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Abstract: Analysis of high-risk locations, accident frequency and severity for railway 
crossing is necessary in order to improve the safety and consequently diminish the 
number of accidents and their severity. In order to extract the necessary parameters 
that quantify the risk associated with railway crossings in Serbia, we have carefully 
analyzed available statistical models commonly used in this kind of studies. A zero-
inflated Poisson model and a multinomial logistic model were used for the assessment 
of accident frequency and accident severity respectively. In order to quantitatively 
evaluate the risk, a well known measure – total risk was modified and a new measure 
for risk – empirical risk was introduced. The road sign warning device (𝑝 = 2.76 ∙
10−9), exposure to traffic (𝑝 = 4.3 ∙ 10−7), and maximum train speed at a given 
crossing (𝑝 = 1.36 ∙ 10−5) were significantly associated with probability of accident 
frequency and significantly influenced the expected total number of fatalities or injuries 
caused by traffic accidents.  

Keywords: railway crossings, high-risk locations, accidents, regression models  

1. Introduction 

The identification of the high-risk railway crossings in Serbia is of great 
importance because, to our knowledge, no such study has been performed in the 
past. For example, from 2007 to 2011, 312 accidents occurred at 2,138 railway 
crossings in Serbia. These accidents resulted in 59 fatalities and 130 injuries 
(Statistics on accidents at Serbian railways 2011). Currently, more than 74% of the 
2,138 railway crossings in Serbia are of passive control type (St. Andrew’s cross and 
Stop sign). From 2004 to 2012, only 22 railway crossings were equipped with an 
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active control type (flashing lights with half gates). Along with a control type, other 
railway crossing factors (e.g., train frequency, train speed, daily road traffic, sight 
triangle, crossing width and angle) might increase the likelihood of accident 
occurring at railway crossings. Therefore, investigations of the risk factors that may 
be associated with accidents at railway crossings are vital in order to identify the 
crossings for future safety improvement. 

Statistical regression models are formulated to express the expected accident 
count of an entity as a function of its traits. Because of non-negative and count data 
nature of accident frequency for a time period, the Poisson or negative binomial (NB) 
models and their variants are developed to model crash or accident frequency, or 
both, at spatial locations on highways (Miaou, 1994; Persaud et al., 1999; Lord et al., 
2005). The NB was verified by (Austin & Carson, 2002). Saccomanno et al. (2004) 
used Poisson and NB distribution in their risk based statistical models which were 
also used for identifying the high-risk railway crossings. Extensions of these two 
models are a zero-inflated Poisson (ZIP) regression model and a zero-inflated 
negative binomial (ZINB) regression model which have also been utilized for 
modeling accident data on railway crossings (Miranda-Moreno & Fu, 2006). Three 
alternative models - the NB model, the heterogeneous negative binomial (HNB) 
model, and the Poisson lognormal model and two ranking criteria - marginal and 
posterior mean of accident frequency are considered in a study by Miranda-Moreno 
et al. (2005) for identification of the high-risk railway crossings. Similarly, Miranda-
Moreno et al. (2009) proposed a Bayesian multinomial model to estimate the 
severity levels of each individual involved in an accident. The generalized logit model 
was used to explore the key factors that may be responsible for different degrees of 
accident severity at railway crossings (Huet et al., 2010). A ZIP model was used to 
describe the relationship between the extra zero count fatality or injury data and 
explanatory variables on railway crossings in Taiwan (Hu et al., 2011). Rovšek et al. 
(2014) identified the key risk factors of traffic accident injury severity on Slovenian 
roads using a non-parametric classification tree. Recently, Washington et al. (2014) 
applied a quintile regression model for identifying black spots. Moreover, they 
proposed a more complex formula for modeling a number of crashes based on 
equivalent property damage crashes. 

This paper is the first attempt to analyze accident data using count data and 
multinomial regression in Serbia and countries in our region. Due to the fact that we 
have gathered the unique set of the data, we believe that the analyses will serve not 
only to identify unsafe railway crossings but also additionally verify the methodology 
used.  

Four types of regression models are considered for accident frequency and 
empirical risk: Poisson, NB, ZIP and ZINB. The analysis of accident severity was 
performed using a multinomial logit model. The high-risk locations were determined 
using total risk analysis (Saccomanno et al., 2003). Finding out that variables of 
accident frequency and accident severity are slightly correlated, we also introduced a 
new risk measure - empirical risk. The final high-risk location was created using both 
of these methods. 
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2. Data source and description 

2.1. Inventory data set 

The data supporting this research came from two sources; (1) the Serbian railway 
crossing inventory database (2007-2011) (SRCID) and (2) Accident database of 
Serbian railway crossings (2007-2011) (ADSRC). The second one is the first database 
of this kind in Serbia, and we created it for the purpose of this very research. 

SRCID contains the characteristics of each railway crossing and its traffic 
conditions. On the territory of the Republic of Serbia, the railway network has the 
total length of about 4,000 km, out of which 276 km are multiple tracks and 934 km 
are electrified. There are 2,138 railway crossings in total. All these crossings have 
various warning devices.  

Certain numbers of crossings were found to be poorly specified. Namely, some 
attributes associated with railway and highway features and traffic exposure with 
regard to the number of daily trains and average annual daily traffic (AADT) were 
missing. In the present study, we have excluded the crossings with incomplete data. 
In order to avoid possible selection bias, we have carefully analyzed distributions of 
the excluded crossings and found no significant statistical grouping (see Appendix). 
The final set was compiled by merging SRCID and ADSRC databases and it consisted 
of 745 railway crossings.  

There were 17 independent variables considered in this study for modeling 
purpose and they were derived from the SRCID (Table 1).  

They can be classified as follows: 
• railway characteristics: railway category, maximal train speed at a given crossing 

and number of tracks. 
• traffic volume: Exposure (EXPO) at a given crossing is defined as the geometric 

mean of number of trains per day and average annual daily traffic volume 
(AADT). 

• crossing characteristics: crossing surface type, crossing width, sight triangle and 
crossing angle. 

