
in Appendix A.  

Step 1. In our proposed model, possibility of successes is given into five linguistic 
terms, each linguistic term is represented by the degree of trapezoidal fuzzy 
numbers. For example,  

Very low interval 

=  

 =  

=  

Low interval 

=  

 =  

=  

Similarly, other computations are also computed regarding average interval, high 
interval and very high interval, and further arranged the linguistic variable according 
to the order as follows 

i. 
nverylowK

~
= =  

ii. 
nlowK

~
=      

iii. 
naverageK

~
=   

iv. 
nhighK

~
=         
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v.
nveryhighK

~
=    

The above expression (i), (ii), (iii), (iv) and (v) shows very low, low, average, high 
and very high possibility of success for the nth observations.   Each linguistics 
variables are represented as observed prospective output. 

Step 2.  Now, used the partial derivation of Eqs. (12), (13), (14) and (15) which is 
show into a following simplified form of equation given as: 
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Step 3. After solving the integral and putting the values of above equations we get 
the matrix form of equations shown as: 

          CAm 1−=   ,                    KAr 1−= ,             
,1GAu −=
                  SAv 1−=  

where 

  

and   , 
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Matrix A is the positive definite with rank = n+1. If matrix , then 

inverse of matrix A can be easily determined. Then equation problem consists of 
unique solution. 

A=

   0.2032   0.0482   0.0173   0.0737   0.0532   0.0626   0.0613   0.0387

   0.0482   0.4229   0.3145   0.1760   0.4474   0.4718   0.2032   0.5697

   0.0173   0.3145   0.3816   0.1533   0.3684   0.3459  

− − −

− − − −

− − 0.1657   0.5291

   0.0737   0.1760   0.1533   0.1481   0.1800   0.2208   0.1043   0.2478

   0.0532   0.4474   0.3684   0.1800   0.7109   0.5123   0.2705   0.5616

   0.0626   0.4718   0.3459   0.2208   0

− −

− − − −

− − −

− − .5123   0.7365   0.1598   0.7122

   0.0613   0.2032   0.1657   0.1043   0.2705   0.1598   0.2270   0.1765

   0.0387   0.5697   0.5291   0.2478   0.5616   0.7122   0.1765  1  .1042

 
 
 
 
 
 
 
 
 


− −

− − − − 

 − − − −




 

 “Very Low” Opportunity of Interval 

The possibility of very low interval for the thN observation is written as: 

nverylowK
~

= =  (26) 

Using equation (26), interval of very low possibility for the thN observation is to 

estimate the observed value at different η values. Here we have selected the η values 
that lies between [0, 1] from table .After putting the value of η = 0.086 in the 

equation (26), we have evaluated the value of 073.00 −=L  and 0361.01 =L   

Now following the procedure described in section 3 of this paper, the estimated 
model of “very low opportunity interval” obtained from observations is shown as: 

th
~

= (26.523   32.7861   42.667   103.37) + (25.409   32.014   51.406   101.881) 

2

1−t + (15.1531   27.179   36.716   82.8758) 2

2−t + (28.355   34.023   45.5677   

106.771) 2

3−t + (22.942   31.841   42.475   123.931) 2

4−t  + (25.043   29.587   38.879   

79.749) 1−th + (30.048   43.198   65.913   131.927) 2−th + (22.945   38.4413   64.478   

92.9316) 3−th +    

The above equation of model represents the “Very Low” linguistic category case 
that consist of fuzzy parameter in the form of trapezoidal membership function 
parameters. Similarly, at other levels, the possibility intervals can be computed by 
following this procedure.   

