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Abstract: The present work evaluates the effects of different tribological process 
parameters on the measured responses such as hardness, coefficient of friction, surface 
roughness, wear mass loss and wear depth of duplex-TiAlN coated MDC-K tool steel 
material. The considered tribological process parameters are load, sliding velocity, and 
sliding distance. A full factorial design with 27 experimental runs is employed and 
based on the response values, an optimal combination of the tribological process 
parameters is subsequently determined. Different multi-objective optimization 
techniques, like overall evaluation criteria and fuzzy-based multi-criteria decision-
making methods (fuzzy evaluation based on distance from the average solution, fuzzy 
technique for order of preference by similarity to ideal solution, and fuzzy complex 
proportional assessment) are utilized to identify the optimal intermixes of the 
considered tribological process parameters. Sensitivity analysis with respect to 
changing weights of the responses is performed to validate the derived rankings of the 
trials, whereas the results of analysis of variance revealed the most significant 
parameters were influencing the responses. In addition to this, two different published 
problems related to optimization of wear parameters were solved using the proposed 
method to check its capability. 

Keywords: MDC-K tool steel, Duplex-TiAlN coating, Fuzzy MCDM, Sensitivity analysis, 
Optimization. 

1. Introduction 

MDC-K hot work tool steel contains a high percentage of chromium along with 
tungsten, molybdenum, and vanadium, which substantially enhances its mechanical 
and wear properties required for its application in the manufacturing of extrusion 
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dies, die casting dies, hot stamping dies, and forging dies. Untreated tool steel is 
commercially available with a hardness of ~22 HRC, constraining its application in 
die manufacturing. Therefore, heat treatment of tool steel becomes mandatory using 
different hardening processes to attain the desired levels of hardness and toughness. 
These properties of tool steel mainly depend on its chemical composition, alloying 
elements, and secondary carbides formation during the hardening processes (Joshy et 
al. 2019, Kumar et al. 2021a, and Soleimany et al. 2019). The alloying elements can be 
divided into two classes, i.e., one is responsible for carbide formation and the other is 
accountable for changing the tempering kinetics during the heat treatment process 
(Podgornik et al. 2018a and Podgornik et al. 2016b). 

Further, the hardened tool steel requires surface modifications, such as nitriding 
(gas nitriding, salt bath nitriding or plasma nitriding) and deposition of ceramic-
based hard coatings. Plasma nitriding has broader advantages over salt bath nitriding 
and gas nitriding. It allows much closer control of the microstructure during nitriding 
and is able to provide a surface without the formation of a compound layer. When 
plasma nitriding is integrated with the physical vapor deposition (PVD) process, it is 
known as duplex surface treatment. During plasma nitriding, nitrogen diffuses to the 
surface and forms two different zones, i.e., the compound zone and diffusion zone. 
The compound zone is made up of Fe4N and Fe2-3N, whereas, the diffusion zone is 
formed by diffused nitrogen atoms making the surface harder (Aghajani et al. 2017 
and Kumar et al. 2020a, 2022a). In addition to the application on nitride surfaces, 
ceramic coatings, such as TiN, CrN, TiAlN, TiCN, AlCrN, CrAlN, etc. have widely been 
employed in the manufacturing, tooling, and biomedical industries due to their high 
resistance to wear, oxidation, corrosion, chemical stability and biocompatibility 
(Chaliampalias et al. 2017, Prabhu et al. 2018, Kumar et al. 2020b, 2021b, 2022b, 
2021c and Patnaik et al. 2021a, 2021b, 2021c, 2021d, 2020a, 2022). Many 
researchers have observed excellent mechanical, wear, and corrosion properties of 
TiAlN film coatings (Fu et al. 2019 and Ozkan et al. 2020). Various experimental 
works have already been conducted to study the tribological, frictional, and wear 
behaviors of TiAlN coated surfaces under different conditions of normal load, sliding 
velocity, and sliding distance (Sen et al. 2020, Chowdhury et al. 2017, M’Saoubi et al. 
2013, Kumar et al. 2021d, 2022c and Kuo et al. 2018). However, investigations to 
study the influences of various tribological process parameters on the wear behavior 
of TiAlN coated surfaces remain unexplored. 

In addition to this, Saravanan et al. (2015 and 2016) and Patnaik et al. (2021e and 
2021f) adopted the Box-Behnken experimental design plan (L15 orthogonal array) 
and conducted 15 experiments to derive a suitable combination of process 
parameters for TiN coated SS 316L steel. Out of those 15 experimental runs, one 
experiment was repeated three times, resulting in performing only 13 actual 
experiments. Similar studies have been performed by Kumar et al. (2022d & 2022e), 
where L16 orthogonal array was adopted to perform the wear experiment for 
CrN/TiAlN coating. According to the authors, the use of a small set of experimental 
runs may not always be sufficient to determine the most suitable parameters for a 
specific process, and there should be sufficient experimental observations to study 
the process behavior. Moreover, in the earlier investigations, there has been limited 
participation of the decision makers and equal weights (relative importance) have 
usually been assigned to the considered responses. Thus, there is a huge opportunity 
to adopt different multi-criteria decision-making (MCDM) techniques allowing the 
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involvement of a group of decision makers in deciding the relative importance of 
various responses under a fuzzy environment. These MCDM techniques are very 
popular in the material selection for various applications (Maity and Chakraborty 
2013 and Prasad et al. 2014). To the best of the authors’ knowledge, the application 
of any of the fuzzy MCDM tools in studying the tribological properties of duplex-TiAlN 
coated MDC-K tool steel is really limited.  