• road characteristics: road category mainline, road category regional, road 
category rural and local, road category farm and non-categorized and road 
category street. 

• warning devices: road signs, flashing lights, full gates and half gates. 

Table 1. Independent variables and their characteristics 
Variable Short name Description Coding / Unit 
x1 KATPRM Railway category Mainlines =1; Others =0 
x2 EXPOb Sqrt [AADT ∙ daily trains] vehicles/day 

x3 MBRZb 
Maximal train speed at a 

given crossing 
km/h 

x4 BRKOLB Number of tracks 
Single track = 1; Multiple 

tracks  = 0 

x5 VRKOLA Crossing surface type 

asphalt, concrete panels and 
rubber panels = 1; 

cobblestone, wood planks 
and gravel = 0 

x6 KPM Road category mainline Indicator 
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x7 KPR Road category regional Indicator 

x8 KPSL 
Road category rural and 

local 
Indicator 

x9 KPPNP 
Road category farm and 

non-categorized 
Indicator 

x10 KPU Road category street Indicator 

x11 SIRPPB Crossing width 
6m or less = 1;  more than 

6m = 0 

x12 TRPRP Sight triangle 
exist = 1; 

does not exist = 0 

x13 UGUKR Crossing angle 
From 60° to 90° = 1; less 

than 60° = 0 

x14 VOSIG 
Warning devices road 

signs 
Indicator 

x15 VOSV 
Warning devices flashing 

lights 
Indicator 

x16 VOBR Warning devices full gates Indicator 

x17 VROSP 
Warning devices half 

gates 
Indicator 

Note: All variables are categorical except EXPO and MBRZ which are numerical; 
a The mainline includes reference and intermediate lines and others are 

supplementary lines. 

b In order to get more convenient coefficients for the models, the observed values 
for maximum train speed at a given crossing and daily traffic volume were divided by 
ten. 

 2.2. Accident occurrence data 

The available historical accident data-set for modeling accidents at railway 
crossings were collected from 2007-2011 (5 years of accident information). The 
data-set provides the information about the time, location and conditions of accident 
for 2,138 railway crossings, but we observed 745 crossings. 

The Accident database of Serbian railway crossings (2007-2011), contains four 
types of information: 
• basic accident data: including the accident reference number, the date and the 

time of accident, location and cause of accident.  
• involved road vehicle driver, vehicle and train data: including information on 

road vehicle driver action at time of collision (e.g., ignored warning devices, 
drove through gates, failed to stop), gender and age, visibility, vehicle type and 
train type. It should be noted that our data lacked the information about the 
train operator. 

• accident type: a road vehicle was hit by a train or a train was hit by a road 
vehicle. 

• data on severity of consequences: including information on the number of 
fatalities, serious injuries and a property damage-level for each accident.  

In this paper, we considered three dependent variables: accident frequency, 
accident severity and empirical risk. The accident frequency is the number of 
accidents that took place at a given time period. It is a countable variable that, in our 
observations, takes values from 0 to 5. The frequency of these values is given in 
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Table 2. It represents the number of accidents that took place at observed 745 
crossings in the period from 2007 through 2011. In this period of time, at 514 
(69%) crossings there were no accidents, and at the remaining 231 (31%) crossings 
there were 312 accidents in total.  

Accident severity is defined as an average impact per accident. The average 
impact is a weighted average of deaths and injuries in each accident. In this paper, 
the accident severity is characterized as equivalent fatality. For example, 
Saccomanno et al. (2004) equalized one fatality to 44 injuries to yield a crossing 
collision consequence score (CS) for the purpose of further crash severity modeling. 
In Taiwan, one injury from a highway accident has been equalized to 0.37 fatalities, 
or conversely, a fatality has been treated as 2.72 injuries (Hu et al., 2010). Similarly, 
we equalized three injuries as an equivalent of one death. The factor 3 was chosen 
out of practical considerations and matches the regulations for personal 
compensation stated in the Regulation on personal compensation (Official Gazette of 
the Republic of Serbia, no. 34/2010). Therefore, the formula for accident severity 
becomes: 

Accident severity = (3 × fatalities injuries) /accident frequency                                (1) 

This dependent variable is further categorized into three levels: 0 (0 accident 
severities), 1 (less than 3 accident severities), and 2 (3 or more accident severities). 
In other words, accident severity is 0 if there were no injuries or fatalities, it takes 
value 1 if there were less than 3 injuries (or 1 fatality) per accident, and it takes value 
2 if there were 3 or more injuries (or 1 fatality) per accident. The frequency of these 
values is given in Table 2. 

The empirical risk is defined as a weighted sum of number of fatalities and the 
number of injuries. Once again, three injuries were considered an equivalent of one 
fatality. Consequently, empirical risk is defined as follows: 

 Empirical risk = (3 ×  fatalities) +  injuries                                                                        (2) 

The observed empirical risk frequency is shown in Table 2. In our sample, the 
empirical risk takes values from 0 to 14. 

Table 2. Observed accident frequency, accident severity frequency and empirical risk 
frequency of Y=y 

Accident 
frequency 

level 

Observed 
frequency 

Accident 
severity 

level 

Observed 
frequency 

Empirical 
risk level 

Observed 
frequency 

y = 0 514 y = 0 633 y = 0 633 
y = 1 180 y = 1 72 y = 1 45 
y = 2 35 y = 2 40 y = 2 18 
y = 3 6   y = 3 31 
y = 4 6   y = 4 3 
y ≥ 5 4   y ≥ 5 15 
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3. Developed models regarding crossing accidents 

3.1. Accident frequency model 

The review of the prior research for the accident frequency modeling helped us 
find the most suitable model. Four types of regression models are considered: 
Poisson, NB, ZIP and ZINB. In our analysis, we included 17 independent variables 
shown in Table 1. The outcome variable was accident frequency at railway crossings 
in the period from 2007 to 2011, (Table 2). 

For the comparison of two non-nested models, the Vuong test was used 
(Washington et al., 2003; Miranda-Moreno & Fu, 2006). Results of three Vuong’s 
tests are presented in Table 3. 

