Бутаков Б.И., Марченко Д.Д., Артюх В.А., Зубехина А.В. Николаевский государственный аграрный университет, г. Николаев, Украина

ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ПОВЕРХНОСТНОГО СЛОЯ ВАЛОВ, ОБКАТАННЫХ РОЛИКАМИ

1. Вступление

При изготовлении и эксплуатации деталей машин на их поверхностях образуются неровности и микронеровности, а слой металла, непосредственно прилегающий к поверхности, имеет нередко новые структуру, фазовый и химический состав по сравнению с сердцевиной, в нем возникают остаточные напряжения [1]. В условиях эксплуатации этот слой подвергается наиболее сильному физико-химическому воздействию: механическому, тепловому, магнитоэлектрическому, световому, химическому и др. [2 - 4]. Часто разрушение деталей начинается с поверхности, например при изнашивании, эрозии, кавитации, усталости, контактной усталости и многих других случаях. Поэтому к поверхностному слою предъявляются более высокие требования, чем к глубинным слоям детали.

Одним из эффективных и простых методов упрочнения поверхностного слоя является метод поверхностного пластического деформирования (ППД) [5], который позволяет рассматривать его не только как метод получения деталей требуемой формы, точности и микрогеометрии поверхности, но и как способ упрочнения деталей, существенно влияющих на их эксплуатационные характеристики. Характер изменения физико-механических свойств по глубине детали после любых способов поверхностной обработки или упрочнения позволяет оценить влияние так называемой технологической наследственности на формирование окончательных свойств изделий.

2. Исследование механических свойств и оценка точности определения глубины наклепа по различным механическим характеристикам

Наиболее доступным экспериментальным методом исследования глубины и степени наклепа при ППД является измерение твердости по Виккерсу в поперечном или наклонном сечениях упрочненной детали. Однако большой разброс значений твердости, особенно в переходной зоне между упрочненным слоем и исходным металлом не позволяет с достаточной точностью определить глубину наклепа. Более полное представление о механических свойствах поверхностного слоя можно получить на основе испытания на разрыв образцов, вырезанных из детали на различном расстоянии от поверхности. Такие испытания малых плоских образцов (рис. 1) толщиной 0,2 ... 0,4 мм были выполнены на машине П. Шевенара [6], на которой проводилась оптическая диаграммная запись на фотопленке зависимости деформации образца от нагружения. Образцы изготавливались по следующей технологии. Обкатанный вал разрезался на цилиндрические отрезки соответственно количеству исследуемых режимов. Каждый такой отрезок, обкатанный с определенным режимом, подрезали по торцу в зоне стабильного процесса обкатывания и эксцентрично обтачивали на длине, соответствующей размеру микрообразцов.

Рис. 1 – Образец для микроиспытаний на разрыв

Рис. 2 – Схема вырезки образцов

Величину эксцентриситета выбирали так, чтобы вновь образованная поверхность с одной стороны осталась касательной к обкатанной поверхности, а на другой стороне диска углубилась заведомо ниже деформированного слоя (рис. 2). Вновь образованная таким образом при обточке цилиндрическая по-

Проблеми трибології (Problems of Tribology) 2012, № 1

верхность сохраняет обкатанную полоску шириной 10 - 12 мм. Затем вал растачивали на глубину, равную длине обточки, до тех пор, пока не останется тонкое кольцо, из которого и вырезали микрообразцы для механических испытаний. Из каждого обкатанного участка вырезали по два кольца – одно шириной 27,5 мм для продольных (осевых) и второе шириной 9 мм для поперечных (круговых) образцов. Половина широкого кольца после разметки и нанесения маркировки разрезалась на 30 темплетов, которые затем равномерно шлифовали с двух сторон на плоскошлифовальном станке до выведения следов предыдущей обточки.

На узком кольце, после разметки и маркировки, с использованием делительной головки шлифовали 24 лыски длиной 6 - 7 мм. Это обеспечивает необходимое прилегание темплетов, вырезанных в дальнейшем из кольца, к поверхности магнитной плиты при их последующем шлифовании. Затем в специальном кондукторе сверлили и развертывали два отверстия диаметром 3Н7 для крепления будущих образцов в захватах испытательной машины. Эти отверстия служат также базой для последующего шлифования профиля образцов, при котором пакет из нескольких образцов закрепляли во втором кондукторе.

После шлифования их полировали тонкими шкурками зернистостью МЗ до выведения следов предыдущей обработки. Шероховатость шейки образца должна быть $R_a = 0.08...0, 16$ мкм, что соответствует требованиям, высказанным в [7].