Thus, this paper proposes a simultaneous application of three other fuzzy MCDM 
techniques, in the form of fuzzy technique for order of preference by similarity to 
ideal solution (F-TOPSIS), fuzzy evaluation based on distance from the average 
solution (F-EDAS) and fuzzy complex proportional assessment (F-COPRAS) methods, 
to investigate effects of different tribological process parameters, like load, sliding 
velocity and sliding distance on different responses, i.e. hardness, coefficient of 
friction, surface roughness, wear mass loss and wear depth of duplex-TiAlN coated 
MDC-K tool steel material. Based on the experimental observations, the most 
appropriate combination of those tribological process parameters is also singled out 
using each of the multi-objective optimization methods under consideration. All these 
fuzzy MCDM techniques are easy to comprehend, robust and mathematically sound. 
The fuzzy-TOPSIS method endeavors to identify the best alternative based on its 
minimum distance from the positive ideal solution and maximum distance from the 
negative ideal solution (Yu and Pan 2021; de Lima Silva et al. 2020 and Petrović et al. 
2019). On the other hand, the fuzzy-EDAS method assigns a ranking order to the 
candidate alternatives based on the positive and negative distances from the average 
solution (Keshavarz Ghorabaee et al. 2017). The fuzzy-COPRAS method selects the 
most apposite alternative considering both the positive ideal and negative ideal 
solutions while taking into account the performance of the alternatives with respect 
to different criteria and the corresponding criteria weights (Zhan et al. 2020). It 
adopts a step-wise ranking and evaluating procedure of the alternatives in terms of 
their significance and utility degree. It is worthwhile to mention here that as the 
considered multi-objective optimization techniques have different mathematical 
treatments and have their own advantages and disadvantages, the ranking lists of the 
alternatives derived using these methods are supposed to vary, and it would be 
interesting to identify the best performing mathematical tool that would lead to the 
attainment of the most desired responses for duplex-TiAlN coated MDC-K tool steel. 

2. Methodology 

2.1. Preparation of the specimen 

In this paper, chromium-rich MDC-K tool steel is used as the substrate material 
and its composition is provided in Table 1. The dimension of the sample (Ø55 mm 
and thickness 5 mm) is attained using a tool room lathe (Mysore KIRLOSKAR, Model: 
EP-2215) and high precision hydraulic surface grinding machine (Kingston, Model: 
KG-CL 3060 AH). The turned substrate is then heat-treated, followed by plasma 
nitriding. Vacuum hardening is performed at ~1080°C temperature in the absence of 
oxygen, whereas, quenching is performed in the same chamber in a nitrogen 
environment under a pressure of ~2 MPa. Application of tempering (at ~0.14 MPa 
gas pressure and cooled to ~92°C) helps to reduce extra hardness and brittleness 
while imparting enough toughness to the treated material. Hardness is measured 
using a Wilson Holbert micro-hardness testing machine, i.e., 460 HV. Furthermore, to 



Optimization of Wear Parameters for Duplex-TiAlN Coated MDC-K Tool Steel Using Fuzzy 
MCDM Techniques  

 

43 
 

increase the corresponding surface hardness, plasma nitriding is performed in 
presence of hydrogen (75%) and nitrogen (25%) at ~0.8 kV potential. 

Table 1. Composition of MDC-K tool steel 
Element Cr W V Mn C Si 

wt% 4.4 2 1.7 0.5 0.4 0.3 

The TiAlN coating is deposited on the plasma nitrided MDC-K tool steel surface 
using the magnetron sputtering method. Before the deposition process, the 
substrates are cleaned ultrasonically using an alkaline solution, followed by ethanol 
for 10-15 minutes. Later, distilled water is used to re-clean the substrate and is dried 
with ethanol. The substrate surface is then etched using titanium (Ti) ions under a 
pulse bias of -1000V with an 80% duty cycle for four minutes. The TiAlN film is finally 
deposited using titanium (Ti) and aluminum (Al) cathode (50:50) under a nitrogen 
gas pressure of 2.5 Pa. The DC bias is -40V and the temperature is maintained at 
~315oC for 30 min to attain a film thickness of 3.5 µm. 

2.2. Selection of process parameters 

Based on the full-factorial design plan, 27 experiments are conducted using 
DUCOM TR20LE Tribometer (ASTM: G99 standard) to investigate the effects of 
various tribological process parameters, like load, sliding velocity, and sliding 
distance on the considered responses, i.e., hardness, coefficient of friction, surface 
roughness, wear mass loss and wear depth of duplex-TiAlN coated MDC-K tool steel 
material. The past literature (Łępicka et al. 2017 & 2019, Ramezani et al. 2018, and 
Patnaik et al. 2020b, 2021g) suggests that load, sliding velocity, and sliding distance 
are the most influential parameters influencing the wear properties of TiAlN coated 
materials. During the experiments, the range of each of these parameters is decided 
based on pilot experiment runs. When the experiments are conducted at a load less 
than 10 N load, sliding velocity less than 0.1 m/s, and sliding distance less than 1000 
m, no significant effect on the wear properties is noticed due to the lower contact 
period between the pin and disc surfaces. At 20 N load, 0.3 m/s sliding velocity and 
2000 m sliding distance, a wider and deeper wear track is observed on the surface 
with heavy abrasion and erosion of the coating. High sliding velocity provides 
sufficient time to repeat the same contact point, and its combined effect with high 
load increases the interface temperature leading to deformation and erosion of the 
coating. Based on these results, the corresponding levels and ranges of the considered 
tribological parameters are determined, as exhibited in Table 2. 

Table 2. Experimental conditions 
Process parameters and their levels 

Process parameter Level Value 
Load (L) (in N) 3 10, 15, 20 

Sliding velocity (SV) (in m/s) 3 0.1, 0.2, 0.3 
Sliding distance (SD) (in m) 3 1000, 1500, 2000 

Uncontrollable Parameters 
Parameter Description 
Disc size 60 mm diameter × 8 mm thickness 
Pin size 8 mm diameter × 30 mm length 

Temperature Ambient 
Humidity Ambient 
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2.3. Fuzzy-TOPSIS method 

Three different fuzzy-based MCDM techniques viz. F-TOPSIS, F-COPRAS, and F-
EDAS are also employed for optimization of different tribological parameters to attain 
the most desired wear properties of duplex-TiAlN coated MDC-K tool steel. The 
TOPSIS method selects the most apposite alternative which is nearest to the positive-
ideal solution and farthest from the negative ideal solution. Based on the negative-
ideal solution, non-beneficial attributes get maximized and the beneficial attributes 
are minimized. On the other hand, based on the positive-ideal solution, beneficial 
attributes are maximized and non-beneficial attributes get minimized. Furthermore, 
the integration of fuzzy set theory with TOPSIS helps in dealing with ambiguity and 
subjectivity in the decision-making process. Usually, in a multi-objective parametric 
optimization problem involving a single decision maker/process engineer, equal 
importance is assigned to all the considered responses that also ease out the 
calculation steps. However, in a real-time machining environment, more than one 
decision maker participates in assigning importance to the varying responses. The 
ratings allotted to the responses are usually subjective and vary from one decision to 
the other. In this paper, in order to assign weight to each of the responses, the 
triangular linguistic fuzzy numbers of Table 3 is incorporated. In Table 4, the 
linguistic fuzzy weights allotted to the five responses by a panel of three decision 
makers are presented, which are finally aggregated in Table 5 to provide the 
corresponding fuzzy weights for all the responses.  

