Mrozkowiak Mirosław. An attempt to identify significant correlations between parameters of body trunk and parameters of feet and their frequency in adolescents aged 14-18 years. Pedagogy and Psychology of Sport. 2021;7(2):66-78. elSSN 2450-6605. DOI http://dx.doi.org/10.12775/PPS.2021.07.02.005 http://dx.doi.org/record/4741900

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019. © The Authors 2021: This article is published with open access at Licensese Open Journal Systems of Nicolaus Copernicus University in Torun, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is property cited. The authors declare that there is no conflict of interests regarding the publication of this paper. Received: 27.02.2021. Revised: 27.02.2021. Accented: 20.03.2021.

An attempt to identify significant correlations between parameters of body trunk and parameters of feet and their frequency in adolescents aged 14-18 years

Mrozkowiak Mirosław

Physiotherapy Office, Poznań, Poland

Abstract

Introduction. All disorders are temporary as a natural consequence of ontogenetic processes usually disappearing after puberty. Therefore, it is important to provide incentives in this period in order to maintain physical activity at a previously achieved level and try to shape the parameters of feet through exerting a conscious influence on body trunk parameters.

Material and method. The study conducted with the group of adolescents aged 14 to 18 years enabled to record 2,343 observations with regard to the measurement of 90 parameters describing trunk and feet. The station for an assessment of body posture and feet using the photogrammetric method consisted of a computer, a card, software, a display monitor, a printer, and a projection-reception device with a camera to measure the selected parameters.

Conclusions

1. The values of frontal and sagittal body trunk parameters revealed a significant correlation

with the parameters of feet. An increased frequency of these correlations was observed between the sagittal parameters of the body trunk and feet. The relationship between transverse parameters was much less significant. 2. Feet parameters most often significantly correlated with: trunk flexion angle in the sagittal plane, height of thoracic kyphosis, angle of the projection line of lower scapula angles with the right or the left angle being more convex, lumbar lordosis length, asymmetry in the height of scapula triangles with the right scapula up, inclination of the thoracic and lumbar spine, shoulders line angle with the left one up and the angle of pelvic flexion to the right in the transverse plane.

3. Feet parameters with which trunk parameters most frequently correlated included: width of longitudinal arch 1, length of longitudinal arch 2 in the right foot, varus angle of the fifth toe and width of the right foot and length of the first arch in the left foot and length of the right and left foot.

Key words: correlation, spine, pelvis, feet.

1. Introduction

All disorders are temporary as a natural consequence of ontogenetic processes usually disappearing after puberty. Therefore, it is important to provide incentives in this period in order to maintain physical activity at a previously achieved level.

In its final stage, adolescence leads to the shaping of lifestyle and thus the attitude to physical culture. After the onset of puberty, especially in girls, changes can be observed in body weight, height, and proportions, mainly by increasing inactive body fat, and the changing scope of interest and feelings does not encourage constant care for the development of the physical activity. Puberty clearly crystallizes sexual dimorphism in the field of physical fitness, cares about body posture, its appearance, and attractiveness [1]. A characteristic feature of disorders in the musculoskeletal system is their irreversibility and no possibility to return to the initial state. Hence, the need for not only symptomatic but also prophylactic physiotherapy [2].

There are relatively few publications on the correlations of parameters within the region of feet and lap belts. This issue has been investigated by Mięsowicz [3, 4, 5], Drzał-Grabiec, Snela [6], Mrozkowiak, Sokołowski, and Jazdończyk [7, 8]. The development of information technologies has contributed to a comprehensive approach to the assessment of body posture, allowed the placement of particular elements in time and space, and capturing the spatial balance of vertical body posture [9]. The multitude of procedures for assessing the body posture and the lack of an objectionable method means that the choice must arise from the

objective of the research. Modern diagnostics allows to determine the number of most common postural parameters, and thus the relationships between them. This problem has not been often mentioned in the available domestic and foreign literature.

The purpose of the studies was to determine the frequency of coexistence and significant correlations between parameters of body trunk and parameters of feet in 14-18-year-old adolescents.