Ширина и толщина шейки образцов измерялась рычажным микрометром с ценой деления шкалы 0,002 мм. Расстояние осевых сечений образцов от поверхности определяли угловым расположением образцов относительно центра кольца:

$$h = \frac{D_{\partial}}{2} - \sqrt{\frac{D_{\partial}^{2}}{4} - (D_{\partial}t - t^{2})\sin^{2}\frac{\alpha}{2} + b_{\kappa} - \frac{b}{2} - \Delta}$$

где D_{∂} – диаметр детали;

t – полная толщина исследуемого слоя;

α – координатный угол образца;

*b*_{*k*} – толщина кольца;

 Δ – припуск на шлифование с внутренней стороны кольца.

При разрезке кольца на *n* заготовок равной ширины:

$$\alpha = \frac{2\pi}{n} (N-1),$$

где N – номер образца от 1 до n.

Приведенные на рис. 3 и 4 результаты определения глубины наклепа по изменениям твердости HV10 и условного предела текучести металла наклепанного слоя статистически обработаны по критерию Колмогорова [9] и методом малых выборок. Выборки объемом 5 - 10 замеров были взяты с интервалом 0,5 мм по глубине от поверхности детали. Однородность механических свойств по глубине проверена гипотезой равенства дисперсий выборок с помощью критерия Фишера [10]. Однородность дисперсий выборок проверена с помощью критерия Бартлета [11]. Гипотезы равенства и однородности дисперсий выборок всех исследованных образцов подтверждены с вероятностью P = 0.95. При определении глубины наклепа, оцениваемой по началу изменения HV10 и G_{0.2} деформированного слоя, и оценке точности определения его глубины применен нелинейный регрессионный анализ.

В качестве линий регрессии взяты функции [12]:

$$y = a_1 + b_1 x + b_2 x^m$$
 и $y = a_1 + b_1 x + b_2 \lg x$,

где у – твердость или предел текучести;

х – расстояние точки замера от поверхности детали.

Коэффициенты a_1, b_1, b_2 линий регрессии оценивались в соответствии с методом наименьших квадратов [13].

В качестве глубины изменения механических характеристик принята абсцисса точки экстремума линии регрессии (точки сопряжения линии регрессии с горизонталью на уровне исходных механических свойств), для которой рассчитаны доверительные интервалы. Значение абсциссы точки экстремума x_0 для случая параболической линии регрессии определится из условия:

$$\frac{dy}{dx} = b_1 + mb_2 x^{(m-1)} = 0, \quad x = x_0 = \frac{1}{\sqrt{1 - \frac{b_1}{mb_2}}}.$$
(1)

Проблеми трибології (Problems of Tribology) 2012, № 1

Можно считать, что $Z = b_1 + mb_2 \xi^{(m-1)}$ распределяется нормально со средним значением $\overline{Z} = 0$ и дисперсией:

$$S_{Z}^{2} = S_{b_{1}}^{2} + S_{b_{2}}^{2}m^{2}\xi^{2(m-1)} + 2S_{b_{1}b_{2}}m\xi^{(m-1)},$$

так что отношение Z/S_z имеет *t*-распределение с k = n - 3 степенями свободы [13]. Здесь ξ – теоретическая абсцисса максимума; n – число пар значений y и x. С учетом предыдущего запишем неравенство:

$$\frac{|Z|}{S_z} < A, \tag{2}$$

где число *А* представляет собой двухстороннюю 95 %-ную границу для *t*-распределения Стьюдента с *k* степенями свободы [10].

Подставив значения Z и $S_{_{Z}}$ в неравенство (2), получим:

١

$$\frac{\left|b_{1}+mb_{2}\xi^{(m-1)}\right|}{\left|\overline{S_{b_{1}}^{2}+S_{b_{2}}^{2}m^{2}\xi^{2(m-1)}+2S_{b_{1}b_{2}}m\xi^{(m-1)}}\right|} < A.$$
(3)

Проблеми трибології (Problems of Tribology) 2012, № 1

86 Исследование физико-механических свойств поверхностного слоя валов, обкатанных роликами

Рис. 3 – Механические свойства поверхностного слоя валов, обкатанных торообразными роликами: а – диаметром $D_p = 105$ мм, с профильным радиусом $r_p = 10$ мм; б – $D_p = 105$ мм, $r_p = 18$ мм; в – $D_p = 105$ мм, $r_p = 100$ мм; $\sigma_B, \sigma_{0,2}, \delta$ – свойства в круговом направлении; $\sigma'_B, \sigma'_{0,2}, \delta'$ – свойства в осевом направлении