Table 3. Triangular linguistic fuzzy numbers 
Lowest LT (0, 0, 0.1) 
Lower LR (0, 0.1, 0.3) 

Low L (0.1, 0.3, 0.5) 
Medium M (0.3, 0.5, 0.7) 

High H (0.5, 0.7, 0.9) 
Higher HR (0.7, 0.9, 1) 
Highest HT (0.9, 1, 1) 

Table 4. Decision makers’ panel Table 5. Aggregated fuzzy weight 

Response 
Group of decision makers 

DM1 DM2 DM3 
Ra L M LR 

COF M L LR 
WML L M L 
WD M M L 
HV HR H HT 

 

Response Fuzzy weight 
Ra (0.133, 0.3, 0.5) 

COF (0.133, 0.3, 0.5) 
WML (0.17, 0.37, 0.57) 
WD (0.23, 0.43, 0.63) 
HV (0.7, 0.87, 0.97) 

 

The procedural steps of the F-TOPSIS method are elucidated below (Shivakoti et 
al. 2017): 

Step 1: Based on the experimental dataset consisting of 27 observations and five 
responses, develop the initial decision/evaluation matrix U = [uij]27×5, where uij is the 
observed value of jth response (j = 1, 2, 3, 4, 5) at ith experimental trial (i = 1, 2...,27).   

Step 2: In order to make the performance criteria values of the above decision matrix 
dimensionless and comparable, normalize all the elements using the vector 
normalization procedure.  
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where xij is the normalized value of uij.  

Step 3: Developed the fuzzy weighted normalized decision matrix ( ijN
~

) while 

multiplying all the elements of the normalized decision matrix by the corresponding 
fuzzy weights of the considered responses.  

Step 4: The fuzzy positive ideal solution  M  and fuzzy negative ideal solution 

 M  is needed to be calculated using Eq. (2) and Eq. (3) respectively. 
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Where,  1,2,3,4,5J   and  1,2,3,4,5J     J and J  associated with higher the 

better type and lower the better type respectively. In this paper, Ra, CoF, WML, WD 
are considered as lower the better and HV was considered as higher the better type.  

Step 5: The fuzzy Euclidean distance for each experimental result from the fuzzy 

positive ideal solution  id 
and fuzzy negative ideal solution  id 

is needed to be 

calculated using Eq. (4) and Eq. (5) respectively. 
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where, d is the distance between two fuzzy numbers. 

Step 6: Defuzzified the positive ideal solution  and negative ideal solution. 

Step 7:  Calculate the closeness coefficient (CoCi) for each experimental run as its 
proximity to the ideal solution. 

i
i

i i

d
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Step 8: Rank all the experimental runs based on the descending values of CoCi. 
Thus, the experimental run having the maximum CoCi value would be the best 
alternative, whereas, the worst alternative should have the minimum CoCi value.  

2.4. Fuzzy-COPRAS method 

The COPRAS method usually deals with quantitative information and the 
candidate alternatives are ranked based on the relative weights of various criteria. 
However, while solving real-time decision-making problems with incomplete or 
vague information, this method fails to provide an accurate ranking of the 
alternatives under consideration. To avoid this deficiency, the COPRAS method is 
combined with the fuzzy set theory in this paper Use the fuzzy technique to calculate 
the relative priority of responses/criteria using a fuzzy number rather than the 
precise number (Sun 2010). In this way, the fuzzy-COPRAs technique was proposed 
to deal with the insufficiency in the conventional COPRAS method. The weight of the 
responses/criteria and ranking of the alternatives are evaluated using linguistic 
terms denoted by a fuzzy number. The following steps are used to perform the fuzzy-
COPRAS decision-making Albayrak 2020). 

Step 1: Construct the normalized decision matrix using Eq. (1). 

Step 2: Construct the fuzzy weighted normalized matrix  X̂ using Eq. (7) and Eq. 

(8). 

ˆ
ij j ijX w x   (7) 

jw is the fuzzy weight of criteria. 
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Step 3: Calculate the sum of fuzzy beneficial and non-fuzzy beneficial responses 
values using Eq. (9) and Eq. (10) respectively. 

1

ˆ    1,2,3...., ;    1,2,3,......,
k

i ij

j

S x i m j n 
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k

i ij

j k

S x i m j k k k n 
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where, k denotes number of beneficial criteria and (n-k) denotes non-beneficial 
criteria. 

Step 4: Defuzzified the sum of beneficial and non-beneficial responses.  

Step 5: Determine the relative significance values (Qi) for each alternative using 
Eq. (11). 
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Step 6: Determine the performance score of each alternative (Pi) using Eq. (12) 
and Eq. (13). respectively. 

 max max      1,2,3,...,miQ Q i   (12) 

max

100%i
i

Q
P

Q
   (13) 

Based on the performance score (Pi), ranking of alternative was determined. 
Higher performance score was attributed to best alternative whereas, lowest 
performance score was attributed to the worst alternative. 

2.5. Fuzzy-EDAS method 

This method was developed by Ghorabaee et al. (2016), it needs a few 
computational steps to evaluate the process with good efficiency in comparison with 
other MCDM methods. Furthermore, it evaluates the alternatives based on the 
average solution for each response (criterion). In the present study, the EDAS method 
was integrated with the fuzzy numbers. The EDAS method is elaborated in fuzzy 
linguistic terms, which are further defined by the triangular fuzzy number (Table 3). 
In this method, the first step was to determine the average solution of each criterion. 
From the average solution, the positive and negative distance was calculated. The 
fuzzy weight of criteria was multiplied with positive and negative distance and then 
this value was normalized. Finally, an appraisal score was calculated for each 
alternative, and based on this score, a ranking of alternatives was derived. The 
following steps were used to determine the ranking using Fuzzy-EDAS (Polat and 
Bayhan 2020 and Stević et al. 2018; Vukasović et al. 2021). 

