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Strategic Support to 
StudentS’ competency 
development in 
the mathematical 
modelling proceSS: 
a qualitative Study

aBStract

This article reports on third-year mathematics students’ competency 
and sub-competency development through providing intentional 
support in the learning of mathematical modelling. Students often 
experience modelling as difficult, and obstructions in the modelling 
process can lead to a dead end. Literature reports confirm that 
the modelling task is central in the modelling experience and a 
carefully planned task, aligned with a suitable activity sheet, can be 
used as a scaffold in learning mathematical modelling. Hence, this 
inquiry was conducted to provide a scaffold, as strategic support, 
for students’ mathematical modelling competency development in 
the early stages of a modelling cycle. Guided by the framework of 
the Zone of Proximal Development, key elements suggested by the 
metaphor scaffolding are considered in the learning experience. 
Based on an analysis of activity sheets collected through group 
work, an example of a realistic and an unrealistic solution is 
presented, and students’ development of mathematical modelling 
competencies is argued. Finally, suggestions for intentional support 
in the modelling process are discussed.

Keywords: Activity sheet; mathematics applications; mathematical 
modelling cycle; mathematical modelling competencies; 
scaffolding; strategic support.

1. introduction
Niss, Blum and Galbraith (2007) explained that the generic 
purpose of building and making use of a model is to 
understand problems in some segment of the real world 
(e.g., nature, society or culture, everyday life, scientific and 
scholarly disciplines, and others). But then, for teaching 
in particular, Ikeda (2013: 255) highlighted two primary 
pedagogical aims – modelling for teaching can firstly be 
identified as the content area modelling “through modelling 
treated as the objective” and secondly, the construction of 
mathematical knowledge “through modelling treated as a 
method to achieve a goal”. 
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In this study, the emphasis on learning mathematical modelling is the modelling process, and 
moving successfully through the different phases of a modelling cycle. Thus, the content area 
focuses on modelling, and not so much on the construction of new mathematical knowledge. 
The notion of a mathematical modelling perspective, described in the seminal work in the field 
of educational mathematical modelling by Niss et al. (2007: 9-10), is explained through the 
initial conceptualisation of some problem situation, and mathematical modelling is then “the 
entire process consisting of structuring, generating real world facts and data, mathematising, 
working mathematically and interpreting/validating (perhaps several times round the loop)”.

The modelling process is cyclic in nature and includes a number of phases. Although a 
variety of cycles exist in the literature, the original modelling cycle from Blum and Leiβ (2007) 
seems most useful for research purposes in mathematics education. This particular cycle 
includes individual steps (that separate the phases of the mathematical modelling process): 
(i) constructing, (ii) simplifying/structuring, (iii) mathematising, (iv) working mathematically, 
(v) interpreting, (vi) validating and (vii) exposing.

In this inquiry, considering the limited experience of participants in mathematical modelling 
and the pragmatic lens of the research, a simplified scheme seemed appropriate to support 
student teachers to solve mathematical modelling tasks e.g., the “solution plan” in Blum 
and Borromeo Ferri, (2009). Furthermore, the mathematical modelling cycle proposed by 
Balakrishnan, Yen and Goh (2010: 250) seemed suitable for attempting modelling tasks for 
the first time. In this cycle, student teachers were introduced to the nature of the mathematical 
modelling process and could acquaint themselves with the various elements. The cycle 
comprised four elements (indicated as steps), namely (i) “mathematisation” that involves 
understanding the problem, making assumptions to simplify the problem and representing 
the problem in mathematical form; (ii) “working with mathematics” that includes solving 
the mathematical problem using mathematical methods and tools; (iii) “interpretation” that 
contains interpreting the mathematical solution within the context of the original problem 
and (iv) “reflection” that comprises reviewing the assumptions and the limitations of the 
mathematical model and the solution to the problem, reviewing the mathematical methods 
and tools used, and improving on the mathematical model. This particular modelling cycle 
(Balakrishnan et al., 2010) has been developed to support secondary school mathematics 
teachers in implementing mathematical modelling in Singaporean schools.

