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Abstract: Finite Element Method (FEM) has deservedly gained the reputation of the 
most powerful numerical method in the field of structural analysis. It offers tools to 
perform various kinds of simulations in this field, ranging from static linear to 
nonlinear dynamic analyses. In recent years, a particular challenge is development of 
FE formulations that enable highly efficient simulations, aiming at real-time dynamic 
simulations as a final objective while keeping high simulation fidelity such as nonlinear 
effects. The authors of this paper propose a simplified corotational FE formulation as a 
possible solution to this challenge. The basic idea is to keep the linear behavior of each 
element in the FE assemblage, but to extract the rigid-body motion on the element level 
and include it in the formulation to cover geometric nonlinearities. This paper 
elaborates the idea and demonstrates it on static cases with three different finite 
element types. The objective is to check the achievable accuracy based on such a 
simplified geometrically nonlinear FE formulation. In the considered examples, the 
difference between the results obtained with the present formulation and those by 
rigorous formulations is less than 3% although fairly large deformations are induced.  
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1. Introduction  

Structural analysis is an important engineering discipline encountered in various 
fields of mechanical and civil engineering. Reliable, accurate and efficient predictions 
of structural behavior in general, and deformations in particular, are of crucial 
importance for successful design and optimization of structures, testing their 
functionality, prediction of their load-carrying capacity and life-time, etc. Recently, 
this aspect started gaining in importance in some modern fields as well, such as 
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interactive simulations, where physics-based simulation are supposed to increase 
the realism of various applications.  

Until several decades ago, computations in the field of structural analysis were 
performed mainly analytically by implementing significant simplifications. Those 
simplifications have made the models mathematically tractable, but seriously 
affected the accuracy of the obtained results and therewith their reliability. However, 
the development of modern hardware tools has set the ambient for development of 
modern numerical methods for this purpose and the development of computer aided 
engineering (CAE) software packages skyrocketed. Those programs offered a great 
assistance to engineers in the previous decades.  

Among different methods, the Finite Element Method (FEM) has established itself 
as the method of choice for all problems characterized by complex domains, 
arbitrary boundary conditions and described by partial differential equations. 
Problems in the field of structural analysis fit perfectly well into this description and 
this is why structural analysists have initiated the development of this powerful 
method and made the very first steps (Turner et al., 1956). Its general applicability to 
many other engineering fields was later recognized and richly used.  

Initial developments of FEM were done for the least complicated but quite often 
encountered problems of structural analysis, namely the linear static problems. 
Those problems are characterized by slowly increasing loads of constant direction, 
constant geometric boundary conditions and quite small deformations, so that the 
initial and deformed structural configurations are almost identical. Those 
assumptions imply that the balance can be considered over the initial configuration 
(Bathe, 1996). It is a straightforward task to extend the FE formulations from linear 
static to linear dynamic cases and it basically comes down to extending the 
equations by including inertial and damping effects.  

However, high level of structural optimization implies exploitation of structures 
to the levels quite close to their limits. In such cases, structural deformations are not 
small any more and more sophisticated FE formulations were needed to meet the 
objectives. Total Lagrange and updated Lagrange formulations have set the 
standards in commercially available FE codes. The essential difference between the 
two lies in the choice of the reference configuration. Principally it could be any 
configuration between the initial one and the last determined one, but the common 
sense choice would be to use either the initial one (total Lagrange formulation) or 
the last determined one (updated Lagrange formulation). Different strain and stress 
measures are used in those two formulations and building the tangential stiffness 
matrix also reflects those differences, but numerics of the two formulations is 
essentially the same and the choice between the two is basically a matter of taste.   