Table 3. The comparison of models with Vuong’s statistic 

First model Second model Value of |𝑉| 𝑝 value Better model 

Poisson NB  |𝑉| = 3.60 𝑝 = 1.70 ∙ 10−6 NB 

NB ZIP  |𝑉| = 5.84 𝑝 = 2.56 ∙ 10−9 ZIP 
ZIP ZINB  |𝑉| = 2.15 𝑝 = 0.016 ZIP 

 

The ZIP model was chosen for modeling accident frequencies (p = 0.016). The 
particular ZIP model considered in this study has the following form (Lambert, 
1992): 

P(Yi = yi) = pi + (1 − pi)e
−λi    if     yi = 0 

P(Yi = yi) = (1 − pi)
e−yiλyi

y!
 if yi = 1, 2, 3, …                                                                     (3)  

where pi is the probability of being in the zero state and y is the number of events 
per period. 

The coefficients for the final ZIP model are presented in Table 4. The model was 
obtained using the function zero-infl from the R-package (Zeileis et al., 2008). Eight 
independent variables out of 17 were found to be of significance for the model.  

The variables regarding the warning device have been shown to be significant. 
The ZIP model chose two out of four dummy variables, namely road signs (VOSIG) 

p = 2.76 ∙ 10−9 and full gates (VOBR) p = 1.23 ∙ 10−5. The half gates variable 
(VROSP) here acts as a reference variable and the flashing light signal (VOSV) was 
excluded from the model probably because of lack of enough crossings with this type 
of device. This means that the probability number of accidents at crossings with road 
signs, which is the most common type of site protection, is higher than on reference 
(half gates) crossings. The full gates device has a negative coefficient, which shows us 
that they are superior to half gates regarding accident prevention. The prevalence of 
passive control devices may be attributed to a large number of sites with low traffic 
and train volumes for which the cost of upgrading to automated devices is not 
justifiable from a cost-benefit analysis in terms of the projected accident reductions 
at these sites (Ehrlich, 1989). One would suspect that the presence of gates would 
predictably result in fewer accidents, and the model estimation process did in fact 
result in a positive effect for the presence of half gate. The gates provide a physical 
blockade that serves as a deterrent to crossing, but is also cost prohibitive for 
implementation at all sites. Also, according to Wigglesworth & Uber (1991), 
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upgrading crossings with flashing light to boom barrier status reduce fatal accidents 
at crossings. However, many accidents are caused by vehicles running through a 
crossing to beat a train, occasionally around gates that are deployed (Caird et al., 
2002; Cooper & Ragland, 2012). And indeed, automated control devices are not 
faultless. For example, automated signal control devices are susceptible to false 
alarms and excessive warning times, which may lead driver to rely on their own 
hazard judgment and ignore the signal, as well resorting to risky behavior by 
circumventing the lowered gates (Leibowitz, 1985; Meeker & Barr, 1989).  

Table 4. ZIP accident prediction model result  

Description 
Independent 

variable 
Estimated 

coefficients 
Standard 

error 
𝑧– 

statistic 
Pr(> |z|) 

 Model count     
Intercept Constant -1.668 0.287 -5.823 5.78e-09 *** 

Road signs VOSIG  0.984 0.166  5.945 2.76e-09 *** 
Full gates VOBR -1.394 0.319 -4.373 1.23e-05 *** 

Crossing width SIRPPB -0.530 0.155 -3.416 0.001 *** 
Sqrt[AADT ∙
daily trains] 

EXPO 
 0.020 0.005  4.320 1.56e-05 *** 

Maximal train 
speed 

MBRZ 
 0.122 0.028  4.350 1.36e-05 *** 

Number of tracks BRKOLB -0.370 0.180 -2.053 0.040 *   
Crossing surface 

type 
VRKOLA 

-0.228 0.137 -1.662 0.096 .   

Farm and  
non-categorized 

road 
KPPNP  0.188 0.147 1.285 0.199 

Log (theta)  -1.322 0.167 -7.896 2.87e-15 *** 
 Model zero     

Intercept Constant -1.160 1.626 -0.713 0.476 
Road signs VOSIG  2.012 1.293  1.556 0.120 
Full gates VOBR -0.580 2.786 -0.208 0.835 

Crossing width SIRPPB -22.424 1203.8 -0.019 0.985 
Sqrt[AADT ∙
daily trains] 

EXPO 
-0.058 0.060 -0.969 0.333 

Maximal train 
speed 

MBRZ 
 0.078 0.142  0.546 0.585 

Number of tracks BRKOLB  0.462 1.069  0.432 0.665 
Crossing surface 

type 
VRKOLA 

-3.860 1.233 -3.132 0.002 ** 

Farm and non-
categorized road 

KPPNP 
 3.771 1.135  3.321 0.001 *** 

Log-likelihood: -509.4 on 18 Df 
    AIC: 1054.79 

Level of significance: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 
Two different traffic characteristics proved to be significant in affecting the 

railway crossing accident frequency. The exposure (EXPO) coefficient is positive (p =

4.3 ∙ 10−7). The numbers of trains and road vehicles are often first variables that are 
considered in developing a model for accident prediction (Austin & Carson, 2002; 
Saccomanno et al., 2004; Miranda-Moreno et al., 2005). The higher the traffic volume, 
the more vehicles are exposed to risky situations with incoming trains, which 
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enlarges the accident probability. According to Austin & Carson (2002), higher 
numbers of trains and the AADT were found to increase a railway crossing accident 
frequency. 

The maximum train speed at a given crossing (MBRZ) is also associated with a 

higher predicted accident frequency (p = 1.36 ∙ 10−5). This is consistent with Austin 
& Carson (2002), the higher the defined maximum train speed, the higher the 
predicted accident frequency. As the train speed increases, the stopping distances of 
trains extend, and the time available for driver to spot the obstacle and stop the train 
decreases. On the other hand, difficulties that the drivers of vehicles have, concerning 
speed and distance of incoming train, are known (Leibowitz, 1985; Meeker et al., 
1997; Meeker & Barr 1989; Kasalica et al., 2012), and as the train speed increases, 
the time the driver has got to react in order to change the wrong decision to cross 
decreases. 