Step 1: Construct the average decision matrix (X) using following equation: 

ij n m
X x


     (14) 

1

1 k p

ij p ijx x
k

   (15) 

Where, the performance value of alternative  1iA i n  is represented by  

corresponding to the criteria  1ic j n  which assigned by the pth expert 

 1 p k  . 

Step 2: Determine the average solutions and form their corresponding matrix. 

1

j

m

AV av


 
   

 (16) 
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Where, jav denotes the average solution corresponding to each criterion. 

Step 3: Calculate the fuzzy positive and fuzzy negative distances from the average 
for beneficial and non-beneficial criteria. 
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Where fuzzy positive and fuzzy negative distances are denoted by
ijpda and

ijnda  

respectively for ith alternative from the average solution in term of jth criterion. 

Step 4: Calculate the fuzzy weighted sum of positive and negative distances for 
each alternative using following equations. 

1

m

i i j ijsp w pda
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Step 5: Normalize the value of fuzzy spi and fuzzy sni for each alternative as 
follows: 

max

i

i
i

i

sp
nsp

k sp


  

  
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  (24) 
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i

i
i

i
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nsn

k sn

 
  

  
  

 (25) 

Step 6: Defuzzified the fuzzy normalized value of
ijpda and

ijnda  for each 

alternative. 

Step 7: Determine appraisal score ( ) for each alternative using Eq. (26) 

 
1

2
i i ias nsp nsn   (26) 

Step 8: Finally, rank the alternatives based on their appraisal score. The highest 
score corresponds to the best alternative, while the lowest score corresponds to the 
worst alternatives. 

To understand the proposed MCDM methods, a combined procedural flow 
diagram is presented in Figure 1, where each step is connected to the other denoting 
process involved in the MCDM methods. 
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Figure 1. Combined procedural flow diagram for solving multi-objective problems 
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3. Results and discussion 

The tribological experiments were performed according to the full factorial 
design. Each test was repeated three times to ensure more accuracy in the measured 
response value. The average value of the responses is tabulated in Table 6. The 
performance characteristics of the duplex-TiAlN coating were analysed by obtaining 
Ra, COF, WML, WD, and HV. The experimental data were analysed to understand the 
effect of the tribological parameters on the measured responses. 

Table 6. Experimental design matrix with measured responses  
Experiment 

number 
(Alternative, EN) 

Tribological 
process 

parameters 
Responses (Criteria, C) 

 
L SV SD 

Ra, 
C1 

COF, 
C2 

WML, 
C3 

WD, 
C4 

HV,  
C5 

EN1 20 0.1 1000 2.4 0.39 40.28 4.12 1227 
EN2 15 0.1 2000 5.3 0.63 32.38 3.92 1213 
EN3 10 0.3 2000 8.3 0.92 21.08 2.92 1147 
EN4 20 0.2 1500 4.9 0.49 59.58 5.02 954 
EN5 15 0.3 1000 6.2 0.79 54.68 4.42 1201 
EN6 15 0.2 1000 5.5 0.68 30.08 3.82 1137 
EN7 20 0.2 1000 4.6 0.47 51.98 4.52 1126 
EN8 15 0.2 2000 5.9 0.74 27.08 4.12 1130 
EN9 10 0.1 2000 6.7 0.74 16.08 2.42 1798 
EN10 10 0.2 1000 6.6 0.75 11.68 1.92 1894 
EN11 20 0.3 1500 5.2 0.61 63.68 5.52 798 
EN12 10 0.1 1500 6.4 0.7 12.78 2.12 1911 
EN13 10 0.3 1500 8.1 0.89 16.08 2.42 1498 
EN14 20 0.3 2000 6.1 0.64 74.38 6.72 739 
EN15 15 0.1 1000 4.9 0.58 17.98 2.82 1405 
EN16 15 0.2 1500 5.7 0.71 41.18 4.22 1171 
EN17 10 0.1 1000 6.3 0.75 10.14 1.18 1917 
EN18 20 0.1 1500 3.1 0.41 46.68 4.32 1187 
EN19 15 0.3 2000 6.9 0.87 49.38 5.42 878 
EN20 10 0.3 1000 7.8 0.84 9.58 2.22 1471 
EN21 20 0.3 1000 4.3 0.58 57.08 4.82 1031 
EN22 10 0.2 2000 7.2 0.81 18.48 2.12 1784 
EN23 20 0.1 2000 3.7 0.43 50.58 4.82 992 
EN24 20 0.2 2000 5.4 0.52 62.28 5.42 912 
EN25 15 0.1 1500 5.1 0.61 22.18 3.42 1415 
EN26 15 0.3 1500 6.6 0.84 46.58 5.12 1115 
EN27 10 0.2 1500 6.7 0.79 9.67 1.14 1983 

3.1. Ranking of the alternatives using fuzzy MCDM methods 

The selection of the optimum conditions of the tribological process parameters 
was considered to reveal the applicability of fuzzy-TOPSIS, fuzzy-COPRAS, and fuzzy-
EDAS method. Previously, the applicable steps of the techniques were discussed. 
After obtaining the weightage of the responses in accordance with the decision of the 
decision-maker, different MCDM techniques were used to rank the alternatives. 
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3.1.1. Ranking of the alternatives using fuzzy-TOPSIS method 

Value of each response was normalized using Eq. 1 to obtain the normalized 
matrix (Supplementary Table 1) and this value was further multiplied with fuzzy 
weight of responses (Table 5) to construct the fuzzy normalized weighted matrix 
(Supplementary Table 2). With the help of positive and negative ideal solutions 
closeness coefficient value was determined for each alternative (Table 7) and based 
on this coefficient value ranking of the alternative was obtained. Experiment number 
EN27 (L = 10 N, SV = 0.2 m/s, and SD = 1500 m) secured first rank with highest 
closeness coefficient value (0.843) whereas experiment number EN14 (L = 20 N, SV = 
0.3 m/s, and SD = 2000 m) secured last rank with lowest closeness coefficient value 
(0.217) among all 27 number of experiments. 