Another interesting formulation, namely the corotational FE formulation, 
appeared several decades ago. Related to FEM the term ‘corotational’ was used for 
the first time in a paper by Belytschko and Hseih (1979). The idea to cover geometric 
nonlinearities by attaching a corotational frame to single elements was introduced 
by Horrigmoe and Bergan (1978). The work in this direction continued under the 
supervision of Bergan and the developments were summarized in a survey article by 
Nygard and Bergan (1989). Crisfield (1990, 1997) and Crisfield & Moita (1996) 
introduced “consistent CR formulation” by developing the stiffness matrix as the 
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actual variation of the internal force. Rankin and Brogan (1986) proposed the 
concept of element independent corotational formulation. A high-quality survey of 
these developments and a detailed analysis of their properties was provided by 
Felippa and Haugen (2005).  

This paper suggests a corotational (CR) FE approach that offers a trade-off 
between numerical efficiency and achievable accuracy by simplifying the rigorous 
corotational FE formulation. The idea is to offer a FE formulation that would be of 
high interest for specific applications such as multi-body system dynamics, where 
parts exhibit large rigid-body deformations but small strains, or applications 
involving real-time simulations. In this paper, the achievable accuracy will be tested 
with a few basic solid and shell elements in cases involving large local rigid-body 
rotations.  

2. Simplified CR formulation and implemented elements 

2.1. Basic principles of the simplified CR formulation  

While the linear FE formulations offer very efficient and stable computations, the 
nonlinear formulations are very time consuming and prone to computational 
stability issues, as they might not necessarily produce converged solutions. On the 
other hand, linear formulations are accurate only for small deformations, but 
geometrically nonlinear formulations offer engineering accuracy for large 
deformations involving arbitrarily large rigid-body rotations.  While one would wish 
to have advantages of both formulations in one formulation, it is certainly not 
possible to have all the advantages to the full extent. But a formulation may offer a 
kind of trade-off or a compromise between those.  

The formulation that will be explained here follows the idea of element-based CR 
formulation. Hence, the basic concept is to attach a coordinate system to an element 
and keep the linear FE formulation of the element with respect to this coordinate 
system. The attached coordinate system follows the element in its rigid-body motion. 
As the elastic behavior of the element remains linear with respect to the attached 
coordinate system, this implies that the element matrices are computed only once for 
this coordinate system. As deformation proceeds, it is necessary to determine the 
motion of the attached coordinate system, or, in other words, to determine the 
element rigid-body motion. Once this is described by the element rotational matrix, 
Re, the related element matrices and vectors can be rotated to the current 
configuration and the assemblage of the global matrices and vectors can be done for 
further computation.  

Hence, the element elastic behavior is described as linear with respect to the 
attached corotational frame and the element stiffness matrix with respect to this 
frame is not updated. In this manner, the local element deformation and the stress 
state is neglected from the consideration of geometrically nonlinear effects, thus 
simplifying the formulation significantly compared to the rigorous nonlinear 
formulations. The formulation keeps the very important aspect of geometric 
nonlinearity, namely the rigid-body rotation that is accounted for on the element 
level. In continuum every point exhibits its own rigid-body rotation, generally 
speaking. Obviously, this aspect is described here in a coarser way, as it is always the 
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case with methods that apply discretization. But one may arbitrarily adjust the 
‘resolution’ of accounting for rigid-body rotation by performing finer or coarser FE 
meshing.  

Hence, assuming the element rigid-body rotation between the initial and the 
current configuration is known and given as the rotation matrix Re, the element 
stiffness matrix, Ke, is update with respect to the global coordinate system in a 
straightforward manner:  

Tt0tt

eeee RKRK = , (1) 

where the left superscript denotes the moment in time at which the term is given. 
This simple way of updating the element stiffness matrix is where the efficiency of 
the method resides. Not only is the tangential stiffness matrix efficiently updated, but 
also its condition number does not change dramatically in this manner, so that the 
stability of computation is kept to a large extent. This is not always the case with 
rigorous nonlinear FE formulations in which single elements may suffer significant 
deformations, and, as a consequence, the solution may not converge.  