The crossing width, as well as the number of tracks, has been shown to have some 
significance. This finding is most likely related to the earlier; higher train and traffic 
volumes require a greater number of tracks and traffic lanes to operate. Road surface 
also have some significance, but this factor seems inconsequential compared to other 
railway, road or crossing characteristics likely to affect railway crossing safety. 

It should be noted that some crossing characteristics (crossing angle or sight 
triangle), as well as road category do not have observable influence on the number of 
accidents.  

From this model, we can conclude that the best way in which safety can be 
improved and the number of accidents can be reduced is upgrading the warning 
device system. The other variables are either out of our control (maximum train 
speed and exposure) or do not have significant influence on the number of accidents 
(road category, road geometry, road surface, etc.). 

3.2. Accident severity model 

The analysis of accident severity is performed using a multinomial logit model. 
Multinomial logit models have gained popularity for this type of data mainly because 
they can account for the dependent variable's ordinal nature.  

Let πj(𝐱) = P(Y = j; 𝐱) be the probability of Y = j, j = 0, 1, 2. The multinomial logit 

model is given as follows (Hu et al., 2010): 

logit[πj(𝐱)] = log
πj(𝐱)

π0(𝐱)
 = αj + 𝐱 βj, j = 1,2.                                                                         (4) 

Here αj is the intercept parameter, and βj = (βjαj 1
, β

j2
, … , β

j17
)T is 17- dimensional 

vector of regression parameters for j− the value of dependent variable. From Eq.(4), 
taking α0 = 0 and β

0
= 0 , we obtain: 

 πj(𝐱) =
exp (αj + 𝐱𝛃j)

∑ exp (αk + 𝐱𝛃j)
2
k=0

,   j = 0, 1, 2                                                                                (5) 

The analyses have been done using the R-function multinom (Venables & Ripley, 
2002). Here, we also used the Akaike information criterion (AIC) stepwise 
procedure. The parameters were estimated using the maximum likelihood estimate 
(MLE) method. The results were presented using the function mlogic.display 
(Chongsuvivatwong, 2012). The coefficients for the final model accident severity are 
presented in Table 5.  
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Table 5. Multinomial logit model result for accident severity  
Independent 

variable 
Severity level (y = 1) Confidence interval Severity level (y = 2) 

Confidence 
interval 

 Coefficients/SE RRR (95% CI) Coefficients/SE RRR (95% CI) 
Intercept -5.76 0.694*** - -5.55 0.826*** - 
VOSIG(x14) 1.33 0.385***   3.78(1.78,8.04)  0.65  0.428     1.92(0.83,4.44) 
VOBR(x16) -1.28 0.667    0.28(0.08,1.03) -1.93   1.051     0.15(0.02,1.14) 
SIRPPB(x11) 1.26 0.297***   3.53(1.97,6.31) 1.20 0.378**     3.33(1.58,6.98) 
MBRZ(x3) 0.22   0.068** 1.24(1.09,1.42) 0.12  0.083     1.12(0.95,1.32) 
EXPO(x2) 0.08 0.015***   1.08(1.05,1.11) 0.05      0.017** 1.05(1.02,1.09) 
BRKOLB (x4) -0.87 0.427*    0.42(0.18,0.97) -0.36  0.463    0.70(0.28,1.73) 
KATPRM(x1) -0.39  0.311     0.67(0.37,1.24) 0.74 0.430 2.09(0.90,4.87) 
Residual Deviance: 668.53 
AIC = 700.53 

Level of significance: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 
These estimated results of the effects of independent variables from this model by 

the use of the relative risk ratio (RRR) are described in the following section.  
The relative risk ratio is the ratio of probabilities of a chosen state and the 

reference state. In Table 5, their RRR values and 95% confidence intervals (CI) are 
given. The ratios given are for Y = 1 (e.g., accident severity of 1) and Y = 2 (e.g., 
accident severity of 2), while Y = 0 (e.g., accident severity of 0). The variables 
regarding the warning device have been shown to be significant. The multinomial 
logit model chose two out of four dummy variables, namely road signs (VOSIG) and 
full gates (VOBR). The half gates variable (VROSP) here acts as a reference variable.  

The value for RRR of road signs (VOSIG) for accident severity of Y = 1 is RRR =
3.78,95% CI (1.78, 8.04), which means that upgrading road signs to reference half 
gates will result in a lower probability of accident severity of Y = 1. The value for 
RRR of road signs (VOSIG) for accident severity of Y = 2 is RRR =
1.92,95% CI (0.83, 4.44), which means that upgrading road signs to reference half 
gates will also result in lower probability of accident severity of Y = 1. However, 
since the RRR is smaller in the second case, we can see that the upgrading from road 
signs to half gates will better prevent less severe accidents than more severe ones. 
From the RRR values for full gates (VOBR), we can see that upgrading from half gates 
to full gates will result in lowering probabilities for both accident severities of Y = 1 
and Y = 2. However, this is much less significant change than the one when 
upgrading from road signs to half gates. This finding confirms the design-related 
issues of this investigation. This is in an agreement with Austin & Carson (2002): “... 
rather than focus on design-related improvements, one may want to consider 
improvements in the use of warning devices at railway crossings”. However, railway 
crossings in Serbia are not adequately equipped with modern devices which are 
standardized, used and are part of the National Railway Level Crossing Safety 
Strategy in the developed countries. In such circumstances, the safety at railway 
crossings in Serbia depends mostly on human and physical factors according to 
Reports of safety and functionality of Serbian Railways (2002-2012). According to 
Cairney (2003), “the form of traffic control implemented at a railway crossing greatly 
affects the decision that has to be made by the driver of the road vehicle on the safety 
of the crossings”.  

Regarding crossing width variable, the RRR values indicate that wider crossings 
have higher probabilities for accident severities for both states, RRR =
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3.53,95% CI (1.97, 6.31)  for Y = 1 and RRR = 3.33, 95% CI (1.58, 6.98) for Y = 2. It 
can be noted that this variable has about the same influence on less severe and more 
severe accidents.  