Проблеми трибології (Problems of Tribology) 2012, № 1

87

Исследование физико-механических свойств поверхностного слоя валов, обкатанных роликами

Рис. 4 – Механические свойства поверхностного слоя валов, обкатанных цилиндрическими роликами: а – днаметром $D_p = 5$ мм; б – $D_p = 12$ мм; в – $D_p = 32$ мм; $\sigma_B, \sigma_{0,2}, \delta$ – свойства в круговом направлении;

 $\sigma'_{B}, \sigma'_{0,2}, \delta'$ – свойства в осевом направлении

Решение неравенства (3), приводящее к уравнению 2 (m - 1) степени относительно ξ , дает доверительные границы для ξ :

$$\begin{pmatrix} m^2 b_2^2 - A^2 m^2 S_{b_2}^2 \end{pmatrix} \xi^{2(m-1)} + (2b_1 b_2 m - 2A^2 S_{b_1 b_2} m) \xi^{(m-1)} + b_1^2 - A^2 S_{b_1}^2 = 0, 0$$

откуда имеем
$$\xi_{1,2} = {}^{m-1} \sqrt{\frac{A^2 S_{b_1 b_2} - b_1 b_2 \pm \sqrt{(b_1 b_2 - A^2 S_{b_1 b_2})^2 - (b_2^2 - A^2 S_{b_2}^2)(b_1^2 - A^2 S_{b_1}^2)}}{m(b_2^2 - A^2 S_{b_2}^2)} .$$

$$(4)$$

Приближенно стандартное отклонение глубины изменения механических свойств с учетом (1) можно рассчитать по формуле [13]:

$$\left(\frac{S_{x_0}}{x_0}\right) \approx \left(\frac{S_{b_1}}{b_1}\right)^2 \left(\frac{1}{m-1}\right)^2 + \left(\frac{S_{b_2}}{b_2}\right)^2 \left(\frac{1}{m-1}\right)^2 - 2\left(\frac{1}{m-1}\right)^2 \frac{S_{b_1b_2}}{b_1b_2} \frac{S_{x_0}}{x_0} \approx \frac{1}{m-1} \sqrt{\left(\frac{S_{b_1}}{b_1}\right)^2 + \left(\frac{S_{b_2}}{b_2}\right)^2 - 2\left(\frac{S_{b_1b_2}}{b_1b_2}\right)}.$$
(5)

или

Глубина изменения механических характеристик и ее доверительные интервалы для случая логарифмической линии регрессии определяются из выражений

$$\frac{dy}{dx} = b_1 + b_2 \frac{0.43429}{x} = 0, \quad x = x_0 = -\frac{b_2}{b_1} 0.43429.$$
(6)

Считаем, что $Z = b_1 + b_2 \frac{0.43429}{\xi}$ распределяется нормально со средним значением $\overline{Z} = 0$ и

дисперсией

$$S_Z^2 = S_{b_1}^2 + S_{b_2}^2 \frac{0.43429^2}{\xi^2} + 2S_{b_1b_2} \frac{0.43429}{\xi}.$$

Решение неравенства $|Z|/S_z < A$ приводит к уравнению второй степени относительно ξ :

$$\frac{M^2}{\xi^2} (b_2^2 - A^2 S_{b_2}^2) + \frac{2M}{\xi} (b_1 b_2 - A^2 S_{b_1 b_2}) + (b_1^2 - A^2 S_{b_1}^2) = 0.$$

Отсюда следует $\xi_{1,2} = \frac{M (b_2^2 - A^2 S_{b_2}^2)}{A^2 S_{b_1 b_2} - b_1 b_2 \pm \sqrt{(A^2 S_{b_1 b_2} - b_1 b_2)^2 - (b_1^2 - A^2 S_{b_1}^2)(b_2^2 - A^2 S_{b_2}^2)}.$ (7)

Проблеми трибології (Problems of Tribology) 2012, № 1

Исследование физико-механических свойств поверхностного слоя валов, обкатанных роликами

Стандартное отклонение значения x₀ рассчитывается с учетом [13] по формуле:

$$\left(\frac{S_{x_0}}{x_0}\right)^2 \cong \left(\frac{S_{b_1}}{b_1}\right)^2 + \left(\frac{S_{b_2}}{b_2}\right) - 2\frac{S_{b_1b_2}}{b_1b_2}.$$
(8)