In order to perform nonlinear computations, one needs the tangential stiffness 
matrix, the update of which was elaborated above, and the internal forces. In order 
to determine the internal forces, deformational displacements and rotations are 
required. Those are obtained when the rigid-body rotation is removed from the 
overall element displacements. This procedure is best explained using Figure 1. In 
this figure, a tetrahedron element is shown in its original and an arbitrarily deformed 
configuration. Again, it is assumed that the rigid-body rotation of the element is 
known. It is sufficient to rotate the deformed element back to the original element 
configuration. By comparing so obtained element configuration with the initial one, 
one obtains deformational displacements.  

 

Figure 1. Extraction of deformational displacements for a tetrahedron element  

Hence, the expression for the deformational displacements reads:  

eee xxRu 0tTt

R

t

0 −= , (2) 

where xe denotes the element configuration, i.e. those are the nodal coordinates of all 
element nodes. With the known deformational displacements, one may simply 
multiply those with the element stiffness matrix for the initial configuration to obtain 
the internal forces with respect to the initial configuration. The internal forces are 
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the rotated to the current configuration. Those steps are summarized in the 
following expression:  

eeeeeeeeee xKRxRKRFRF
00ttTt0tt

0

tt

t −== , (3) 

If finite elements contain rotational degrees of freedom, the procedure is 
essentially the same for rotations, as illustrated in Figure 2.  

 

Figure 2. Extraction of deformational rotations for a shell element  

With the incremental nodal rotations, t-ti1, t-ti2 and t-ti3, the element 
nodal normals are updated by means of the rotation matrix Qi (Argyris, 1982):  
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so that 
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After rotating the element from the current to initial orientation, it is a 
straightforward task to compute the internal moments and rotate them again to the 
current configuration in an analogous manner as done above with the forces.  

2.2. Finite elements implemented into the formulation  

So far three finite elements have been implemented into the proposed simplified 
CR formulation – two solid elements and one shell element.  
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The solid elements are the linear tetrahedron element and the quadratic 
hexahedron element.  The linear tetrahedron element is notorious for its too stiff 
behavior and is, therefore, often avoided in modeling. However, it has two nice 
properties. It is numerically very efficient and can discretize any geometry. Actually, 
the second advantage makes it often inevitable in FE models in order to model some  

 

Figure 3. Linear tetrahedron element (left) and quadratic hexahedron element (right) 

areas of the model that are otherwise too difficult to discretize. In addition, this 
element is characterized by unambiguity of the rotation matrix. There is a single, 
unique rotation matrix describing the rigid-body rotation of this element, which is 
not the case with most of the finite elements. For any two given configurations of the 
element there is a unique matrix that transforms the element from one configuration 
to the other one. This is due to the fact that the element employs the linear shape 
functions, so that the deformation gradient has a constant value over the whole 
element domain. Polar decomposition of this transformation matrix yields the 
rotation matrix.  In order to obtain reasonable results with this element, a quite fine 
discretization is required. But this also increases the “resolution” of accounting for 
the rigid-body rotation, which is a positive aspect regarding the corotational FE 
approach. Nguyen et al. (2016) have used this element in combination with a 
corotational FE approach that implements the projector matrix for the sake of better 
result convergence.  

The quadratic hexahedron element is in most aspects the opposite of the linear 
tetrahedron element. It offers the best accuracy among solid elements (apart from 
those that use special techniques), but is numerically very demanding and requires 
partitioning of complex geometries for successful meshing, whereby the ‘corners of 
the geometry’ will still require tetrahedron elements. The rotational matrix is not 
unique for the element, i.e. it differs for different points within the element domain. 
Hence, it is ambiguous and one has to decide what strategy to use in order to 
determine it. It may be determined by local coordinate systems defined in a special 
ways by using the current nodal positions. A better option would be to use the 
deformational gradient at some point of the element, whereby the element centroid 
appears to be a natural choice – exactly this option was applied in this work. The 
best, but also the most demanding option would be to obtain some kind of average 
rotational matrix of the element. It is so far, however, an open question with respect 
to what criteria the averaging is to be performed. 