The maximum train speed variable also has a significant influence on accident 
severity. The RRR value indicates that the ratio of probabilities for Y = 1 and Y = 0 
will increase 1.24 times when the maximum train speed is increased by 10 km/h. 
The ratio of probabilities for Y = 2 and Y = 0 is increased 1.12 times when the 
maximum train speed is increased by 10 km/h. This means that increasing the speed 
of trains has not a direct impact on mortality. 

The exposure to traffic also has a significant influence. For one unit increase of 
EXPO, the ratio of probabilities is increased RRR = 1.08 times (Y = 1) and RRR =
1.05 times (Y = 2). The exposure to traffic has been shown to be an important factor 
for accident prediction (Ogden, 2002; Austin & Carson, 2007; Hu et al., 2010). A 
higher number of trains and road vehicles, which is often found in urban areas, are 
shown in this paper to have an impact on high accident severity. It could be said that 
crossings with a higher exposure to traffic can provide higher probability of 
accidents and irregular behavior (Fitzpatrick et al., 1997). Also, according to Hu et al. 
(2010), one common characteristic found in the railway crossings with more severe 
accidents is that these railway crossings are usually located in urban areas where 
traffic exposure is relatively high, and compared to rural areas more traffic accidents 
are observed in these traffic busy areas. 

Regarding number of tracks, the RRR indicates that the probabilities for accident 
severities are higher when there are multiple tracks as opposed to a single one. As 
for the last variable from the model, the railway category, it can be seen that the 
main railways have lower probabilities for accident severity of Y = 1, and higher 
probabilities for accident severity of Y = 2. 

It can be noted that crossing parameters, such as road and railway geometry 
(crossing angle and sight triangle), as well as the road type, as it was the case with 
the ZIP model of accident frequencies, were not accepted by this model. 

4. High-risk location analysis 

One of the primary tasks in the development of the program for safety 
improvement in some parts of traffic infrastructure (e.g., road crossings or railway 
crossings), is to identify the locations that have a high accident risk. This process is 
also known as black spot identification (Saccomanno et al., 2003; Saccomanno & Lai, 
2005). Identifying high-risk locations is the initial step of the process of improving 
safety (Persaud, 2001). This would then lead to further engineering treatment such 
as crossing closure or grade separation, improving the crossing geometry or 
upgrading warning devices to make the crossing safer. 

One of the approaches to high-risk identification is based on regression models. 
This method uses some ranking criteria in order to sort the list of locations and 
identify the ones with the highest risk. Miranda-Moreno et al. (2009) proposed a 
Bayesian multinomial model in order to estimate the accident severity for each 
person involved in an accident. The total risk is defined as the product of accident 
frequency and its severity (Saccomanno et al., 2004; Miranda-Moreno et al., 2009).  

The deaths and injuries are our main concern, so the total risk is the goal we want 
to achieve. Two criteria are considered for estimating the total risk. The first 
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criterion is the mean total risk for a crossing obtained as the product of mean 
accident frequency and mean accident severity, given as follows:  

mTRi = mFreqi ∗ mSevi                                                                                                                (6) 

where: mTRi is mean total risk for crossing i; mFreq
i
 is mean accident frequency 

for crossing i obtained from the accident frequency model (Table 4) and mSevi is 
mean accident severity for crossing i obtained from the accident severity model 
(Table 5). The second criterion presented here is based on the empirical risk model. 
The estimate for total risk for a crossing i would be the mean empirical risk (mERi). 
The reason for introducing this additional criterion is that in our data the variables 
accident frequency and accident severity are slightly correlated (R = 0.36). 

Similar to what was done for modeling accident frequency; we tried different 
count data regression models for empirical risk modeling. Four types of models are 
considered: Poisson, NB, ZIP and ZINB. Those models were obtained using the 
stepwise AIC. Obtained models were then compared using Vuong's test (Table 6). 

Table 6. The comparison of models with Vuong’s statistic 
First model Second model Value of |V| p value Better model 

Poisson NB |V| = 4.60 p = 1.70 ∙ 10−6 NB 

NB ZINB |V| = 4.30 p = 8.3 4 ∙ 10−6 ZINB 

ZIP ZINB |V| = 1.98 p = 0.029 ZINB 
 
The comparison with Vuong's test showed significant difference (p = 0.029) 

between zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB), 
which means that overdispersion is not only caused by excess of zeros, but there is 
another source of overdispersion. Suppose 𝑦 is a discrete random variable consisting 
of the counts on 𝑛 subjects, 𝑦1, 𝑦2,… , 𝑦𝑛. Observations that go into structural zeros 

(𝑦𝑖 = 0) have a degenerate distribution at zero with a probability of occurring is p. 
While the observations included in the NB counts (yi = 0, 1,2… ) 2, follow a negative 
binomial distribution with probability of occurring is (1 − 𝑝). Therefore, 𝑌 is ZINB 
distributed, which is defined by: 

𝑌 = {
𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑧𝑒𝑟𝑜𝑠, with probability 𝑝

𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠, with probability 1 − 𝑝
                                                             (7)  

Based on the probability function of the zero-modified distribution, then 
probability mass function (pmf) for ZINB distribution is (Garay et al., 2015): 

𝑃𝑟(𝑌 = 𝑦) =

{
 

 𝑝 + (1 − 𝑝)(
ø

𝜇 + ø
)ø, 𝑦 = 0

(1 − 𝑝)
Γ(y + ø)

Γ(y + 1)Γ(ø)
(

ø

𝜇 + ø
)
ø

(
𝜇

𝜇 + ø
)𝑦 , 𝑦 = 1,2, …

                         (8) 

where (ø)−1, 𝜇 and Γ(. ) represent a dispersion parameter, mean, and gamma 
function, respectively. 