2. Material and methods

The study conducted with the group of teenagers aged 14 to 18 years enabled to record 2,343 observations. The statistical analysis included 90 angular and linear parameters of the spine, pelvis, trunk, and feet in the sagittal, frontal and transverse planes, Table 1. Due to the article constraints, the detailed description of the somatic features concerning the research material and the obtained results can be found in the author's monography [10]. The empirical data were quantitative and qualitative characteristics (gender, domicile, etc.). Calculations covering the values of position statistics (arithmetic mean, quartiles), the dispersion parameter (standard deviation) and symmetry indicators (asymmetry and concentration indicators) provided a comprehensive picture of how the studied features were distributed. The correlations and their significance were assessed using p-value and their frequency was expressed by means of the arithmetic mean.

The fundamental assumption of the study was to assess the habitual posture as a relatively constant individual characteristic of a human being. This posture reflected the individual emotional, psychical and social condition of the subject. Moreover, the posture provided the most reliable description of the subject's silhouette at a given time and in a place. The conducted studies did not determine whether an individual's posture was normal, they only identified the state of ontogenetic realization.

Objectified and comparable test results ensured that the postural parameters adopted for the analysis were recorded. The combined assessment of the trunk and feet allowed us to objectively determine the quality of the postural model. The applied measuring apparatus allowed to determine several dozen postural parameters. The statistical analysis included 90 angular and linear parameters of the spine, pelvis, trunk, and feet in the sagittal, frontal and transverse planes, Table 1. The station for the assessment of body posture and foot parameters using the photogrammetric method consisted of a computer, a card, software, a display monitor, a printer, and a projection-reception device with a camera to measure selected parameters of the pelvis, spine, trunk, and feet. Obtaining the spatial picture was possible thanks to displaying the line of strictly defined parameters on a teenager's back and feet. The

lines falling on the skin of a child got distorted depending on the configuration of the surface. The applied lens ensured that the imaging of a subject could be received by a special optical system with a camera, then transmitted to the computer monitor. The distortions of the line imaging recorded in the computer memory were processed through a numerical algorithm on the topographic map of the investigated surface. When conducting the study, one should be aware of the fact that the photo records an image of the silhouette displayed on a child's back. Uneven distribution of subcutaneous adipose tissue along the back makes it difficult to reliably assess body posture in children, especially those with BMI 25 - 30 and over. It is much more difficult to determine the selected anthropometric measurements used in statistical analysis [10].

Table 1. List of	parameters measured	l for	trunk a	nd feet.
------------------	---------------------	-------	---------	----------

Trunk parameters

No	Symbol	Paramet	meters					
•		Unit	Name	Description				
Sag	ittal plane		1					
1	Alfa	degrees	Inclination of lum	bo-sacral region				
2	Beta	degree	The inclination of	thoracolumbar region				
3	Gamma	degree	The inclination of	upper thoracic region				
4	Delta	degree	The sum of angles					
5	DCK	mm	The total length Distance between C_7 and S_1 , measured in of the spine vertical axis					
6	КРТ	degree	Angle of extension	Defined as a deviation of the C_7 - S_1 line from a vertical position (backward)				
7	KPT -	degree	The angle of the body bent	Defined as a deviation of the C_7 - S_1 line from a vertical position (forwards)				
8	DKP	mm	Thoracic kyphosis length	Distance between LL and C ₇				
9	ККР	degree	Thoracic kyphosis angle	KKP = 180 – (Beta+Gamma)				
10	RKP	mm	ThoracicDistance between points C7 and PLkyphosis height					
11	GKP	mm	Thoracic kyphosis depth	The distance measured horizontally between the vertical lines passing through points PL and KP				

12	DLL	mm	Lumbar lordosis length	The distance measured between points S ₁ and KP
13	KLL	degree	-	KLL = 180 - (Alfa + Beta)
14	RLL	mm	Lumbar lordosis height	Distance between points S ₁ and PL
15	GLL -	mm	Lumbar lordosis depth	The distance measured horizontally between the vertical lines passing through points PL and LL
Fror	ntal plane	1		
16	KNT -	degree	body bent to the	Defined as the deviation of the C_7 - S_1 line from the vertical axis to the left
17	KNT	degree	side	Defined as the deviation of the C_7 - S_1 line from the vertical axis to the right
18	LBW -	mm	Right shoulder up	The distance measured vertically between horizontal lines passing through points B2 and B4
19	LBW	mm	Left shoulder higher	
20	KLB	degree	Shoulderlineangle,rightshoulder up	The angle between the horizontal line and the straight line passing through points B2 and B4
21	KLB –	degrees	Shoulderlineangleleftshoulder up	
22	LŁW	mm	Left scapula up	The distance measured vertically between
23	LŁW-	mm	Right scapula up	horizontal lines passing through points Ł1 and Łp
24	UL	degree	The angle of scapula line, right scapula up	The angle between the horizontal line and the straight line passing through points Ł1 and Łp
25	UL -	degree	The angle of scapula line left scapula up	
26	OL	mm	The lower angle of left scapula more distant	scapulas from the line of spinous processes measured horizontally along the lines passing
27	OL -	mm	The lower angle of right scapula more distant	through points Łl and Łp