The implemented shell element is a linear triangular shell element (Figure 4) 
recently developed (Rama et al., 2018, 2018a, 2018b, Marinkovic et al., 2019). 
Essentially, the element is a combination of a plate element and a membrane 
element. It implements the Mindlin-Reissner kinematics and uses the Discrete Shear 
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Gap (DSG) method (Li et al., 2019) in combination with the strain smoothing 
technique to alleviate the notorious shear locking. The membrane part of the element 
is actually the ANDES membrane formulation developed by Felippa and Militello 
(1992). Similarly to the linear tetrahedron element, this one also has a unique 
rotational matrix, can discretize any surface geometry and is numerically highly 
efficient. Due to the flat shape of the element, the discretized geometry is actually 
faceted, which affects the achievable accuracy.  

 

Figure 4. Linear triangular shell element 

3. Numerical examples 

In what follows, three examples of large deformations, each for one type of 
implemented elements, will be considered in order to investigate the achievable 
accuracy by means of the proposed corotational FE formulation. The major purpose 
is the comparison of computed displacements obtained by rigorous geometrically 
nonlinear FE formulation (computed in Abaqus) and those obtained by the presented 
development. In accordance with this objective, all quantities will be given as 
dimensionless. The selected examples are of academic nature involving structures of 
rather simple geometry. Sufficiently large loading will be chosen to produce 
geometrically nonlinear deformations, i.e. those that significantly differ from 
deformations computed by the linear formulation.  

2.1. Solid elements  

The same structure, which may be referred to as a block, with dimensions 
10101.5 and clamped over one surface with dimensions 101.5 will be discretized 
with both tetrahedron and hexahedron element. The geometry with kinematic 
boundary conditions is depicted in Figure 5, left. The material is linear elastic with 
the following properties: Young’s modulus E=21011 and Poisson ration =0.3. The 
load cases are chosen to be different for the discretization with the tetrahedron 
element and for the discretization with the hexahedron element. In both cases the 
force is set to be F=1010 in order to produce sufficiently large, geometrically 
nonlinear deformations. As shown in Figure 5, middle, in the case of discretization 
with the tetrahedron element, the force acts only at one corner of the structure so as 
to bend and twist it at the same time. Figure 5, right, shows discretization with the 
hexahedron element and the load case with a pair of oppositely oriented forces that 
cause twisting of the considered structure. 
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Figure 5. Block structure: geometry and kinematic boundary conditions (left), load 
cases and discretization with tetrahedrons (middle) and hexahedrons (right) 

In order to visualize the deformations and get the feeling for the magnitude of 
deformation, the unscaled deformations (i.e. scale factor set to 1) are depicted in 
Figures 6 (the FE model with tetrahedron elements and one force) and 7 (the FE 
model with hexahedron elements and two forces) together with the undeformed 
structure. The structure is shown from different perspectives. Obviously, the 
magnitude of deformation is well beyond the realm of linearity.  

 

Figure 6. Deformed and undeformed block structure under single force load, 
discretization with tetrahedron elements, three different perspectives 

 

Figure 7. Deformed and undeformed block structure under force couple load, 
discretization with hexahedron elements, three different perspectives 

As a representative point to follow its displacements with the gradually 
increasing loading, the point at which the force acts in Figure 5, middle, is selected. 
Its displacements in all three global directions are considered in both cases and 
compared with the linear and geometrically nonlinear results from Abaqus. The 
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results are given in Figure 8, for the case shown in Figure 5, middle, and Figure 9, for 
the case shown in Figure 5, right. One may notice that the results for the same global 
displacements show a similar trend in both considered cases. Comparing the 
displacements in the same directions in those two cases, one would notice that the 
major distinction is in the relative difference between linear and geometrically 
nonlinear results. There is actually a significant difference between the linear and 
geometrically nonlinear results, and it goes even up to 50%. This was expected and,  

 

Figure 8. Model with tetrahedron elements – displacements in three global directions 

 

Figure 9. Model with hexahedron elements – displacements in three global directions 

in fact, the loading was chosen with this objective. On the other hand, there is also a 
good agreement between the nonlinear results by Abaqus and present formulation. 
The difference is observable in the last 30-40% of the loading but stays in the limits 
of up to 2%, which is an acceptable result for many different applications. In 
addition, the highest difference is at the full loading, where local element 
deformations start to kick in and this is an effect not accounted for by the present 
formulation. As long as this effect is not present, the difference in the results is 
practically negligible.  