Despite numerous challenges in the changeover between the different stages of the 
cycle, Stillman et al. (2007) highlight remarkable mathematical accomplishments by students 
moving through the modelling cycle. Some of these accomplishments include much-needed 
modelling competencies, described by Niss et al. (2007: 12) as “the ability to identify relevant 
questions, variables, relations, or assumptions in a given real-world situation, to translate 
this into mathematics, and to interpret and validate the solution of the resulting mathematical 
problem in relation to the given situation”. In order to avoid a “dead-end” in the mathematical 
modelling process or a possible lack in mathematical understanding, experts in the field 
propose that challenges should be addressed through a strategic intervention (Schukajlow, 
Kolter & Blum, 2015). Schukajlow and colleagues reported on the positive effects of a 
step-by-step instrument, the “solution plan”, on learning mathematical modelling though 
a quasi-experimental design study. Grade 9 German students who used the solution plan 
outperformed the other students in solving modelling problems related to the theorem of 
Pythagoras. The solution plan provides a modelling schema for students – understanding the 
task, searching for the mathematics, using the mathematics and explaining the results. Some 
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studies reported on modellers experiencing difficulties in the modelling process (compare 
Blum & Borromeo Ferri, 2009), while others reported on the positive outcome of intentional 
support activities (compare Buchholtz, 2017). The latter explained the way in which an “out-
of-school” activity (in a European setting), such as a mathematical city walk, could be used to 
develop competences in mathematising.

This inquiry forms part of a broader research project focusing on a strategy to integrate 
mathematical modelling in the formal education of mathematics student teachers (Grade 10–12). 
Early findings (Durandt & Jacobs, 2018) from the broader project revealed that a well-planned 
set of activities is required for the professional development of mathematics student teachers. 
As a result, the authors implemented a strategic intervention in the form of an activity that 
involved two mathematics application tasks. The aim of these tasks was to support students 
in the development of competencies and the sub-competencies required for the mathematical 
modelling process, guided by the notions of the Zone of Proximal Development (ZPD) 
(Vygotsky, 1978), before they are exposed to more challenging tasks. The modelling task is 
central in the mathematical modelling learning experience and the Guidelines for Assessment 
and Instruction in Mathematical Modelling Education (GAIMME) report (COMAP-SIAM, 2016) 
explains the transformation from a mathematics word problem to a modelling task as follows 
(see Figure 1). A traditional mathematics word problem (requiring traditional problem solving) 
is transformed to a mathematics application problem (requiring mathematical applications) 
by adding context and meaning, and finally to a mathematical modelling problem (requiring 
the complete modelling process) by adding interpretation. With mathematical applications, 
the focus was on the flow “mathematics → reality” and to more generally emphasise the 
objects involved in the real-world (the parts of the real world that are made accessible to a 
mathematical treatment and to which corresponding mathematical models exit); while with 
mathematical modelling, the focus was on the direction “reality → mathematics” and the 
general emphasis was on the process it involved (Niss et al., 2007: 10).

Figure 1: Transforming a mathematical problem into a modelling problem (COMAP-SIAM, 
2016: 12)

The two tasks that were used in the intervention can be seen in Figures 2 and 3. Both 
of these tasks can be classified as mathematical applications (according to GAIMME’s 
explanation) and solving these tasks would merely require “stripping” the words from the 
problem, and the modelling process would be limited to mathematisation, mathematical 
procedures, and a direct contextual interpretation. The participants in this inquiry were 
thus expected to use their mathematical knowledge to solve the tasks. A more open-ended 
modelling task would require substantial modelling demand from students, but the focus in 
this inquiry was to support novice modellers (due to their limited exposure to such tasks 
before) and to avoid possible “dead ends” in the modelling process that could handicap 
students’ competency development. Through the tasks, the authors attempted to follow at 
least five of the six elements using the metaphor of scaffolding identified by Wood, Bruner 
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and Ross (1976): (i) to enlist students’ interest in these mathematical application tasks, (ii) to 
simplify the tasks by regulating feedback according to particular sub-questions asked, (iii) to 
keep the students focused on the task by means of well-planned facilitation, (iv) to emphasise 
correspondences and discrepancies by discussing results in groups, and (v) to discuss a 
possible solution for a mathematical application problem in groups.

Mathematical Application Task 1

The daily production of a sweet factory consists of at most 100kg chocolate covered 
nuts and at most 125kg chocolate covered raisins, which are then sold in two different 
mixtures. Mixture A consists of equal amounts of nuts and raisins and is sold at a profit 
of R5 per kilogram. Mixture B consists of one third nuts and two thirds raisins and is 
sold at a profit of R4 a kilogram. Let there be x kg of mixture A and y kg of mixture B.