Table 7. Coefficient of closeness and ranking of the alternatives 

Experiment 
number 

Positive ideal 

solution ( ) 

Negative ideal 
solution ( ) 

Closeness 
coefficient ( ) 

Rank 

EN1 0.178 0.300 0.628 11 
EN2 0.215 0.310 0.591 13 
EN3 0.237 0.285 0.546 16 
EN4 0.291 0.224 0.435 22 
EN5 0.295 0.229 0.438 21 
EN6 0.220 0.301 0.578 14 
EN7 0.248 0.273 0.524 17 
EN8 0.232 0.289 0.555 15 
EN9 0.137 0.415 0.752 5 
EN10 0.111 0.446 0.801 4 
EN11 0.335 0.176 0.344 25 
EN12 0.109 0.449 0.804 3 
EN13 0.187 0.350 0.651 10 
EN14 0.399 0.111 0.217 27 
EN15 0.140 0.393 0.737 6 
EN16 0.253 0.270 0.516 19 
EN17 0.088 0.473 0.843 2 
EN18 0.207 0.317 0.605 12 
EN19 0.344 0.168 0.328 26 
EN20 0.164 0.372 0.694 8 
EN21 0.278 0.239 0.462 20 
EN22 0.148 0.403 0.731 7 
EN23 0.247 0.269 0.521 18 
EN24 0.316 0.197 0.385 24 
EN25 0.166 0.368 0.689 9 
EN26 0.310 0.211 0.405 23 
EN27 0.088 0.473 0.843 1* 

*Most preferable setting of tribological process parameters 

3.1.2. Ranking of the alternatives using fuzzy-COPRAS method 

In this method normalization of response value was similar to the fuzzy TOPSIS 
method. Hence, the same normalized decision matrix (Supplementary Table 1) and 
fuzzy normalized weighted matrix (Supplementary Table 2) were used for the fuzzy 
COPRAS method. The next step was to calculate the relative significance value for 
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each alternative using Eq. 11 and the calculated value tabulated in Table 8. The 
relative significance value performance score was obtained using Eq. 13 and with the 
help of this value ranking of alternatives was determined (Table 10). The highest 
performance score (100) was determined for experiment number EN27 (L = 10 N, SV 
= 0.2 m/s, and SD = 1500 m) and lowest performance score (41.359) was determined 
for the experiment number EN14 (L = 20 N, SV = 0.3 m/s, and SD = 2000 m). 

Table 8. Performance score and ranking of the alternatives 
Experiment 

number 
Relative significance 

value (Qi) 
Performance 

score (Ui) 
Rank 

EN1 0.089 72.557 11 
EN2 0.081 66.523 13 
EN3 0.077 63.328 16 
EN4 0.065 53.273 23 
EN5 0.069 56.402 20 
EN6 0.080 65.073 14 
EN7 0.074 60.319 18 
EN8 0.078 63.344 15 
EN9 0.105 86.033 5 
EN10 0.114 92.962 4 
EN11 0.058 47.014 26 
EN12 0.114 93.270 3 
EN13 0.091 74.459 10 
EN14 0.051 41.359 27 
EN15 0.102 83.410 7 
EN16 0.074 60.617 17 
EN17 0.122 99.546 2 
EN18 0.082 66.837 12 
EN19 0.058 47.734 25 
EN20 0.097 78.944 8 
EN21 0.068 55.616 21 
EN22 0.102 83.656 6 
EN23 0.072 58.895 19 
EN24 0.061 50.247 24 
EN25 0.094 77.123 9 
EN26 0.066 53.966 22 
EN27 0.122 100.000 1* 

*Most preferable setting of tribological process parameters 

3.1.3. Ranking of the alternatives using the fuzzy-EDAS method 

In this method, initially, the average value of each response was calculated (Table 
6). In the next step, positive (PDAij) and negative (NDAij) distances from the average 
solution were calculated (Supplementary Table 3 and Supplementary Table 4 
respectively). Further, the fuzzy weight of the criterion was multiple with the value of 
positive and negative distances respectively, to obtain the fuzzy weighted sum of 

positive ( ) and negative distance ( ) from the average solution (Supplementary 
Table 5 and Supplementary Table 6 respectively). The next step is to calculate the 

normalized weighted sum of positive ( ) and negative ( ) distance from the 
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average solution (Table 9). Finally, the appraisal score was calculated using Eq. 21 for 
each alternative, and based on the appraisal score, a ranking of alternatives was 
derived (Table 9). Experiment number EN27 (L = 10 N, SV = 0.2 m/s, and SD = 1500 
m) was obtained first rank with the highest appraisal value (0.549) whereas 
experiment number EN14 (L = 20 N, SV = 0.3 m/s, and SD = 2000 m) was obtained last 
rank with the lowest appraisal value (0.070) among all 27 number of experiments. 

Table 9. Normalized weighted sum of positive and negative distance, appraisal score 
and ranking of the alternatives 

Experiment 
Number 

Normalized weighted 

sum of  

Normalized weighted 

sum of  

Appraisal 
value 

( ) 

Rank 

EN1 0.266 0.126 0.196 21 
EN2 0.932 0.016 0.474 3 
EN3 0.212 0.319 0.265 16 
EN4 0.136 0.579 0.358 10 
EN5 0.000 0.390 0.195 22 
EN6 0.065 0.129 0.097 26 
EN7 0.157 0.344 0.250 17 
EN8 0.090 0.190 0.140 24 
EN9 0.692 0.063 0.377 9 
EN10 0.849 0.066 0.458 4 
EN11 0.053 0.766 0.410 6 
EN12 0.837 0.032 0.435 5 
EN13 0.456 0.184 0.320 14 
EN14 0.070 0.073 0.072 27 
EN15 0.416 0.000 0.208 20 
EN16 0.002 0.205 0.104 25 
EN17 0.019 1.000 0.509 2 
EN18 0.235 0.233 0.234 18 
EN19 0.000 0.699 0.349 11 
EN20 0.520 0.148 0.334 12 
EN21 0.096 0.484 0.290 15 
EN22 0.675 0.116 0.395 7 
EN23 0.206 0.447 0.326 13 
EN24 0.104 0.662 0.383 8 
EN25 0.314 0.000 0.157 23 
EN26 0.000 0.452 0.226 19 
EN27 1.000 0.091 0.546 1* 

*Most preferable setting of tribological process parameters 

Thus, according to all the proposed MCDM methods, experiment number EN27 (L = 
10 N, SV = 0.2 m/s, and SD = 1500 m) was the most suitable parametric setting for the 
tribological test of duplex TiAlN coating. With this parametric setting, the desirable 
value of wear responses was obtained whereas, the undesirable value was obtained 
with the parametric setting of L = 20 N, SV = 0.3 m/s, and SD = 2000 m (experiment 
number EN14) and this parametric setting was the worst parametric seating 
suggested by all the proposed MCDM methods.  
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3.2. Sensitivity analysis 

Sensitivity analysis was conducted to understand the stability of the rankings 
under different sets of response weights (Table 10). Based on these weights, a 
ranking of alternatives was obtained using all the proposed MCDM methods (Fig. 2). 
There are four scenarios of a group of three decision makers (Table 10 (a-d)), and 
based on their opinion criteria weights were calculated (Table 10(a’-d’)).   