2.2. Shell element  

The example considered for the shell element is a typical benchmark case used in 
development of shell elements for geometrically nonlinear analysis. It a straight 
beam, with one end clamped, while the free end is exposed to a bending moment of 
such a magnitude that the beam bends into a circle. The moment required to produce 
such a deformation can be computed analytically assuming beam kinematics and is 
given as M = Ebh3/6l (Bathe and Bolourchis, 1979), where E is the Young’s modulus, 
while b, l and h are the width, length and thickness of the beam, respectively. In this 
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case, the Young’s modulus is the same as in the previous cases with solid elements, 
while Poisson ratio is set to zero, so that the shell element reproduces the beam 
behavior (Poisson effect is neglected over the beam’s cross-section). Dimensions of 
the beam can be seen in Figure 10, left, while Figure 10, right, shows the FE mesh 
applied.   

 

Figure 10. Beam model and discretization with triangular shell elements 

Interestingly, Abaqus encounters a problem to complete the computation with its 
3-node shell element. The computation runs until approximately 95% of the load, 
and when this level is reached, a converged solution is not found any more 
(automatic stepping was used to facilitate the computation).  Figure 11 shows the 
initial and deformed configuration as computed by Abaqus. The relatively coarse 
mesh is the reason for the faceted deformed geometry and could be one of the 
reasons for the computational issues encountered by Abaqus.  

 

Figure 11. Beam model – deformed (Abaqus) and undeformed configuration  

The results for the displacements along the x- and y-axes are given in Figure 12. 
The diagrams include only nonlinear results as the large difference between those 
and linear results would make the inclusion of linear results unreasonable. The 
computation with the proposed corotational formulation proceeds till 100% of the 
load. One may notice a good agreement of the results up to the load level computed 
by Abaqus. 
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Figure 12. Beam model – free end displacements in the x- and y-directions 

4. Conclusions 

The paper elaborates a simplified corotational FE formulation in which the 
element local behavior is described as linear, but the element rigid-body rotation is 
accounted for. Hence, it neglects the effect of the element pure deformation and 
element stress state on the element tangential stiffness matrix. This is where the 
numerical savings are made, thus rendering the formulation very efficient in terms of 
computational effort and also numerically stable. At the same time, this means that it 
delivers results that are an approximation compared to the results delivered by the 
rigorous geometrically nonlinear FE formulations, such as total and updated 
Lagrange formulation, or the rigorous corotational FE formulation.  

The examples were focused on accuracy of predicting the structural 
displacements, which is equivalent to the accuracy of predicting the deformed 
structural configuration. It was shown in the considered examples that the 
discrepancy between the rigorous results and those obtained by the proposed 
formulation is only a few percent for fairly large deformations. Of course, the 
achievable accuracy certainly depends on the nature of the deformation and is 
expected to be better in cases where local rigid-body rotation dominates. 
Furthermore, this means that the formulation can successfully be used for certain 
engineering simulations where this level of accuracy is acceptable. For instance, it 
can be a very attractive alternative for consideration of elastic bodies in Multi-Body 
System (MBS) simulations, which is currently mainly done based on the modal-
superposition technique thus covering only linear deformations with respect to the 
local frame of the whole structure. The proposed formulation would offer better 
accuracy and fidelity of the full-scale FE model, while keeping the numerical effort in 
acceptable limits. Another interesting field of application would be Virtual Reality 
(VR) where physics-based real-time simulations have always played a challenging 
task (Marinkovic et al., 2018, Marinkovic & Zehn, 2019, Zehn & Marinkovic , 2019). 
In this field, the presented formulation can be successfully used for various types of 
simulators such as surgery (Marinkovic & Zehn, 2018), assembly planning and 
practicing assembling of various complex products, thus improving the productivity, 
etc.   
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