1. Express the mathematical constraints that must be adhered to.

2. Write down the objective function that can be used to determine maximum profit.

3. Represent the constraints graphically and clearly show the feasible region.

4. Use the graph and determine the maximum profit obtained.

Figure 2: Mathematical Application Task 1

Mathematical Application Task 2

A nutritionist is performing an experiment on student volunteers. He wishes to feed one 
of his subjects a daily diet that consists of a combination of three commercial diet foods: 
MiniCal, LiquiFast and SlimQuick.

For the experiment, it is important that the subject consumes exactly 500mg of potassi-
um, 75g of protein, and 1150 units of vitamin D every day.

The amounts of these nutrients in one ounce of each food are given in the table. How 
many ounces of each food should the subject eat every day to satisfy the nutrient re-
quirements exactly?

MiniCal LiquitFast SlimQuick

Potassium (mg) 50 75 10

Protein (g) 5 10 3

Vitamin D (units) 90 100 50

Figure 3: Mathematical Application Task 2

The purpose of this inquiry is to report on third year mathematics students’ mathematical 
modelling competency development by providing strategic support in the learning of 
mathematical modelling as they take part in an activity containing two mathematical application 
tasks. The two activity questions are: (1) can novice modellers move successfully through 
the elementary stages of the modelling cycle by exposing them to mathematical application 
tasks, and (2) have they learnt mathematical modelling competencies and sub-competencies 
through this learning experience? This inquiry, that forms part of a broader research project, 
was conducted to provide a scaffold as intentional support for students’ competency and 
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sub-competency development in the early phases of a modelling cycle while they are 
exposed to mathematical application tasks, and before they are exposed to more open-ended 
mathematical modelling tasks.

2. theoretical perSpectiveS
One characteristic of the mathematical modelling activities in this intervention was the team 
problem-solving approach via collaboration. This collaboration was enhanced by the two 
underlying notions of the ZPD (Vygotsky, 1978) and scaffolding. The most widely known 
definition of ZPD is “the distance between the actual developmental level, as determined 
by independent problem solving, and the level of potential development, as determined 
through problem solving under adult guidance or in collaboration with more capable peers” 
(Vygotsky, 1978: 33). Following on the Western interpretation of Vygotsky’s work, the notion 
of scaffolding developed almost 40 years ago (Wood et al., 1976). Other researchers in 
mathematics education (Anghileri, 2006; Schukajlow, et al., 2015) have also acknowledged 
this metaphor, which refers to the intended systematic support for an individual student by 
a knowledgeable adult. In this inquiry, a collaborative ZPD was made possible by student 
interaction in small groups as they participated in mathematical modelling activities. 
This provided a support structure or “scaffold” for students’ competency development and 
they could learn from one other’s knowledge.

Furthermore, the notion of the Zone of Proximal Development can be seen as the underlying 
theoretical lens to explain students’ cognitive development in mathematical modelling. Student 
cognitive development was potentially promoted by following the steps in the mathematical 
modelling cycle and by collaborating in groups when involved in a learning activity containing 
two mathematical application tasks – both serving as a scaffold to support mathematics 
students’ increasing independence as their understanding of mathematical modelling became 
more secure. Wood et al. (1976), also cited by Anghileri (2006:34), identified six key elements 
using the metaphor of scaffolding, namely:

i. recruitment – to enlist the students’ interest in a mathematical modelling activity, to willingly 
adhere to the requirements of the activity;

ii. reduction in degrees of freedom – to simplify mathematical modelling tasks by regulating 
feedback according to the particular phases of modelling cycles;

iii. direction maintenance – to keep the students focused on the task by means of well-planned 
facilitation by the facilitator;

iv. marking critical features – to emphasise correspondences and discrepancies by 
discussing results;

v. frustration control – to respond to students’ reactions when participating in mathematical 
modelling tasks; and

vi. demonstration – to discuss a possible solution for a real-life contextual problem.

All of these key elements were considered in planning and implementing the structured 
intervention in this inquiry, but in particular the first four as well as the last element.