28	TT	mm	Left waist triangle up	Difference of the distance measured vertically between points T1 and T2, T3 and T4.
29	TT –	mm	Right waist triangle up	
30	TS	mm	Left waist triangle wider	Difference of the distance measured horizontally between straight lines passing through points T1 and T2, T3 and T4
31	TS -	mm	Right waist triangle wider	
32	KNM	degree	Pelvis tilt, right ilium up	The angle between the horizontal line and the straight line passing through points M1 and Mp
33	KNM -	degree	Pelvis tilt left ilium up	
34	UK	mm	The maximum inclination of the spinous process to the right	line from S_1 . The distance is measured in a
35	The UK -	mm	The maximum inclination of the spinous process to the left.	
36	NK	_	vertebra maximally distanced to the	The number of the vertebra most distanced to the left or to the right in the asymmetric line of the spinous process, counting as 1 the first cervical vertebra (C_1). If the arithmetic mean takes the value e.g. from 12.0 to 12.5, it is Th5, if from 12.6 to 12.9 it is Th6.
			Transverse pl	ane
37	ŁB -	mm		Difference in the distance of lower scapula angles from the surface of the back
38	ŁB	mm	The lower angle of the scapula more convex	
39	UB –	degree	The angle of projection line of lower scapula angles, the left one more convex	The difference in the angles UB1 – UB2. Angle UB2 between the line passing through point Łl and at the same time perpendicular to the camera axis and the straight line passing through points Łl

40	UB	degree	The angle of projection line of lower scapula angles, the right one more convex	through point Lp and perpendicular to the camera
41	KSM	degree	Pelvis rotated to the right	The angle between the line passing through point M1 and perpendicular to the camera axis and the straight line passing through points M1 and MP
42	KSM -	degree	Pelvis rotated to the left	The angle between the line passing through point Mp and perpendicular to the camera axis and the straight line passing through points Ml and MP

Foot	parameters	8		
Sym	ool			Parameters
No.		Unit	Name	Description
43	DL p	mm	Length of the right	Distance between points acropodion
44	DL 1		foot (p), left foot (l)	and pterion in a plantogram
45	Sz p		Width of the right	Distance between points metatarsal
46	Sz 1		foot (p), left foot (l)	fibular and metatarsal tibial in a
				plantogram
47	Wp		"W" Indicator	The relationship of foot length to its
			(Wejsflog indicator)	width
			of the right foot (p),	DL p/Sz p = W p, DL l/Sz l = Wl
48	W 1		of the left foot (l)	
49	Alfa p	degree	Valgity angle of the	The angle between the straight line
	m		big toe of the right	passing through points metatarsal tibial
50	Alfa p p		foot: Alfa p p, of	and the most inner one on the medial
51	Alfa l m		the left foot: Alfa 1	edge of the heel and the straight line
52	Alfa l p		p. Angle of varus	passing through points metatarsal tibial
			deformity in the	and the most inner one on the medial
			right foot:	edge of the great toe
			Alfa p m, left foot:	
	_		Alfa l m.	
53	Beta p		The angle of varus	The angle between the straight line
	m		deformity of the 5 th	passing through points metatarsal
54	Beta p		toe of the right	fibular and the most outer
	p		foot: Beta p p, of	one on the lateral edge of the heel and
55	Beta 1		the left foot: Beta l	the straight line passing through points
	m		p.	metatarsal fibular and the most outer
56	Beta l p		Valgity angle of the	one on the lateral edge of the fifth toe
			fifth toe of the right	in a plantogram
			foot: Beta p m, left	
57	Can		foot: Beta l m.	
57	Gamma		Heel angle of right	8
	P (Gam.P)]	100t (p), of left foot	passing through points metatarsal tibial