Step 4. Fuzzy logical relationships 

To find the fuzzy logical relationship, fuzzified datasets are arranged according to 
the years. The fuzzified values are given in table 1. 
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Table 1. Actual prices of Gold stock index with sets of fuzzy 

Years 
Stock index Prices 

(returns*100) 
Fuzzy Sets 

2010 1.485  
2011 60.39  
2012 21.89  
2013 44.96  
2014 29.064  
2015 99.956  
2016 69.98  
2017 13.88  

Fuzzy logical relationships are designed from above fuzzified datasets and are 
presented in table 2. According to the rule of fuzzification, if the time series 

observation F(t-1) is fuzzified as  in year 2010 and F(t) as  in year 2011, then 

 is mapping into . In the same manner sets of fuzzy  in year 2011 is 

interrelated to  in year 2012, sets of fuzzy  in year 2012 is interrelated to  

in year 2013, sets of fuzzy  in year 2013 is interrelated to  in year 2014, sets 

of fuzzy  in year 2014 is interrelated to  in year 2015, sets of fuzzy  in year 

2015 is interrelated to  in year 2016, sets of fuzzy  in year 2016 is interrelated 

to  in year 2017 so in this way all year fuzzy relationship datasets are formed. 

Table 2. Fuzzy logical relationships 
Years Relationships Fuzzy Logical 

Relationships 
2010 → 2011  →  
2011 → 2012  
2012 → 2013  
2013 → 2014  
2014 → 2015  
2015 → 2016  
2016 →2017  

Fuzzy logical relationship groups (FLRG’s) 

Using the table 2, fuzzy logical relationship groups (FLRG’s) are formed which are 

given in the table 3. In group 1, relationship of fuzzy  related to  is mapping in 

the same way, the fuzzy relationship of  is mapping on ,  is mapping on  

in group 3,  is mapping on  in group 4,  is mapping on  in group 5,  

is mapping on  in group 6,  is mapping on  in group 7. There is no 
relationship of fuzzy that consist of more than one set that can be merged into 
another group. Relationship of fuzzy group are shown in below given table. 
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Table 3. Fuzzy logical relationship groups 
Fuzzy Relationship 

Groups 
Fuzzy set Groups 

Group 1  →  
Group 2  
Group 3  
Group 4  
Group 5  
Group 6  
Group 7  

Step 5. Fuzzy Forecasted Prices 

Using the methods of fuzzy logical relationship groups by Song (Song & Chissom, 
1994), forecasted output is determined. All the relationship groups from the above 

table consist of case 1 which is stated as that in one to one relationship such as  

→  then highest degree occurred in  at interval . Forecasted output of the 
fuzzy generalized auto-regressive conditional heteroscedasticity model is written in 
below column of table. In this table, year 2011 is forecasted value using the fuzzified 

interval midpoint values of 2010. The relationship of fuzzy group of year 2010 is  

→ , according to fuzzification case 1, the highest degree of interval is  = 

[1.489, 38.525], so the forecasted output of the year 2011 is the midpoint of  
which is equal to 20.005. In the same manner all the forecasted prices are obtained 
which are given in table 4. 

Table 4. Forecasted prices of stock index 
Year Actual prices of 

index 
(returns*100) 

Forecasted 
prices of index 

Fuzzy 
Relationship 

Groups 

Midpoints of 
intervals 

 
2010 1.485   →  20.005 

2011 13.88 20.005  30.649 
2012 21.89 30.649  37.646 
2013 29.064 37.646  52.064 
2014 44.96 52.064  72.148 
2015 60.39 72.148  99.132 
2016 69.98 99.132  128.569 
2017 99.956 128.569   
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Figure 1. Comparison graph of Actual and Forecasted prices of stock index 

In figure.1, it is shown that the actual prices of Gold prices of stock index from 
year 2010 to 2017 are near to forecasted prices obtained from fuzzy generalized 
auto-regressive conditional heteroscedasticity from year 2010 to 2017. This graph 
reflects the regular component which means year to year variation existing in the 
fuzzy forecasted prices which do not follow any pattern. In actual prices of stock 
index, from year 2010 to 2013, price pattern shows minor change in trend 
movement and from year 2013 to 2016 there is a slightly movement and from year 
2016 to 2017 there is a slightly downward movement seen in the prices pattern. The 
forecasted prices pattern shows slightly movement from year 2011 to 2013 and from 
2013 to 2015, there is a upward trend seen in prices trend. From year 2016 to 2017, 
drastic upward movement are seen in forecasted prices.  