3. reSearch approach and method
The participants, third-year mathematics student teachers at a public Johannesburg 
University, characterised by a variety of demographical profile elements, are identified 
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in Table 1. The research was conducted from a pragmatic viewpoint (Creswell, 2013), by 
collecting qualitative data, and participants were arranged into 10 groups according to ability. 
Each group had to contain at least one high achiever (an average mathematics mark of 
equal or above 70%), one moderate achiever (an average mathematics mark of between 
50% and 70%), and one low achiever (an average mathematics mark of below 50%). 
The participants were all enrolled in a third-year mathematics course for teachers and their 
average mathematics course marks were used for the group allocation. The rationale for 
the group selection of high, moderate and low achievers was due to the complexity of real-
world contexts, the high cognitive demand of mathematical modelling tasks (although in this 
inquiry participants were exposed to a mathematical application task and not yet open-ended 
modelling task), and student teachers’ lack of experience in mathematical modelling. Small 
group sizes were practical and the idea was to promote participation of all members. Stratified 
sampling procedures were used, which are also convenient (due to respondents’ availability) 
and single stage, as the researcher had access to the names of all student teachers in the 
group and could sample directly (Creswell, 2003).

Table 1. Demographical profile elements of participants

Profile variable (N=55) N %

Gender (N=43)
Female 17 39.5

Male 26 60.5

Ethnic Group

(N=42)

Asian, Indian, Coloured 2 4.8

Black 32 76.2

Coloured 3 7.1

White 3 7.1

No response 2 4.8

Home Language

(N=43)

Afrikaans 4 9.3

English 5 11.6

Indigenous 33 76.7

No response 1 2.3

Participants were exposed to the mathematical modelling activity (see Figures 2 & 3) 
that contained two contextual problem-solving examples that required little ambiguity from 
groups about their strategies and methods, and an activity sheet (similar to the solution plan 
from Schukajlow et al., 2015) containing the fundamental steps in solving modelling tasks 
(understanding the task, searching for mathematics, using mathematics and explaining 
results). The information in both selected examples had already been carefully defined, 
containing all the necessary data to formulate a model, and called for a specific procedure 
to be employed. Thus, the authors expected participants to move successfully through the 
modelling cycle. The activity, involving both tasks, was conducted during a 110-minute official 
class timeslot. During the activity, the researchers were present to observe group discussions. 
Apart from the theoretical basis that informed this inquiry, the rationale for exposing student 
teachers to mathematics application tasks was informed by Chan’s viewpoint (2013) that a 
possible starting point for the integration of mathematical modelling into the classroom can be 
identified via simple tasks. The researchers intended to design an activity, not only to support 
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students in the development of mathematical competencies in the modelling process, but also 
to enhance collaboration between group members, and to stimulate favourable participant 
attitudes (also compare Durandt & Jacobs, 2018).

Task 1, on the daily production of a sweet factory (see Figure 2), required students in groups to 
express mathematical constraints and to represent the given data, then graphically represent the 
constraints, and to make use of the graph to determine maximum profit (Bester et al., 1998: 113). 
Task 2 (see Figure 3), adapted from Stewart, Redlin and Watson (2012), provided information on 
the potassium, protein and vitamin D content in one ounce of commercial diet food. Information 
was presented in the form of a table in order to compare the three different brands of diet food. 
Groups were expected to calculate how many ounces of each type of food should be taken per 
day to satisfy daily nutrient requirements. Groups submitted their strategies and mathematical 
solutions on a pre-designed activity sheet, designed according to the elementary stages of a 
modelling cycle to provide students with a scaffold.

4. analySiS and FindingS
Qualitative data were analysed by following the direct content analysis method (Hsieh 
& Shannon, 2005). This method of analysis uses existing research to guide the variables 
of interest (proposed categories) and to devise operational definitions for these variables. 
Hsieh and Shannon (2005) argued that the use of existing research could not only provide 
guidance on the variables of interest, but also assists in focusing the research questions. 
Two proposed categories originated from the theory on students’ mathematical modelling 
competencies (Stillman, et al., 2007) on the one hand, and the principles (accurate, realistic, 
precise, practical and robust) to evaluate a mathematical model (Meyer, 2012) on the other 
hand. The two coding categories, mathematical modelling competence (with a differentiation 
between modelling sub-competence and mathematical sub-competence) and model capability, 
guided the analysis of the activity sheets by the different groups that were collected during the 
intervention (see Table 2). The directed content analysis method also suited the researchers’ 
pragmatic approach, and existing theory on mathematical modelling was supported and 
extended by means of this method.