Table 10. Group of decision makers and fuzzy criteria weights 

(a) Opinion of the decision maker for scenario 1  

Responses 
Scenario 1 

DM1 DM2 DM3 
Ra M M LR 

COF L LR L 
WML L M M 
WD M M LR 
HV HT HT H 

 

 

(a’) Fuzzy criteria weight of scenario 1 
 Responses Fuzzy criteria weight 

Ra (0.200, 0.367, 0.567) 
COF (0.067, 0.233, 0.433) 

WML (0.233, 0.433, 0.633) 
WD (0.200, 0.367, 0.567) 
HV (0.767, 0.900, 0.967) 

 

(b) Opinion of the decision maker for scenario 2 

Responses 
Scenario 2 

DM1 DM2 DM3 
Ra LR L M 

COF M M L 
WML LT L M 
WD L L LR 
HV H HR HR 

 

(b’) Fuzzy criteria weight of scenario 2 
 Responses Fuzzy criteria weight 

Ra (0.033, 0.167, 0.367) 
COF (0.233, 0.433, 0.633) 

WML (0.133, 0.267, 0.433) 
WD (0.067, 0.233, 0.433) 
HV (0.567, 0.767, 0.933) 

 

(c) Opinion of the decision maker for scenario 3 

 Responses 
Scenario 3 

DM1 DM2 DM3 
Ra L LT L 

COF LR M L 
WML M LR M 
WD M L M 
HV HT H HR 

 

 

(c’) Fuzzy criteria weight of scenario 3 
 Responses Fuzzy criteria weight 

Ra (0.067, 0.200, 0.367) 
COF (0.133, 0.300, 0.500) 

WML (0.200, 0.367, 0.567) 
WD (0.233, 0.433, 0.633) 
HV (0.700, 0.867, 0.967) 

 

(d) Opinion of the decision maker for scenario 4 

  Responses 
Scenario 4 

DM1 DM2 DM3 
Ra LT L LR 

COF M LR M 
WML LT M M 
WD LR L L 
HV HR HT H 

 

 

(d’) Fuzzy criteria weight of scenario 4 
 Responses Fuzzy criteria weight 

Ra (0.033, 0.133, 0.300) 
COF (0.200, 0.367, 0.567) 

WML (0.200, 0.333, 0.500) 
WD (0.067, 0.233, 0.433) 
HV (0.700, 0.867, 0.967) 

 

The finding of sensitivity analysis for the F-TOPSIS method is represented in 
Figure 2(a). There are no changes observed in the ranking of experiment numbers 
EN6, EN9, EN10, EN11, EN12, EN14, EN19, and EN21 when the value of fuzzy weight was 
changed. But there were few changes observed in the ranking of experiment numbers 
EN1, EN2, EN13, EN15, EN17, EN20, EN22, EN24, EN25, EN26, and EN27. The ranking of the 
remaining experiment numbers was changed frequently and it was not stable at all. 
The sensitivity results of the F-COPRAS method (Figure 2(b)) showed that there was 
no effect of criteria weight change observed on the ranking of experiment numbers 
EN4, EN6, EN9, EN10, EN12, EN14, EN24, and EN26. Unlike the remaining experiment, 
numbers could not hold their actual ranking and there were changes observed with 
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criteria weight change. The F-EDAS method (Figure 2(c)) shows more consistent in 
their ranking of the experiment numbers against criteria weight change and the 
experiments are EN2, EN3, EN6, EN8, EN10, EN11, EN12, EN14, EN16, EN17, EN21, EN22, 
EN25, and EN27. But there were few experiments (EN5, EN7, EN9, and EN15) whose 
ranking slightly changed with criteria weight change. The rest of the experiment 
number changes its ranking frequently against criteria weight change.  
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Figure 2. Result of the sensitivity analysis for different ranking methods viz; (a) F-
TOPSIS, (b) F-COPRAS, and (c) F-EDAS. 

From sensitivity analysis, it was noted that the F-EDAS method was less sensitive 
to criteria weight change compared to F-TOPSIS and F-COPRAS methods. Moreover 
was, it noticed that ranking of the best alternative (experiment number EN27) was 
changed with criteria weight change in F-TOPSIS and F-COPRAS methods. Thus, it can 
be said that the stability of the ranking given by the F-EDAS was the highest 
compared to F-TOPSIS and F-COPRAS methods. Thus, F-EDAS was the more robust 
method to solve this kind of multi-attributed problem. These obtained results were 
further validated by a comparative study, where Spearman’s rank correlation 
coefficient was calculated for each scenario of MCDM methods. 

3.2.1. Comparison of MCDM methods 

Spearman’s rank correlation coefficient for F-TOPSIS methods is shown in Table 
11(a). The correlation coefficient value of each scenario shows that there is a lack of 
inconsistency in the ranking of the F-TOPSIS method according to different fuzzy 
criteria weights. From Table 11(a), it can be seen that the correlation coefficient value 
for scenario-(1-2), scenario-(1-3), scenario-(1-4), scenario-(2-3), scenario-(2-4) and 
scenario-(3-4) are 0.989, 0.996, 0.998, 0.985, 0.989 and 0.996 respectively. It can be 
said that coefficient values are varying from 0.985 to 0.996. Similarly, for F-COPRAS 
method (Table 11(b)) the correlation coefficient is obtained for scenario-(1-2), 
scenario-(1-3), scenario-(1-4), scenario-(2-3), scenario-(2-4) and scenario-(3-4) are 
0.992, 0.998, 0.997, 0.989, 0.993 and 1.000 respectively. Here the coefficient values 
are varying from 0.989 to 1.000 and this range is higher than the F-TOPSIS range of 
spearman coefficient value. For the F-EDAS method (Table 11(c)), the value of 
correlation coefficient value for all the scenarios is higher than 0.990. In other words, 
it can be said that the Spearman correlation coefficient for the scenario the of F-EDAS 
method is higher than the F-TOPSIS and F-COPRAS methods. Based on the overall 
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results of sensitivity analysis and correlation coefficient the F-EDAS method is the 
most robust method to solve the multi-attribute decision-making problem. 