The estimated parameters of the ZINB model for empirical risk are given in Table 
7. 
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Table 7. ZINB accident prediction model result for empirical risk 

Description 
Independent 

variable 
Estimated 
coefficients 

Standard 
error 

z - 
statistic 

Pr(> |z|) 

 Model count     
Intercept Constant -1.926 0.667   -2.886 0.004 ** 
Road signs VOSIG  0.618 0.314  1.969 0.049 * 
Full gates VOBR -2.121 0.520 -4.080 4.50e-05 *** 
Crossing width SIRPPB -0.535 0.324   -1.650 0.099 .   
Maximal train speed MBRZ  0.240     0.066  3.666 2.46e-04*** 
Sqrt[AADT ∙

      daily trains] 
EXPO 

 0.011 0.012  0.928 0.354 

Crossing surface     
type 

VRKOLA 
-0.665 0.275   -2.416 0.016 *   

Log (theta)  -1.322     0.167   -7.896 2.87e-15 *** 
 Model zero     
Intercept Constant  9.613 3.863  2.489   0.013 *   
Road signs VOSIG -5.095      2.013   -2.531   0.011 *   
Full gates VOBR -5.181 3.118 -1.662   0.011 *   
Crossing width SIRPPB -7.600 1.789 -4.248 2.15e-05 *** 
Maximal train speed MBRZ  0.829          0.489     1.695   0.090 .   
Sqrt[AADT ∙

      daily trains] 
EXPO 

-0.999      0.321 -3.115   0.002 ** 

Crossing surface  
type 

VRKOLA 
 2.868 1.531   -1.873   0.061 .   

Theta = 0.2666 
Log-likelihood: -509.4 on 18 Df   

 
The variable that has the highest impact on empirical risk is maximum train 

speed (p = 0.000246). Other variables of importance are road signs (p = 0.048910), 
exposure to traffic (p = 0.353520), crossing width (p = 0.098971) and road surface 
type (p = 0.06110). Therefore, the probability of the railway crossing being at risk of 
a fatality varied with these risk factors. 

Two lists of railway crossings are compared using two methods, namely 
percentage deviation and the Spearman correlation coefficient. These two criteria 
were used in order to create a list of high-risk locations for crossings on the Serbian 
railway network. Based on each criterion, two lists were made. A simple way to 
compare the two lists is the percentage deviation. For this purpose, a certain number 
of top locations from both lists were selected. The percentage deviation is defined in 
the following way (Miranda-Moreno & Fu, 2006): 

% deviation = 100 × (1 − b m⁄ )                                                                                                (9) 

where b is the number of common locations on the two lists, and m is the number 
of selected top locations. The percentage deviation is calculated for various 
thresholds (No. of crossings). The value of deviation is between 40%  and 60%. It can 
be noted that this deviation is greater when there are shorter lists of top locations, 
and gradually goes down when the length of lists is increased.  

The Spearman correlation coefficient is a non-parametric technique to measure 
the linear correlation between two variables (Miranda-Moreno et al., 2005). Here, 
the Spearman coefficient is calculated to measure the correlation between these two 
risk models. In other words, it measures the degree of matching between the two 
lists. It is calculated in the following way (Miranda-Moreno et al., 2005): 
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 r = 1 − 
6 ∙ ∑ di

2n
i=1

m ∙ (m2 − 1)
                                                                                                              (10) 

where: 𝑟 is the Spearman coefficient, di is the difference in ranks between the two 
models for the same crossing i and, m is the number of selected top locations. The 
correlation is R = 0.50.  

In Table 8, there is a list of 20 crossings that were identified as high-risk locations 
that were common for both estimation criteria. For each crossing it is shown how 
many top locations appear in both lists, as well as the value of mean total risk and 
mean empirical risk. In this list, we can notice that 60% of crossings are with road 
signs, and 40%  are with half gates. The high-risk location list in Table 8 shows that 
most crossings, 90%,  are located on main railways in urban areas. One of the 
possible explanations is that urban areas experience greater volume of traffic, which 
can cause a higher accident rate. On the other hand, the mean maximum train speed 
at these 20 crossings is 100 km/h, which is significantly higher than the mean 
maximum speed for the whole sample (70 km/h). This confirms that the maximum 
train speed has a more pronounced effect on the number of injuries and deaths. 

Table 8. List of high-risk locations based on two criteria 
First 20 
high- 
risk 
locations 

Crossing 
No. 

Km 
position 

Competent 
railway station 

Warning 
devices 

Mean 
total risk 

Mean 
empirical 
risk 

10 87 20+993 Batajnica PB 4.116 2.879 
10 28 7+070 Rakovica DS 2.220 2.495 

10 94 34+694 
Stara  
Pazova 

PB 1.123 2.502 

20 22 253+700 Belotince DS 1.053 2.108 
20 121 74+241 Pirot DS 1.032 1.990 
20 276 252+523 Niš DS 0.945 2.057 
20 298 82+030 Sr. Mitrovica PB 0.668 4.238 
30 27 335+818 Suva Morava DS 0.901 1.670 
30 90 116+080 Šid PB 0.831 1.573 
30 164 57+306 Odžaci DS 0.651 1.857 
30 521 76+983 Ruma DS 0.637 2.670 
30 92 74+019 Voganj PB 0.581 2.180 
30 300 99+549 Sr. Mitrovica PB 0.581 2.180 
30 36 94+920 Velika Plana DS 0.558 2.110 
40 244 119+207 Vrbas DS 0.854 1.354 
40 72 31+037 Kr. Trnovče DS 0.733 1.310 
40 257 78+247 Palanka PB 0.615 1.294 
40 96 97+785 Sr. Mitrovica DS 0.562 1.298 
40 24 79+362 Palanka PB 0.518 1.254 
40 79 26+019 Loz. Saraoci DS 0.691 1.294 
Note: PB = half gates; DS = road signs; a value for a period of five years 
 
It should be noted that many of the predicted high-risk locations were not 

upgraded during the analysis period, suggesting that possible high-risk crossings as 
predicted by the model were not considered for safety intervention. 
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To assess the railway crossing for safety intervention, the Serbian Railways 
method is based on engineering judgment supplemented by simple statistical 
analysis of the historical accident data. We examined the original data (first 20 
locations according to the highest accident frequency and accident severity). Then, 
we compared the lists of predicted and historical high- risk locations. Four crossings 
have been found common in both lists for accident frequency, and two crossings for 
accident severity. In this paper, it is asserted that high-risk locations cannot be 
established solely on the basis of historical accident experience. This is supported by 
(Saccomanno et al., 2004), a longer view of accident risk is needed to reflect the 
expected risk over a given period of time. Such estimates can be obtained only with 
accurate and reliable accident frequency and severity prediction models. 