The first category, mathematical modelling competence, describes the ability of participants 
to identify relevant questions, variables, relations, or assumptions in a given real-world 
situation. Examples in this paper include the modelling task described earlier that required a 
mixture of a certain food substance according to certain conditions and to translate this into 
mathematics and to interpret and validate the solution of the resulting mathematical problem 
in relation to the given situation (compare Niss et al. 2007). Within this first category, modelling 
sub-competence is underscored as a sub-category focusing particularly on the modelling 
cycle, real-world meaning and real-world solution - or how participants (in groups) followed the 
steps of the modelling cycle, progressed from meaning towards a possible solution, and then 
interpreted the solution within the given real-world context created through the mathematical 
application tasks that were applied. Also embedded in this first category is mathematical 
sub-competence as a sub-category, focusing on participants’ mathematical abilities – or if 
participants (in groups) used relevant and accurate mathematical representations of the real-
world problem in their selection of applicable mathematical content knowledge, and if they 
worked correctly with the mathematics.

The second category, model capability, describes if participants (in groups) considered the 
evaluation criteria of the mathematical models produced by the various groups. This relates 
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to their particular model’s precision, validity and applicability and is described by the model’s 
accuracy (if the model output values are correct or near to correct), realism (if the model 
is based on original correct assumptions), precision (if the model output values is definite 
mathematical quantities or if they fall in a specific interval), practicality (if the model output 
values provide a sensible solution) and robustness (if the output values are protected against 
errors in the input data). Owing to the nature of the mathematical application tasks used in this 
inquiry, which contained clearly defined data, it was expected that the different group models 
would mostly satisfy Meyer’s (2012) criteria.

Table 2 shows an analysis of participant groups’ activity sheets - how the different groups 
displayed mathematical modelling competence and model capability by solving the two 
mathematical application tasks (compare Figures 2 and 3).

5. diScuSSion
The mathematics application activity in this inquiry involved two different tasks and did not 
require the participant groups to progress through the complete modelling cycle. It also did 
not require them to consider the implications of their decisions, or to discuss the validity and 
applicability of their selected mathematical models. The focus of the two tasks was on the 
development of mathematical and modelling competence, and the researchers attempted to 
use the modelling cycle as a metacognitive tool to expose students to the early stages of the 
modelling cycle.

In Figure 4, the mathematical and modelling competence of group 1 is illustrated. 
The Figure indicates the manner in which the group structured the relevant information in 
a table, how they expressed the mathematical constraints as two inequalities having written 
down an objective function to determine maximum profit, and finally how they presented the 
problem graphically. In addition, the objective function (as the dotted line) and final solution 
(at point A) are depicted in the figure.

All 10 groups showed mathematical modelling competence, particularly modelling 
sub-competence in their documents, as they proceeded successfully through the first two 
fundamental phases of the modelling cycle (Balakrishnan et al., 2010). All groups identified 
relevant information and made simplified assumptions about the real-world contexts in both 
examples included in the task. Furthermore, all groups showed mathematical sub-competence 
as findings. They indicated the mathematical representation used, as well as the content 
selection and mathematical operations performed by the different groups. All 10 groups 
introduced relevant variables and represented the application problems mathematically 
(given in two examples), although only eight of these representations were accurate. 
The two inaccurate representations, from group 8 and 9, contained minor mathematical errors. 
The entire class selected appropriate mathematical formula to solve the problems, and seven 
groups investigated more than two mathematical procedures, such as solving equations 
simultaneously, determining solutions graphically, and performing matrix operations. Seven of 
the groups applied the selected mathematical content knowledge correctly, but the documents 
from three of the groups indicated mathematical errors in procedures.
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Table 2. Analysis of group activity sheets

Initial Coding Categories Groups
1 2 3 4 5 6 7 8 9 10 Total

Category: Mathematical Modelling Competence

Modelling Sub-Competence

Moving successfully through the 
first two stages of the modelling 
cycle.

X X X X X X X X X X 10

Identifying, from the available 
information, what is relevant and 
what is irrelevant.

X X X X X X X X X X 10

Making simplified and relevant 
assumptions about the situation to 
enable mathematics to be applied.

X X X X X X X X X X 10

Mathematical Sub-Competence

Recognising relevant variables. X X X X X X X X X X 10

Accurately representing the real-
world problem mathematically.

X X X X X X X - - X 8

Inaccurately representing the real-
world problem mathematically.