Table 11. Spearman’s rank correlation coefficient 

(a) Coefficient values for F-TOPSIS 
Scenarios  S2 S3 S4 

S1 0.989 0.996 0.998 
S2  - 0.985 0.989 
S3  - -  0.996 

 

(b) Coefficient values for F-COPRAS 
Scenarios  S2 S3 S4 

S1 0.992 0.998 0.997 
S2  - 0.989 0.993 
S3  - -  1.000 

 

(c) Coefficient values for F-EDAS 
Scenarios  S2 S3 S4 

S1 0.990 0.995 0.994 
S2 - 0.993 0.999 
S3 - - 0.996 

 

3.3. Other wear parameter optimization problems solved by the proposed 

methodology 

In this section, the proposed methodology solves two wear optimization 
problems, which have already been solved and published elsewhere. The first 
problem is the optimization of wear parameters for composite coating, while the 
second problem is to optimize the wear parameters for heat-insulated ceramic 
coating. 

3.3.1. Optimization of wear parameter for composite coating 

This optimization problem was solved using the gray relation analysis (GRA) 
method (Raghavendra et al. 2021). Table 12 presents the alternatives for wear 
parameters and their criteria, based on which alternatives were ranked. Each 
criterion presented in Table 12 was identified as non-beneficial criteria, and the 
criteria weight (Table 14) was derived using the opinion of decision-makers as 
mentioned in Table 13.  

Table 12. List of alternatives and their criteria (Initial decision matrix) method 
(Raghavendra et al. 2021) 

Alternative 
(Specific wear 

rate, Ws) C1 
(Pin Temperature, PT) 

C2 
(Friction Coefficient, CoF) 

C3 
EN1 0.3330 91.990 0.123 
EN2 0.3470 92.140 0.038 
EN3 0.8750 98.340 0.144 
EN4 0.2520 90.760 0.089 
EN5 1.1900 94.840 0.153 
EN6 0.4000 73.960 0.089 
EN7 1.5550 105.990 0.116 
EN8 0.4770 78.660 0.011 
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EN9 0.4750 88.760 0.065 
EN10 0.8530 87.810 0.627 
EN11 0.2920 86.910 0.046 
EN12 0.6411 80.120 0.103 
EN13 0.7020 93.690 0.112 
EN14 1.2400 90.160 0.035 
EN15 1.1710 111.780 0.119 
EN16 0.7840 91.920 0.459 
EN17 2.1320 110.380 0.104 
EN18 1.4450 95.910 0.099 
EN19 1.5500 88.480 0.119 
EN20 1.3700 117.190 0.016 

Table 13. Opinion of the decision maker 
for problem 1 

Table 14. Fuzzy criteria weight for 
problem 1 

Response DM1 DM2 DM3 
Ws LR LR L 
PT L M M 

CoF L L M 
 

Responses Fuzzy criteria weight 
Ws (0.033, 0.100, 0.233) 
PT (0.233, 0.433, 0.633) 

CoF (0.167, 0.367, 0.567) 
 

One by one, each MCDM method (F-TOPSIS, F-COPRAS, and F-EDAS) was 
employed to derive the ranking of alternatives (Table 15). From the obtained results 
(Table 15), it was noticed that the ranking of the best alternative (EN6) remains 
similar to it obtained in the past study method (Raghavendra et al. 2021) [36]. 
Further, the correlation between rankings was studied by calculating Spearman’s 
rank correlation coefficient. It found these rankings have a good correlation as their 
coefficient value lies above 0.767, in the acceptable range.  

Table 15. Coefficient of closeness, performance score, appraisal score of alternatives, 
and its ranking 

Alternative 

F-TOPSIS F-COPRAS F-EDAS 
Rank method 

(Raghavendra 

et al. 2021) 

Closeness 
coefficient 

(CoCi) 
Rank 

Performance 
score (Ui) 

Rank 
Appraisal 

value 
( ) 

Rank 
 

EN1 0.643 10 8.878 10 0.623 10 8 
EN2 0.640 11 8.854 11 0.871 3 4 
EN3 0.499 16 7.762 16 0.485 17 12 
EN4 0.670 9 9.123 9 0.740 8 5 
EN5 0.579 14 8.338 14 0.463 18 15 
EN6 1.000 1 13.734 1 1.000 1 1 
EN7 0.313 17 6.676 17 0.499 14 18 
EN8 0.915 2 12.147 2 0.804 4 2 
EN9 0.713 7 9.539 7 0.789 6 7 
EN10 0.718 6 9.553 6 0.036 20 19 
EN11 0.752 4 9.952 4 0.883 2 3 
EN12 0.886 3 11.698 3 0.695 9 6 
EN13 0.605 13 8.556 13 0.593 11 10 
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EN14 0.683 8 9.232 8 0.792 5 9 
EN15 0.162 19 6.009 19 0.497 16 16 
EN16 0.637 12 8.807 12 0.196 19 17 
EN17 0.199 18 6.147 18 0.498 15 20 
EN18 0.555 15 8.153 15 0.571 12 14 
EN19 0.718 5 9.569 5 0.534 13 13 
EN20 0.018 20 5.468 20 0.786 7 11 

3.3.1. Optimization of wear parameter for heat-insulated ceramic coating 

The WASPAS method was used to solve this optimization problem by Sahoo et al. 
in the past study (Sahoo et al. 2021). The evaluating criteria and alternative wear 
parameters are listed in Table 16. There are two criteria, namely weight loss, and 
friction coefficient, which are identified as non-beneficial criteria. The weights (Table 
18) of these criteria were obtained based on the decision of the expert panel (Table 
17). 