5. Conclusion 

Ideally, the final outcome of this work would be reducing the number or the 
severity of accidents at railway crossings in Serbia. In order to achieve this goal, it 
was important to develop a model that can be applicable to the limited data set at our 
disposal and to estimate the influence of various parameters contained within the 
data. We have considered three risk models and two criteria for the identification of 
high-risk locations.  

Data points used in this study, i.e. accident reports and railway crossings’ 
characteristics were extracted from two official data-bases containing actual events 
and site descriptions. Prior to the modeling, we had analyzed available data in order 
to ensure that the data sample used was truly representative. 

The first considered risk model was the Accident Frequency Model. In this model, 
we have found that the ZIP regression model produces the best fit for the data used. 
The second risk model we considered was also well-known in literature – the 
Accident Severity Model and the Multinomial Logit regression analysis. Both 
mentioned models provide useful information about the risks involved. However, 
our needs regarding the risk assessment required some additional quantitative 
parameters. A novel third model – Empirical Risk Model was introduced in order to 
satisfy these requirements.  

Two criteria for the identification and risk-ranking of the railway crossings in 
Serbia were presented. One criterion was calculated as a product of mean accident 
frequency and mean accident severity. The other criterion was obtained using the 
Empirical Risk Model and we suggest the name mean empirical risk for the name of 
this quantity.  

Because crash frequency and severity jointly determine the casualty risk level at a 
railway crossing, one can alternatively predict the casualty risk level by using a 
bivariate count data model. To incorporate the accident severity and some of the key 
factors such as vehicle occupancy into a total risk model (Miranda-Moreno et al., 
2009), the use of posterior distributions through the Bayesian approach (Miranda-
Moreno & Fu, 2006; Persaud et al., 1999) has been widely recommended for 
identification of high-risk locations. Furthermore, an in-depth investigation on 
vehicle drivers’ behavior at individual railway crossings, which is currently being 
conducted by the authors, might answer the contradictory model estimation results 
found in this research. These are topics that are worthy of future research. 
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Appendix   

Analysis of the site selection criteria 

The sample of 745 railway crossings out of total 2,138 is located throughout the 
whole network of Serbian Railways. The railway line of major international 
importance through Serbia (according to European agreement on main international 
railway lines - AGC) is reference line E70 (Croatia)–Šid–Beograd–Niš–Dimitrovgrad–
(Bulgaria). On this reference line, 215 out of total of 329 railway crossings were 
considered. For other main lines, the numbers of included railway crossings are the 
following: on reference line E85 (Hungary)–Subotica–Beograd–Preševo–
(Macedonia) 39 out of 68; on intermediate line E79 Beograd–Vrbnica–(Montenegro) 
11 out of 30; on E66 intermediate line Beograd–Pančevo–Vršac–(Romania) 25 out of 
75; on supplementary line Lapovo–Kraljevo–Kosovo Polje 42 out of 78. On other 
supplementary railway lines, 413 out of remaining 1,558 railway crossings were 
considered. Therefore, railway crossings of national and local importance, which are 
located both in urban and rural areas, were included. The sample of 745 railway 
crossings is composed of 231 (31%) railway crossings on which accidents occurred 
in a period 2007–2011 according to the Accident database of Serbian railway 
crossings (2007-2011), and also of 514 (69%) on which accidents did not occur, for 
which we had adequate data according to the Serbian railway crossing inventory 
database (2007-2011). With all the data that was at our disposal, we believe that the 
truncation of railway crossings with incomplete parameters was fairly random, 
although we cannot exclude some higher order correlations. We believe that our 
sample is suitable for the purpose of identifying the high-risk crossings in Serbia. 

References  

Austin, R. D., & Carson, J. L. (2002). An alternative accident prediction model for 
highway-rail interfaces. Accident Analysis and Prevention, 34(1), 31- 42. 

Caird, J. K., Creaser, J. I., Edwards, C. J., & Dewar, R. E. (2002). A human factors 
analysis of highway-railway grade crossing accidents in Canada. Report TP 13938E, 
Canada Transport Development Centre, Transport Canada.  

Cairney, P. (2003). Prospects of improving the conspicuity of trains at passive 
railway crossings. Report CR 217, Australian Transport Safety Bureau, Canberra. 

Cameron, A. C., & Trivedi, P. K. (1998). Regression analysis of count data. Cambridge 
University Press, Cambridge, UK. 

Chongsuvivatwong, V. (2012). epicalc: Epidemiological calculator. R package version 
2.14.1.6. http://CRAN.R-project.org/package=epicalc. 

Cooper, D., & Ragland, D. (2012). Applying safety treatments to rail-highway at grade 
crossings. Safe TREC. University of California, Berkeley. 

Ehrlich, D. (1989). Driver behavior and decision making. Paper presented at the 
National Conference on Rail-Highway Safety, San Diego. 

European agreement on main international railway lines (AGC). 
ECE/TRANS/SC.2/2006/4. Economic and Social Council. United Nations.  



Models for ranking railway crossings for safety improvement  

 

99 
 

Fitzpatrick, K. M., Carlson, P. J., Bean, J. A., & Bartoskewitz, R. E. (1997). Traffic 
violation at gated highway-railroad grade crossings. Report TX-98/2987-1, Texas 
transportation institute, Texas department of transportation. 

Garay, A. M., Lachos, V. H., Bolfarine, H. (2015), Bayesian estimation and case 
influence diagnostics for the zero-inflated negative binomial regression model. 
Journal of Applied Statistics, 42(6), 1148-1165. 

Hu, Shou-Ren., Li, Chin-Shang., & Lee, Chi-Kang. (2010). Investigation of key factors 
for accident severity at railroad grade crossings by using a logit model. Safety 
Science, 48(2), 186-194. 