- - - - - - - X X - 2

Selecting appropriate 
mathematical formula – consistent 
with the representation.

X X X X X X X - - X 8

Selecting appropriate 
mathematical formula 
– inconsistent with the 
representation.

- - - - - - - X X - 2

Applying mathematical content 
knowledge correctly.

X X - X X X - - X X 7

Applying mathematical content 
knowledge incorrectly.

- - X - - - X X - - 3

Investigating more than two 
mathematical procedures to solve 
the problem. 

X X - - X X X X X - 7

Category: Model Capability

Accurate (model output expected 
to be near to correct)

X X - X X X - - X X 7

Realistic (model based on original 
correct assumptions)

X X X X X X X X X X 10

Precise (model output values 
should be definite mathematical 
quantities or falling in a closed 
interval)

X X - X X X X X X X 9

Practical (sensible solutions 
provided)

X X - X X X - - X X 7

Robust (relatively safe from errors) X X X X X X X X X X 10
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Owing to the carefully defined mathematical application tasks included in this inquiry, little 
ambiguity about the model and procedures was expected from the groups. As anticipated, 
all groups formulated realistic models based on correct assumptions and prior exposure to 
relevant mathematical content knowledge. Groups displayed model capability by means of its 
accuracy, precision and practicality (Meyer, 2012). These criteria depended on the mathematical 
competencies of groups; hence, seven of the groups formulated output values expected to be 
correct (referring to accuracy). The same seven groups provided sensible solutions (directed 
towards practicality), while the models from nine of the groups generated definite output values 
(indicating precision). In the case of group 8, who struggled to represent the real-world problem 
mathematically, definite output values were calculated, given by , but the values were impractical 
and inaccurate. Noticeably, a negative number of ounces of LiquiFast () is an unrealistic 
solution. The researchers expected that the particular group would realise the negative value is 
impossible and comment on that or check their mathematical calculations.

A

Figure 4: Example from group 1 illustrating mathematical and modelling competencies

http://dx.doi.org/10.18820/2519593X/pie.v38i1.15
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6. concluSion
This inquiry reports on third-year mathematics students’ mathematical modelling competency 
(and sub-competency) development through intended strategic support in the learning 
of mathematical modelling. The researchers attempted to use the modelling cycle as a 
metacognitive tool and to use the mathematics application tasks, together with an activity 
sheet linking the key steps in the modelling cycle as a scaffold in the modelling process. 
The rationale for exposing student teachers to mathematics application tasks was informed 
by Chan’s viewpoint (2013) that a possible starting point for the integration of mathematical 
modelling into the classroom could be identified via simple tasks. Furthermore, the different 
steps in the modelling cycle could be a potential cognitive barrier for participants. Thus, the 
aim of these tasks was to support students in the development of competencies and sub-
competencies required for the mathematical modelling process, guided by the notions of the 
Zone of Proximal Development (ZPD) (Vygotsky, 1978), before they are exposed to more 
open-ended and more challenging modelling tasks. Knowing the modelling task is central in the 
mathematical modelling learning experience, and that modellers often experience blockages 
in the modelling process, well-planned and structured support was found to be necessary in 
the case of novice modellers. The structured support included a solution plan containing key 
steps that are linked to the fundamental phases of the modelling cycle – understanding the 
task, searching for the mathematics, using the mathematics, and explaining the results.

In this inquiry, findings confirmed that inexperienced modellers could move successfully 
through the elementary stages of the modelling cycle (Balakrishnan et al., 2010) by exposing 
them to an easier, clearly defined mathematical modelling activity including two mathematical 
application tasks. The tasks required mixing particular food substances according to certain 
conditions. Data were analysed via the direct content analysis method and existing research 
categories guided the coding categories. Most participant groups displayed mathematical and 
modelling sub-competencies and they showed an understanding of mathematical models 
(within a clearly defined situation). Some groups displayed realistic answers, while others had 
unrealistic answers. It was expected that the groups with unrealistic answers would attempt 
some effort to unpack the problem or move through the modelling cycle for a second time, in 
searching for an explanation for their particular solution, but they did not.

In conclusion, the participants revealed themselves as mathematical modellers, although 
the modelling process was limited to mathematisation, mathematical procedures, and a 
direct contextual interpretation. This inquiry provides a basis for further strategic support and 
continued exposure to more open-ended modelling tasks.
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