58	Gamma		(1)	and the most inner one on the medial edge of the heel and the straight line passing through points metatarsal fibular and the most outer one on the lateral edge of the heel in a plantogram
	1 (Gam. L)	2		
59	PS p	mm^2	The plantar surface	The plantar surface of the foot
60	PS 1		of right foot (p), left foot (l)	
61	DP 1	mm	Length of	Length of the arch from 1, 2, 3, 4, and
62	DP 2		longitudinal arch 1,	5 metatarsal foot to point pterion
63	DP 3		2, 3, 4, and 5 of	
64	DP 4		right foot (P), left	
65	DP 5		foot (L)	
66	DL 1			
67	DL 2			
68	DL 3			
69	DL 4			
70	DL 5			
71	WP 1		Height of arch 1, 2,	Distance from the bottom to the
72	WP 2		3, 4, and 5 of right	highest point of arch 1, 2, 3, 4, and 5.
73	WP 3		foot (P), left foot	
74	WP 4		(L)	
75	WP 5			
76	WL 1			
77	WL 2			
78	WL 3			
79	WL 4			
80	WL 5			
81	SP 1		Width of arch 1, 2,	Bowstring of the distance of arch 1, 2,
82	SP 2		3, 4, and 5 of right	3, 4, and 5.
83	SP 3		foot (P), left foot	
84	SP 4		(L)	
85	SP 5			
86	SL 1			
87	SL 2			
88	SL 3			
89	SL 4			
90	SL 5			

Source: author's own research

3. Results

The analysis of research results focusing on two directions. The first one was to answer which trunk parameters and how often revealed a significant correlation with feet parameters. The

second one was to answer the following question: with which foot parameters did trunk parameters reveal a significant relationship?

Table 2. Incidence of significant relationships between the parameters of feet and the parameters of the trunk (n) 2,343.

	Parameter and incidence of its correlation with feet parameters										
DCK	15.68	GKP	11.76	KNT-	13.72	OL	3.92	UB-	11.76		
Alfa	13.72	KLL	17.64	TT-	29.4	UL	5.88	NK	13.72		
Beta	27.44	DLL	31.36	TS-	11.76	KLB	9.8				
Gamma	19.6	RLL	29.4	LŁW-	11.76	KLB-	25.48				
ККР	17.64	GLL	17.64	UB	39.21	KNM	7.84				
DKP	13.72	KPT-	45.08	UB-	47.05	KSM	25.48				
RKP	41.16	KNT	13.72	ŁB	11.76	The	17.64	1			
						UK-					

Source: author's own research

The greatest correlation, that is over 25% of trunk parameters with feet parameters was revealed by the trunk flexion angle in the sagittal plane (45.08%), the height of thoracic kyphosis (41.16%), the angle of the projection line of lower scapula angles with the right angle (39.21%) and the left one (47.05%) being more convex, the length of lumbar lordosis (31.36%), asymmetry in the height of scapula triangles with the right scapula up (29.4%), the inclination of the thoracic and lumbar spine (27.44%), shoulders line angle with the left one up and the angle of pelvic flexion to the right in the transverse plane (25.48%).

The incidence of trunk parameters with feet parameters at the level of 19.6% was observed in the upper thoracic inclination, and 17.64% in the inclination of thoracic kyphosis, lumbar lordosis, and the maximal deviation of the spinous process from the line. The total length of the

 C_7 - L_5 spine showed a 15.68% frequency of correlations with feet parameters. The incidence of correlations between feet parameters and the remaining parameters was lower than 15%, Table 2, Fig. 1.

Feet	Feet parameters most frequently significantly influenced by trunk parameters										
SZP	25.9	WP1	8.6	WL1	8.6	DP1	23.8	AlfaL	6,5		
SZL	19.5	WP2	15.1	WL2	8.6	DP2	36.7				
DLP	23.7	WP4	6.5	WL4	8.6	DP3	6.5				
DLL	21.7	WP5	13.4	DL1	24.2	DP1	23.8				
BetaP	30.3	SP1	41.6	DL4	13.0	SL3	17.2				
GamP	15.1	SP3	13.0	SL1	13.0	PSP	19.9				
GamL	8.6	SP5	8.6	SL5	6.5	PSL	8.6				

Table 3. Feet parameters with which trunk parameters revealed the most frequent significant correlation (n) 2343