 4.2. Comparison between (GARCH) (p,q) model and (FGARCH) (p,q) model 

It is important to know that, which model is performing best and give significant 
results among classical and proposed fuzzy models. Comparison between GARCH 
model and proposed FGARCH model is evaluated by using different estimation 
criteria. Results obtained through GARCH and proposed FGARCH models by using 
different evaluation methods are given in the table 5. 

From above evaluation empirically, criteria’s results of proposed Fuzzy 
Generalized Auto-Regressive Conditional Heteroscedasticity (Fuzzy-GARCH) is 
smaller and efficient than Generalized Auto-Regressive Conditional 
Heteroscedasticity (GARCH), which depict that proposed Fuzzy Generalized Auto-
Regressive Conditional Heteroscedasticity (Fuzzy-GARCH) perform effectively and 
efficient as compared to Generalized Auto-Regressive Conditional Heteroscedasticity 
(GARCH). 
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Table 5. Different evaluation criteria result obtained from GARCH and Proposed Fuzzy-
GARCH 

Evaluation criteria GARCH Fuzzy-GARCH 
Root Mean Square (RMSE) 72.5341 18.170093 

Mean Absolute Deviation (MAD) 62.009312 15.6507 
Mean Absolute Percentage Error (MAPE) 101.48869 2.339601 

Mean Square Error (MSE) 2081.9607 301.998 
Theil-U-Statistics  0.003212 

To determine whether proposed fuzzy GARCH is appropriate and best model in 
forecasting than GARCH, we compare the properties of the both classical and 
proposed model which are given below: 

i. Input and output information used in GARCH depend upon a previous 
function whereas in proposed FGARCH model information are totally based 
on the fuzzy function. 

ii. GARCH model work on the larger observation datasets whereas proposed 
FGARCH is applicable on small observation as well as larger observations. 

iii. GARCH model provides confidence interval whereas proposed FGARCH 
models give the possibility parameters intervals, which make informal for 
the forecasted to deal with the possible conditions. 

iv. GARCH deals with the conventional fact such as time-fluctuating volatility 
and volatility crowding, whereas proposed FGARCH deals with forecasting 
of volatility effect and give more accurate result than classical GARCH. 

From above comparison, proposed FGARCH model provides the best forecasted 
results and best scenario in possibility situation and provide to be effective in 
spotting the small data outliers. 

5. Conclusions 

This study is based on basic idea of Generalized Auto-Regressive Conditional 
Heteroscedasticity (GARCH) in forecasting the prices of stock exchange. A new 
method based on fuzzy theory is proposed with different mathematical computations 
and relate this computation in forecasting the stock exchange to determine the 
efficiency of this model with existing GARCH model. The pragmatic results of the 
MSE, MFE, MAPE, MAD and RMSE, normalized mean square error (NMSE) of FGARCH 
model shown in table 4.7 are smaller as compared to GARCH model, which indicates 
that proposed FGARCH forecasting accuracy is better and perform well than GARCH 
model. Theil –U-statistic of both models is equal to zero which depicts that 
Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH) and proposed 
fuzzy Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH) perfectly 
forecast the stock prices. The likelihood practice is sensitive to the preliminary value 
selection and the distribution of data. The presence of uncertainty in data series 
makes questionable of using the likelihood technique to resolve the uncertainty due 
to unknown distribution. This limitation is vital in aspects of the forecasting with low 
accuracy. Future research needs improvement in fuzzy GARCH model regarding 
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estimation of parameters and variability in order to improve the accuracy of model 
to forecast time series data.    