Hu, Shou-Ren., Li, Chin-Shang., & Lee, Chi-Kang. (2011). Assessing Casualty Risk of 
Railroad-Grade Crossing Crashes Using Zero-Inflated Poisson Models. Journal of 
Transportation Engineering, 137(8), 527–536. 

Kasalica, S., Vukadinović, R., & Lučanin, V. (2012). Study of drivers behaviour at a 
passive railway crossing. Promet - Traffic and Transportation, 24 (3), 193-201. 

Lambert, D. (1992). Zero-inflated Poisson regression with an application to defects in 
manufacturing. Technometrics, 34 (1), 1-14. 

Leibowitz, H. W. (1985). Grade crossing accidents and human factors engineering. 
American Scientists, 95, 558-562. 

Lord, D., Washington, S. P., & Ivan, J. N. (2005). Poisson, Poisson-gamma and zero-
inflated regression models of motor vehicle crashes: balancing statistical fit and 
theory. Accident Analysis and Prevention, 37(1), 35–46. 

Meeker, F. L., & Barr, R. A. (1989). An observational study of driver behaviour at a 
protected railroad grade crossing as trains approach. Accident Analysis and 
Prevention, 21(3), 255-262. 

Meeker, F. L., Fox, D., & Weber, C. (1997). A comparison of driver behavior at railroad 
grade crossings with two different protection systems. Accident Analysis and 
Prevention, 29(1), 11-16. 

Miaou, S. P. (1994). The relationship between truck accidents and geometric design 
of road section: Poisson versus negative binomial regressions. Accident Analysis and 
Prevention, 26(4), 471-482. 

Miranda-Moreno, L. F., & Fu, L. (2006). A comparative study of alternative model 
structures and criteria for ranking locations for safety improvements. Networks and 
Spatial Economics, 6: 97-110. 

Miranda-Moreno, L. F., Fu, L., Saccomanno, F. F., & Labbe, A. (2005). Alternative risk 
models for ranking locations for safety improvement. Transportation Research 
Record, 1908, 1-8. 

Miranda-Moreno, L. F., Fu, L., Ukkusuri, S., & Lord, D. (2009). How to incorporate 
accident severity and vehicle occupancy into the hotspot identification process? 
Paper No. 09-2824 presented at 88th Annual Meeting of the Transportation Research 
Board, Washington, DC. 

Official Gazette of the Republic of Serbia no. 34/2010; in Serbian. Regulation on 
personal compensation. 

Ogden, B. D. (2007). Railroad-highway grade crossing handbook: Revised second 
edition. FHWA-SA-07-010, Federal Highway Administration, U.S. DOT, Washington, 
DC. 



Kasalica et al./Oper. Res. Eng. Sci. Theor. Appl. 3 (3) (2020) 84-100 

 

100 
 

Persaud, N.B. (2001). Statistical method in highway safety analysis: a synthesis of 
highway practice. NCHRP synthesis 295, Transportation Research Board, 
Washington, DC. 

Persaud, N.B., Lyon, C., & Nguyen, T. (1999). Empirical Bayes procedure for ranking 
sites for safety investigation by potential for safety improvement. Transportation 
Research Record, 1665. 7-12. 

R Development Core Team. (2012). R: A language and environment for statistical 
computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from 
http://www. R-project.org/.  

Rovšek, V., Batista, M., & Bogunović, B. (2014). Identifying the key risk factors of 
traffic accident injury severity on Slovenian roads using a non-parametric 
classification tree. Transport, 1-10. 

Saccomanno, F. F., & Lai, X. (2005). A model for evaluating countermeasures at 
highway-railway grade crossings. Transportation Research Record, 1918. 18-25. 

Saccomanno, F. F., Fu, L., & Miranda-Moreno, L. F. (2004). Risk-based model for 
identifying highway-rail grade crossings blackspots. Transportation Research 
Record, 1862. 127-135. 

Saccomanno, F. F., Fu, L., Ren, C., & Miranda-Moreno, L. F. (2003). Identifying 
highway-rail grade crossing black spots. Report T8200-011518/001/MTB, 
Department of civil engineering University of Waterloo, Ontario, Canada. 

Serbian Rail Administration. Accident database of Serbian railway crossings (2007-
2011), Serbian Railways; in Serbian. 

Serbian Rail Administration. Statistics on accidents on Serbian railways 2011; in 
Serbian. 

Serbian Rail Administration. The Serbian railway crossing inventory database (2007- 
2011), Serbian Railways; in Serbian. 

Serbian Rail Expert Service. Reports of Safety and Functionality of Serbian Railways. 
Annual reports 2002-2012; in Serbian. 

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Fourth 
Edition. Springer, New York. ISBN 0-387-95457-0. 

Washington, S. P., Haque, M. M., Oh, J., & Lee, D. (2014) Applying quantile regression 
for modeling equivalent property damage only crashes to identify accident 
blackspots. Accident Analysis and Prevention, 66(1), 136-146. 

Washington, S. P., Karlaftis, M. G., & Mannering, F. L. (2003). Statistical and 
econometric methods for transportation data analysis. Chapman and Hall/CRC, 
Washington, DC. 

Wigglesworth, E. C., & Uber, C. B. (1991). An evaluation of the railway level crossing 
boom barrier program in Victoria Australia. Journal of Safety Research, 22(3), 133-
140. 

Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. 
Journal of Statistical Software, 27(8), 1-25.  

© 2020 by the authors. Submitted for possible open access publication under the 
terms and conditions of the Creative Commons Attribution (CC BY) 
license (http://creativecommons.org/licenses/by/4.0/). 


	Models for ranking railway crossings
	Sandra Kasalica 1*, Marko Obradović 2, Aleksandar Blagojević 1, Dušan Jeremić 1, Milivoje Vuković 3
	1. Introduction
	2. Data source and description
	2.1. Inventory data set
	2.2. Accident occurrence data

	3. Developed models regarding crossing accidents
	3.1. Accident frequency model
	3.2. Accident severity model

	4. High-risk location analysis
	5. Conclusion
	Appendix
	Analysis of the site selection criteria

	References