При регрессионном анализе значения коэффициентов уравнения линии регрессии и абсциссы точки экстремума первоначально рассчитывали по формулам метода наименьших квадратов, затем по (1) или (6) – с учетом механических характеристик, существенно отличающихся от исходных. После того, как точки замера исходных характеристик были сдвинуты в направлении оси *x* до совпадения их абсцисс с абсциссой точки экстремума линии регрессии, решение проводили снова уже с учетом преобразованных таким образом замеров исходных механических характеристик. Решение повторяли до тех пор, пока разница между абсциссами точек экстремума двух последних линий регрессии не превышала наперед заданного числа, равного 0,01 мм. Коэффициент параболической линии регрессии принимал значения 2 - 25. Из всевозможных линий регрессии выбирали линию, имеющую наименьшую остаточную дисперсию S^2 . Лучшей линией регрессии оказалась параболическая зависимость.

Доверительные границы и стандартные отклонения глубины изменения механических характеристик рассчитывались соответственно по формулам (4), (7) и (5), (8). Результаты регрессионного анализа приведены в табл. 1.

Таблица 1

Результаты исследования глубины наклепа по изменениям механических свойств *HV*10 и О_{0.2} поверхностного слоя вала диаметром 220 мм, обкатанного с усилием 50 кН

		$D_p,$ MM	Приведенная кривизна Σ <i>K</i> , мм ⁻¹	<i>a</i> , MM	b, MM	Найденная по изменению HV10							
	$r_p,$ MM							<i>t</i> , MM					
№ пп						Степень наклепа, $\frac{\Delta HV}{HV}$	Разброс исходной твердости <i>HV</i> , %	Номинальная χ_0	Наибольшая ξ ₁	Наименьшая ξ2	95 %-ый доверительный интервал, %		
1	10	105	0,128	4,3	2,15	0,40	14	6,18	8,0	5,0	48		
2	18	105	0,0835	3,8	2,65	0,37	6,2	6,3	8,0	5,12	48		
3	100	105	0,035	5,1	2,9	0,21	8,6	4,93	6,6	3,9	58		
4	∞	5	0,2	12,5	1,2	0,61	12,4	2,49	3,05	2,22	32		
5	x	12,5	0,16	11,5	1,9	0,41	9,2	3,45	4,34	3,01	38		
6	∞	32	0,053	12	2,65	0,32	11,3	4,41	6,75	3,58	75		

Таблица 2

	Найденная по изменению $\sigma_{0,2}$							Теоретическая глубина наклепа, мм					
№ nn			<i>t</i> , мм			p-							PIX 9
	Степень наклепа, $\Delta\sigma_{0,2}/\sigma_{0,2}$	Разброс исходного $\sigma_{0,2}, \%$	Номинальная χ_0	Наибольшая ў1	Наименьшая	95 %-ый доверительный инте вал, %	$k_{\sigma_{0,2}}$	по Хейфецу [15]	по Петушкову [16]	по Дрозду [17]	по Черному [18]	по Браславскому [14]	По теории средних касательн напряжений [19, 20]
1	1,05	12,5	8,01	8,67	7,77	11,2	1,3	7,88	5,1	7,15	8,83	7,2	7,8
2	0,80	14	8,08	9,80	7,40	29,7	1,28	7,8	4,2	6,55	8,73	7,2	7,7
3	0,67	9,5	7,44	8,05	7,20	11,4	1,5	8,12	2,87	5,95	9,1	6,8	7,2
4	1,30	13	3,12	3,62	2,74	30	1,25	-	-	-	-	3,4	3,2
5	1,13	13,6	4,82	6,05	4,26	36	1,35	-	-	-	-	3,3	4,07
6	0,90	11	6,16	7,73	5,6	36	1,40	-	-	-	-	2,1	3,8

Проблеми трибології (Problems of Tribology) 2012, № 1

Как видно, 95 %-ные доверительные интервалы на глубину наклепа, рассчитанные по результатам замеров условного предела текучести, составляют 11 - 36 % глубины наклепа, а по результатам измерений твердости, определяемой методом Виккерса, – 32 - 75 %. Для всех испытываемых образцов гипотеза равенства средних значений глубины наклепа, определенных по результатам замеров твердости и предела текучести, проверенная по критерию Стьюдента, не подтвердилась. Глубина наклепа, определенная по изменениям условного предела текучести, на 25 - 50 % больше глубины, определенной по изменениям твердости. Различие возрастает с уменьшением приведенной кривизны ролика и детали. Значения коэффициента k_{sort} , характеризующего это различие, приведены в табл. 1.