Appendix A: Stock Prices Index of Gold (base 2009-2017) 

Date 
Gold prices 

index 
Returns of 
Gold prices 

Date 
Gold prices 

index 
Returns of 
Gold prices 

12/31/2009 1134.72  1/31/2014 1244.27 0.018292 
1/31/2010 1117.96 -0.01499 2/28/2014 1299.58 0.04256 
2/28/2010 1095.41 -0.02059 3/31/2014 1336.08 0.027319 
3/31/2010 1113.34 0.016105 4/30/2014 1298.45 -0.02898 
4/30/2010 1148.69 0.030774 5/31/2014 1288.74 -0.00753 
5/31/2010 1205.43 0.04707 6/30/2014 1279.1 -0.00754 
6/30/2010 1232.92 0.022297 7/31/2014 1310.59 0.024027 
7/31/2010 1192.97 -0.03349 8/31/2014 1295.13 -0.01194 
8/31/2010 1215.81 0.018786 9/30/2014 1236.55 -0.04737 
9/30/2010 1270.98 0.043407 10/31/2014 1222.49 -0.0115 

10/31/2010 1342.02 0.052935 11/30/2014 1175.33 -0.04012 
11/30/2010 1369.89 0.020345 12/31/2014 1200.62 0.021064 
12/31/2010 1390.55 0.014857 1/31/2015 1250.75 0.04008 
1/31/2011 1360.46 -0.02212 2/28/2015 1227.08 -0.01929 
2/28/2011 1374.68 0.010344 3/31/2015 1178.63 -0.04111 
3/31/2011 1423.26 0.034133 4/30/2015 1198.93 0.016932 
4/30/2011 1480.89 0.038916 5/31/2015 1198.63 -0.00025 
5/31/2011 1512.58 0.020951 6/30/2015 1181.5 -0.0145 
6/30/2011 1529.36 0.010972 7/31/2015 1128.31 -0.04714 
7/31/2011 1572.75 0.027589 8/31/2015 1117.93 -0.00929 
8/31/2011 1759.01 0.105889 9/30/2015 1124.77 0.006081 
9/30/2011 1772.14 0.007409 10/31/2015 1159.25 0.029743 

10/31/2011 1666.43 -0.06344 11/30/2015 1086.44 -0.06702 
11/30/2011 1739 0.041731 12/31/2015 1075.74 -0.00995 
12/31/2011 1639.97 -0.06039 1/31/2016 1097.91 0.020193 
1/31/2012 1654.05 0.008512 2/29/2016 1199.5 0.084694 
2/29/2012 1744.82 0.052023 3/31/2016 1245.14 0.036655 
3/31/2012 1675.95 -0.04109 4/30/2016 1242.26 -0.00232 
4/30/2012 1649.2 -0.01622 5/31/2016 1260.95 0.014822 
5/31/2012 1589.04 -0.03786 6/30/2016 1276.4 0.012104 
6/30/2012 1598.76 0.00608 7/31/2016 1336.66 0.045083 
7/31/2012 1594.29 -0.0028 8/31/2016 1340.17 0.002619 
8/31/2012 1630.31 0.022094 9/30/2016 1326.61 -0.01022 
9/30/2012 1744.81 0.065623 10/31/2016 1266.55 -0.04742 

10/31/2012 1746.58 0.001013 11/30/2016 1238.35 -0.02277 
11/30/2012 1721.64 -0.01449 12/31/2016 1157.36 -0.06998 
12/31/2012 1684.76 -0.02189 1/31/2017 1192.1 0.029142 
1/31/2013 1671.85 -0.00772 2/28/2017 1234.2 0.034111 
2/28/2013 1627.57 -0.02721 3/31/2017 1231.42 -0.00226 
3/31/2013 1593.09 -0.02164 4/30/2017 1266.88 0.02799 
4/30/2013 1487.86 -0.07073 5/31/2017 1246.04 -0.01672 
5/31/2013 1414.03 -0.05221 6/30/2017 1260.26 0.011283 
6/30/2013 1343.35 -0.05261 7/31/2017 1236.84 -0.01894 
7/31/2013 1285.52 -0.04499 8/31/2017 1283.04 0.036008 
9/30/2013 1348.6 -0.00233 9/30/2017 1314.07 0.023614 

10/31/2013 1316.58 -0.02432 10/31/2017 1279.51 -0.02701 
11/30/2013 1275.86 -0.03192 11/30/2017 1281.9 0.001864 
12/31/2013 1221.51 -0.04449 12/31/2017 1264.45 -0.0138 
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