Table 16. List of criteria and alternatives (Sahoo et al. 2021) 

Alternative 
(Weight loss (Wl), mg) 

C1 
(Friction coefficient (CoF), µ) 

C2 
EN1 0.19 0.077 
EN2 0.60 0.084 
EN3 4.70 0.026 
EN4 5.10 0.040 
EN5 3.50 0.079 
EN6 9.20 0.064 
EN7 14.20 0.080 
EN8 9.30 0.080 
EN9 9.90 0.067 
EN10 20.20 0.090 
EN11 11.20 0.087 
EN12 17.00 0.057 
EN13 19.20 0.078 
EN14 13.50 0.070 
EN15 9.20 0.170 
EN16 9.20 0.063 

Table 17. Opinion of the decision 
maker for problem 2 

Table 18. Fuzzy criteria weight for 
problem 2 

 Response DM1 DM2 DM3 
Wl LT LR L 

CoF L L M 
 

 Response Fuzzy criteria weight 
Wl (0.033, 0.133, 0.300) 

CoF (0.167, 0.367, 0.567) 
 

The obtained criteria weights were integrated with MCDM methods as described 
in sections 2.4, 2.5, and 2.6 to derive the ranking of alternatives. The derived rankings 
are listed in Table 19, and a minor deviation can be observed in the ranking of 
alternatives. But this deviation does not affect the overall results. The ranking of the 
best alternative remains the same for each MCDM method, which exactly matches the 
past result (Sahoo et al. 2021). Although, these rankings have an excellent correlation 
among them as Spearman’s rank correlation coefficient values are equal and more 
than 0.85. 
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Table 19. Final preference values of alternatives and its ranking 

Alternative 

F-TOPSIS F-COPRAS F-EDAS 
Rank 

(Sahoo et 
al. 2021) 

Closeness 
coefficient 

(CoCi) 
Rank 

Performance 
score (Ui) 

Rank 
Appraisal 

value 
( ) 

Rank 
 

EN1 0.988 1 246.310 1 0.731 1 1 
EN2 0.985 2 199.395 2 0.683 4 3 
EN3 0.948 4 75.490 4 1.000 3 2 
EN4 0.938 5 61.938 5 0.885 2 4 
EN5 0.962 3 88.167 3 0.638 5 5 
EN6 0.797 7 19.312 7 0.602 7 7 
EN7 0.520 13 8.259 13 0.400 13 12 
EN8 0.789 8 18.375 8 0.489 10 11 
EN9 0.765 9 16.726 9 0.563 8 9 
EN10 0.049 16 4.137 16 0.242 15 15 
EN11 0.696 11 12.859 11 0.415 12 13 
EN12 0.321 14 5.900 14 0.515 9 8 
EN13 0.131 15 4.597 15 0.323 14 14 
EN14 0.567 12 9.189 12 0.478 11 10 
EN15 0.755 10 14.560 10 0.014 16 16 
EN16 0.797 6 19.344 6 0.610 6 6 

3. Conclusions 

This study focuses on the optimization of the wear parameters for duplex-TiAlN 
coated MDC-K tool steel. Three different fuzzy MCDM methods were proposed to 
solve this optimization problem. A total of five wear responses, namely surface 
roughness, friction coefficient, wear mass loss, wear depth, and hardness, were 
identified as the criteria to evaluate the alternatives, which consist of different 
combinations of wear parameters such as applied load, sliding velocity, and sliding 
distance. The criteria weight was determined using triangular fuzzy numbers that are 
integrated into fuzzy MCDM methods to solve the problem. The following conclusions 
are drawn from the results: 

 The obtained results showed that alternative EN27 (L = 10 N, SV = 0.2 m/s, and 
SD = 1500 m) to be the best alternative whereas EN14 (L = 20 N, SV = 0.3 m/s, 
and SD = 2000 m) as the worst alternative parameters for duplex-TiAlN coated 
MDC-K tool steel.  

 These results were tested and validated by performing a comprehensive 
sensitivity analysis. Additionally, two sets of wear parameters from the 
literature were also solved using the proposed methodology to substantiate its 
capability. The result obtained from the proposed methodology was found 
similar to the result obtained in the literature. 

 The validation result proved that the F-EDAS method is more robust and less 
sensitive to the criteria weight change. Hence, it can be further used to solve 
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this type of multi-decision-making problem with some modifications (either 
addition or removal of new alternatives or criteria). 

The proposed methodology is designed to solve the multi-criteria such as the 
selection of optimal parameters for duplex-TiAlN coating, where three wear 
parameters (load, sliding velocity, and sliding distance) and five wear responses (Ra, 
COF, WML, WD, and Hv) were considered to solve the above problem. Further, It was 
noticed that if some new evaluating criteria were introduced, the calculation process 
becomes lengthy which grows exponentially for high-dimensional decision-making 
problems. 
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Appendix  
Nomenclature 

L Load (N) FT Fuzzy-TOPSIS 
SV Sliding velocity (m/s) FC Fuzzy-COPRAS 
SD Sliding distance (m) FE Fuzzy-EDAS 

Ra 
Average surface 
roughness (µm) 

TOPSIS 
Technique for order of preference by 

similarity to ideal solution 
CoF Coefficient of friction  COPRAS Complex proportional Assessment 

WML Wear mass loss (mg) EDAS 
Evaluation based on distance from 

the average solution 
WD Wear depth (µm) S1 Scenario 1 
HV Vickers hardness S2 Scenario 2 
EN Experiment number S3 Scenario 3 

MCDM 
Multi-criteria decision 

making 
S4 Scenario 4 

 


	Optimization of wear parameters for duplex-TiAlN coated mdc-k tool steel using fuzzy mcdm techniques
	Sunil Kumar 1, 2, Saikat Ranjan Maity 1*, Lokeswar Patnaik 3
	1. Introduction
	2. Methodology
	2.1. Preparation of the specimen
	2.2. Selection of process parameters
	2.3. Fuzzy-TOPSIS method
	2.4. Fuzzy-COPRAS method
	2.5. Fuzzy-EDAS method

	3. Results and discussion
	3.1. Ranking of the alternatives using fuzzy MCDM methods
	3.1.1. Ranking of the alternatives using fuzzy-TOPSIS method
	3.1.2. Ranking of the alternatives using fuzzy-COPRAS method
	3.1.3. Ranking of the alternatives using the fuzzy-EDAS method

	3.2. Sensitivity analysis
	3.2.1. Comparison of MCDM methods

	3.3. Other wear parameter optimization problems solved by the proposed methodology
	3.3.1. Optimization of wear parameter for composite coating
	3.3.1. Optimization of wear parameter for heat-insulated ceramic coating


	3. Conclusions
	References