Различие глубины наклепа, определенной по HV и $\sigma_{0,2}$, обусловлено тем, что при одной и той

же степени деформации условный предел текучести возрастает в большей степени, чем твердость, т. е. предел текучести является более чувствительной механической характеристикой для определения глубины пластической деформации, чем твердость.

Ранее установленное отношение толщины слоя со сжимающими остаточными напряжениями к глубине наклепа по твердости находится в пределах 1,2 - 1,5 [14], что соответствует значениям коэффициента $k_{\sigma_{0,2}}$. Можно считать, что глубина залегания сжимающих напряжений близка глубине наклепа, определенной по пределу текучести.

При сравнении результатов расчета глубины наклепа по методикам [14 - 18] и по теории средних касательных напряжений (табл. 1) с результатами экспериментальной ее проверки получены следующие данные. Не обнаружено статистического различия по критерию Стьюдента между глубиной наклепа, рассчитанной по [15], и определенной экспериментально по пределу текучести для случая обкатывания вала торообразными роликами с профильными радиусами 10 и 18 мм, несмотря на то, что для этих случаев приведенная кривизна в контакте мала: соответственно 0,128 и 0,835 мм⁻¹. Нет различия также между глубиной наклепа по пределу текучести и по расчету в соответствии с теорией средних касательных напряжений для всех торообразных и цилиндрического ролика диаметром 5 мм при b/a < 0,05. Во всех остальных случаях различие существенно.

Значительное расхождение результатов расчета по теории средних касательных напряжений [19 - 20] для цилиндрических роликов диаметрами 12,5 и 32 мм при b/a > 0,05 объясняется тем, что в теории упругости при выводе зависимостей главных напряжений под прямоугольным отпечатком применен предельный переход, предполагающий, что в соприкосновении находятся цилиндры неограниченной длины. Вероятно, что при вдавливании короткого цилиндрического ролика, для которого b/a = 1, глубина пластической деформации будет незначительно отличаться от расчетной по [15] для сосредоточенной силы.

Различие глубины наклепа, определенной по *HV* и $\sigma_{0,2}$, обусловлено тем, что при одной и той же степени деформации условный предел текучести возрастает в большей степени, чем твердость, т. е. предел текучести является более чувствительной механической характеристикой для определения глубины пластической деформации, чем твердость.

Ранее установленное отношение толщины слоя со сжимающими остаточными напряжениями к глубине наклепа по твердости находится в пределах 1,2 - 1,5 [14], что соответствует значениям коэффициента $k_{\sigma_{0,2}}$. Можно считать, что глубина залегания сжимающих напряжений близка глубине наклепа, определенной по пределу текучести.

При сравнении результатов расчета глубины наклепа по методикам [14 - 18] и по теории средних касательных напряжений (табл. 1) с результатами экспериментальной ее проверки получены следующие данные. Не обнаружено статистического различия по критерию Стьюдента между глубиной наклепа, рассчитанной по [15], и определенной экспериментально по пределу текучести для случая обкатывания вала торообразными роликами с профильными радиусами 10 и 18 мм, несмотря на то, что для этих случаев приведенная кривизна в контакте мала: соответственно 0,128 и 0,835 мм⁻¹. Нет различия также между глубиной наклепа по пределу текучести и по расчету в соответствии с теорией средних касательных напряжений для всех торообразных и цилиндрического ролика диаметром 5 мм при b/a < 0,05. Во всех остальных случаях различие существенно.

Значительное расхождение результатов расчета по теории средних касательных напряжений [19 - 20] для цилиндрических роликов диаметрами 12,5 и 32 мм при b/a > 0,05 объясняется тем, что в теории упругости при выводе зависимостей главных напряжений под прямоугольным отпечатком применен предельный переход, предполагающий, что в соприкосновении находятся цилиндры неограниченной длины. Вероятно, что при вдавливании короткого цилиндрического ролика, для которого b/a = 1, глубина пластической деформации будет незначительно отличаться от расчетной по [15] для сосредоточенной силы.

Отношение глубины наклепа, определенной экспериментально по пределу текучести для прямолинейного отпечатка, к расчетной глубине обозначим символом k_{u} . Зависимость k_{u} от отношения полуосей пластического отпечатка b/a показана на рис. 5, б.

Рис. 5 – Зависимости степени наклепа по твердости от приведенной кривизны (a) и отношения экспериментальной глубины наклепа к теоретической от формы прямолинейного отпечатка (б): b и a – полуоси пластического отпечатка

Итак, при обкатывании цилиндрическими роликами большой длины, когда b/a < 0,05, глубину наклепа можно рассчитывать по формулам теории упругости для прямоугольного отпечатка. С уменьшением длины прямолинейной образующей ролика 2a, когда b/a > 0,05, расчетную глубину наклепа необходимо умножить на k_{μ} Полуширина пластического отпечатка b определяется экспериментально вдавливанием ролика или рассчитывается по $b = D_p \varphi$, в которой угол φ в зависимости от требуемого эффекта обкатывания можно принять равным 2,5 или 5°.