Source: author's own research

The further analysis of research results found those trunk parameters most often significantly correlated, at a level higher than 20%, with the value of the width of longitudinal arch 1 (41.6%), the length of longitudinal arch 2 in the right foot (36.7%), varus angle of the fifth toe (30.3%) and the width of the right foot (25.9%) as well as a 24.2% incidence with the length of arch 1 in the left foot. The trunk features showed a 23.8% frequency of significant correlation with the length of the first arch and the width of the left foot (19.5%), and frequency at the level of 23.7% with the length of the right foot and 21.7% with the length of the left foot. The level of frequency of significant correlation with the value of a plantogram of the right foot was 19.9%, with the width of longitudinal arch 3 in the left foot was 17.2%, with the heel angle and height of the longitudinal arch 2 in the right foot was 15.1%. A similar incidence, that is 13.0%, was observed in relation to the length of arch 4 and the width of arch 1 in the left foot. The incidence of significant correlations revealed by trunk parameters with other feet parameters was lower than 10%, Table 3, Fig. 2.

4. Discourse

The analysis of multiple regression of body trunk and feet parameters showed that sagittal parameters of physiological curvatures correlated much more frequently with feet parameters. It should be assumed that even though the alliance of these parameters is very frequent and large, it is less reasonable than in the case of frontal or even transverse parameters. In addition, the influence of all features in the age range of 4-6 and 14-18 years is significantly smaller than in 7-13-year-olds and biomechanically justified in many cases [10, 11] as it is impossible to demonstrate a logical and significant relationship of the inclination of the upper

thoracic spine with the varus angle or valgity angle of the fifth toe in both feet. With respect to frontal parameters of the body trunk, the biomechanical effect of the asymmetric burden on the feet, as it should be supposed, should be reflected mainly in longitudinal and transverse arches.

5. Findings

1. The values of frontal and sagittal body trunk parameters revealed a significant correlation

with the parameters of feet. An increased frequency of these correlations was observed between the sagittal parameters of the body trunk and feet. The relationship between transverse parameters was much less significant.

- 2. Feet parameters most often significantly correlated with: trunk flexion angle in the sagittal plane, height of thoracic kyphosis, angle of the projection line of lower scapula angles with the right or the left angle being more convex, lumbar lordosis length, asymmetry in the height of scapula triangles with the right scapula up, inclination of the thoracic and lumbar spine, shoulders line angle with the left one up and the angle of pelvic flexion to the right in the transverse plane.
- 3. Feet parameters with which trunk parameters most frequently correlated included: width of longitudinal arch 1, length of longitudinal arch 2 in the right foot, varus angle of the fifth toe and width of the right foot and length of the first arch in the left foot and length of the right and left foot.

References

1. Starosta W., 1999, Development of motor coordination in children and youth, Physical education and health, no. 4, WSiP, Warsaw

2. Bitman F., Badke G., 1988, Postural disorders in children and youth. Physical education and school hygiene, No. 81.

3. Mięsowicz I., 1965, Statodynamic interdependencies within lap belt region in ontogenetic development. Scientific works and materials IMD, No. 5.

4. Mięsowicz I., 1966, Statodynamic interdependencies within foot region in the aspect of ontogenetic development. Scientific works and materials IMD, No. 8.

5. Mięsowicz I., 1972, Developmental changes in strength and bioelectric activity of selected muscle groups. Issues of developmental age medicine, No. 1.

6. Drzał-Grabiec J., Snela S., 2012, Spinal curvatures and foot defects in children: an experimental study, Spine.

Mrozkowiak M., Sokołowski M., Kaiser A.: Correlations and influence of spine-pelvis complex parameters and feet in population of boys and girls aged 14–18 years. Issues of general medicine, September 2012, XIV, No. 3, pp 28-36.

7. Mrozkowiak M., Jazdończyk P., Correlations of spine-pelvis complex parameters and feet in girls and boys aged 4 to 18 years. Journal of Education, Health and Sport. 2015;5(7):226-250.

8. Kabsch A., 1999, Biomechanical and biocybernetics fundamentals of axisymmetric exercise according to Hoppe, Voivodeship Centre of Methodology, N. Sącz, pp 11 – 18.

9. Mrozkowiak M., Modulation, influence and correlations of selected body posture parameters in children and adolescents aged 4 to 18 years in the light of mora projection, Publishing House of Kazimierz Wielki University, Bydgoszcz, Volume I, II, 2015.

Ryc. 1. Częstość istotnych związków cech tułowia z cechami stóp wśród młodzieży 13 - 18-letniej obojga płci i środowisk (n) 2343

Ryc. 2. Cechy stóp, z którymi cechy tułowia wykazują najczęstszy istotny związek wśród młodzieży 14 - 18-letniej obojga płci i środowisk (n) 2343