3. Исследование микроструктуры упрочненного слоя валов, обкатанных роликами

Влияние режимов обкатывания роликами на изменение микроструктуры обрабатываемых металлов (валов из стали 40 после нормализации, имеющей перлитно-ферритную структуру) исследовано при обкатывании цилиндрическими роликами малого диаметра и торообразными роликами. На девяти образцах с различной степенью деформации (табл. 3) измерялась микротвердость структурных составляющих в поперечном сечении обкатанного вала [21].

Таблица З

	тикротвердоств образцов из стали 40, обкатанных роликами с усилием 30 кт											
№ образца	Расстояние среднего сечения от поверхности вала, мм	Форма ролика	$D_p^{},$ mm	r_p , mm	$oldsymbol{\phi}_{cp}$ *, град	5 <i>HV</i> ·10 ⁻¹ , МПа	$\frac{\Delta 5HV}{5HV},$	$H_{\mu} \cdot 10^{-1}$, M Π a	$\frac{\Delta H_{\mu}}{H_{\mu}}, \%$			
1	0,42	Тор	105	10	13	232	135	105/140	123/100			
2	2,59	-	-	-	-	208	121	90/136	106/100			
3	4,49	-	-	-	-	190	110	85/140	100/100			
4	7,72	-	-	-	-	183	106	85/138	100/100			
5	16,42	-	-	-	-	172	100	85/140	100/100			
6	0,36	-	-	100	3	216	127	85/140	100/100			
7	16,27	-	-	-	-	170	100	85/136	100/100			
8	0,21	Цилиндр $l_p = 25 \text{ мм}$	5	-	7	278	162	119/180	140/128			
9	16,25	-	-	-	-	170	100	85/136	100/100			

Микротверлость образнов из стали 40, обкатанных роликами с усилием 50 кН

Примечание. Перед чертой приведены значения для феррита, после черты – для перлита, при нагрузке 0,40 H.

* ϕ_{cp} – средний угол вдавливания ролика, $\phi_{cp} = \frac{\phi_a + \phi_b}{2}$, где ϕ_a , ϕ_b – углы вдавливания ро-

лика соответственно в осевом и поперечном сечениях обкатываемого вала.

Образцы 1 - 7 вырезаны на различных расстояниях от поверхности из вала, обкатанного торообразными роликами с радиусами профиля 10 и 100 мм, остальные – с поверхности вала, обкатанного

Проблеми трибології (Problems of Tribology) 2012, № 1

игольчатым роликом. Замеры микротвердости показали небольшие изменения твердости феррита и лишь у наиболее деформированного образца 8 заметно повысилась твердость перлитных зерен. Дополнительные замеры твердости по Виккерсу (при нагрузке 50 Н) на этих образцах подтвердили характер изменения твердости, приведенный на рис. 4, в. Опыты показали, что при обкатывании в первую очередь упрочняются границы зерен.

Микроструктура образцов, изготовленных из различных валов, до поверхностного наклепа была одинаковой. Она состояла из перлитных зерен, окруженных доэвтектоидным ферритом (рис. 6, а). После обкатывания пятимиллиметровым роликом ферритные и перлитные зерна значительно вытянуты в направлении качения ролика вследствие большой кривизны ролика в плоскости его качения и наличия большой силы трения ролика о неподвижный стальной сепаратор (рис. 6, б).

Рис. 6 – Микроструктура образцов, 9 (а) и 8 (б) из нормализованной стали 40 (х 300) (номера образцов в табл. 3)

Электронно-микроскопические исследования, проведенные с помощью микроскопа УЭМВ-100К на тонких фольгах (окончательное утонение пластин до толщины, прозрачной для электронов, проводили по методике, описанной в работе [22]), приготовленных из образцов, вырезанных на разных расстояниях от поверхности (табл. 3) и утоненных до толщины, прозрачной для электронов, по методике, описанной в работе [19], показали, что перлит имеет вид чередующихся темных полос цементита и более светлого феррита (рис. 7). Пластины цементита в образцах 4 и 5, наиболее удаленных от поверхности, в основном прямые, среднее расстояние между ними составляет 0,30 - 0,35 мкм. Изгиб и разрыв цементитных пластин происходит у границ субзерен. Ферритные пластины перлита не содержат дислокаций, лишь на отдельных участках наблюдаются единичные дислокации на поверхности раздела ферритцементит. Ферритные зерна в этих же образцах ограничены плоскими прямыми границами. Внутри зерен присутствует трехмерная сетка дислокаций невысокой плотности (рис. 7, а). Эта микроструктура возникла при нормализации исходного металла, хотя в образце 4 на глубине 7,7 мм обнаружен уже некоторый прирост твердости.

При рассмотрении микроструктуры слоев, расположенных ближе к поверхности, необходимо отметить возрастание плотности дислокаций в феррите. В образце 2 сетка дислокаций располагается по всему объему ферритных прослоек перлита. Такие участки встречаются и в образце 3 (рис. 7, б), хотя в большинстве случаев обнаруживается определенный контраст (стрелки). Внутри ферритных зерен в образце 2 начинает формироваться ячеистая структура, состоящая из стенок с высокой плотностью дислокаций, окружающих области, сравнительно свободные от дислокаций. Плотность дефектов в избыточном феррите примерно на порядок выше, чем в феррите эвтектоида (перлита).

Микроструктура образца 1, наиболее близко расположенного к поверхности, показана на рис. 7, в, г. Количество дефектов в феррите возросло, а изменений в строении цементитных пластин не обнаружено. В ферритных пластинках перлита (рис. 7, г) плотность дислокаций по-прежнему меньше, чем в избыточном феррите и не наблюдается признаков ячеистой структуры. В зернах феррита, (рис. 7, в) сформировалась четко выраженная ячеистая структура со значительными разориентировками по границам ячеек, о чем свидетельствует появление азимутального размытия рефлексов на электронограммах, полученных с этих участков.

Сталь образца 8, вырезанного из вала, обкатанного игольчатым роликом, подверглась наибольшей деформации, о чем можно судить по данным твердости, $\sigma_{0,2}$, σ_B вытянутости зерен (рис. 4, в и

7, б). На электронных микрофотографиях микроструктуры наблюдается изгиб цементитных пластин. Относительно редко видны их разрыв и образование вытянутых областей, длиной 1,5 мкм, ограниченных изогнутыми пластинками и скоплениями дислокаций (рис. 7, д). В местах разрыва цементитных пластин наблюдаются скопления дислокаций. В зернах избыточного феррита (рис. 7, е) видна хорошо развитая субструктура, причем средний размер ячеек составляет 6,4 мкм в сравнении с 0,7 мкм в образце 1. При

этом границы ячеек образованы более сложными и плотными переплетениями дислокаций, создающими значительные резориентировки. На девяти образцах с различной степенью деформации измерена микротвердость структурных составляющих в поперечном сечении обкатанных валов, приведенная в табл. 3.

Рис. 7 – Микроэлектроннографическая структура образцов, вырезанного с поверхности вала (нормализованная сталь 40), обкатанного торообразным и игольчатым роликами (электронный микроскоп, тонкая фольга): а – избыточный феррит, x35000 (образец № 4); б – перлит, x25000 (образец № 3); в – избыточный феррит, x35000 (образец № 1); г – перлит, x35000 (образец № 1); д – перлит, x15000 (образец № 8); е – избыточный феррит, x20000 (образец № 8); ж – феррит, x18000 (образец № 2); з – перлит, x20000 (образец № 2) (номера образцов в табл. 3)

Исследование механических свойств и микроструктуры образцов, вырезанных из различных по глубине сечений вала, показало, что обкатывание валов с усилием 50,0 кН приводит к наклепу поверхностных слоев на глубину порядка 8 мм при торообразной форме роликов и на глубину 3 - 6 мм при цилиндрической форме последних, имеющих линейный контакт с деталью.

Проблеми трибології (Problems of Tribology) 2012, № 1

Из двух структурных составляющих стали феррита и перлита первым воспринимает пластическую деформацию более мягкий феррит. Это приводит к формированию в зернах избыточного феррита ячеистой структуры, в которой плотность дислокаций и микроразориентировки по зерну возрастают по мере приближения к поверхности вала. В феррите эвтектоида плотность дислокаций значительно меньше, чем в зернах избыточного феррита, и не возникает ячеистой структуры. Это объясняется затруднением прохождения пластической деформации в узких прослойках феррита, окруженных значительно более твердым цементитом. При этом плоскости легкого скольжения в феррите находятся под большим углом к пластинам цементита, что вытекает из ориентационного соотношения этих двух фаз. Возникновение дислокаций в ферритных прослойках перлита происходит у поверхности раздела феррит-цементит, что согласуется с выводом о том, что основным источником дислокаций являются границы [23].

При относительно небольших деформациях, которые достигались при обкатывании поверхности вала роликом торообразного профиля, не найдено признаков деформации цементитных пластин, по крайней мере их форма не изменяется. Контраст внутри цементитных пластин, обнаруженный при исследовании ряда образцов, не удается однозначно толковать как дефекты кристаллического строения, подобные тем, которые обнаружены другими исследователями в экстрагированном цементите. Такой контраст в двухфазной фольге может быть связан с проекцией накладывающихся решеток цементита и феррита.

При обкатывании вала игольчатым роликом достигается больший поверхностный наклеп, чем при обкатывании торообразным роликом. Такая деформация приводит к вытягиванию перлитных зерен, особенно тех, у которых пластины расположены под небольшим углом к направлению деформации. Изгиб, а иногда и дробление цементита, очевидно, происходит на участках, в которых полосы скольжения феррита располагаются поперек цементитных пластин. Аналогичная структура присуща перлиту после больших степеней деформации, например, при волочении проволоки. Даже при наиболее интенсивном поверхностном наклепе, после обкатывания игольчатым роликом, обнаружено сравнительно немного областей, где происходило разрушение цементитных пластин.

Как показали электронно-графические исследования, упрочнение поверхностных слоев при обкатывании валов роликом в основном связано с возникновением дислокационных ячеек в структуре зерен избыточного феррита. Меньшую деформацию испытывают ферритные пластины перлита. Деформации цементитных пластин при обкатывании торообразными роликами не обнаружено.

Увеличение степени наклепа при обкатывании игольчатым роликом проявляется в большей плотности дислокаций и уменьшении размера ячеек в субструктуре ферритных зерен, а также в более густой сетке дислокаций в ферритных пластинах перлита. В отдельных районах происходит изгиб и разлом цементитных пластин, что свидетельствует о предельной степени пластической деформации поверхностного слоя. Это подтверждается началом шелушения поверхности, обкатанной пятимиллиметровым роликом.

4. Выводы

1. Предел текучести наклепанного слоя возрастает в большей степени, чем твердость (100 - 130 % против 20 - 60 %). Благодаря этому по изменению текучести более четко определяется граница деформированного слоя. Применение для обкатывания цилиндрических игольчатых роликов малого диаметра приводит к резкому повышению степени деформации в тонком поверхностном слое, фиксируемой на оптических микрофотографиях по вытягиванию зерен в направлении обкатывания.

2. Точность определения границы наклепанного слоя методом регрессионного анализа по результатам замеров условного предела текучести в два раза выше, чем по замерам твердости, определяемой методом Виккерса. 95 %-ные доверительные интервалы для глубины наклепа, рассчитанные по результатам замеров условного предела текучести, составляют 11 - 36 % глубины наклепа, а по измерениям твердости 32 - 75 %.

3. Глубина наклепа, определяемая по изменениям условного предела текучести, 25 - 50 % больше глубины, определяемой по измерениям твердости по Виккерсу. Различие возрастает с уменьшением степени наклепа.

4. Глубина наклепа по условному пределу текучести для круговых и близким к ним отпечатков $(b/a \le 2)$ соответствует расчетной по С.Г. Хейфецу даже при довольно малой приведенной кривизне контакта ролика с деталью ($k = 0.0835 \text{ мm}^{-1}$).

5. Как показало электронно-графическое исследование, упрочнение поверхностных слоев при обкатывании валов роликом в основном связанно с возникновением дислокационных ячеек в структуре зерен избыточного феррита. Меньшую деформацию испытывают ферритные пластины перлита. Деформации цементитных пластин при обкатывании торообразными роликами не обнаружено.

6. Увеличение степени наклепа при обкатывании игольчатым роликом проявляется в большей плотности дислокаций и уменьшении размера ячеек в субструктуре ферритных зерен, а также в более

густой сетке дислокаций в ферритных пластинах перлита. В отдельных участках происходит изгиб и разлом цементитных пластин, что свидетельствует о предельной степени пластической деформации поверхностного слоя. Это подтверждается началом шелушения поверхности, обкатанной пятимиллиметровым роликом.

Литература

1. Одинцов Л.Г. Упрочнение и отделка деталей поверхностным пластическим деформированием / Л.Г. Одинцов. – М.: Машиностроение, 1987. – 328 с.

2. Власов В. М. Работоспособность упрочненных трущихся поверхностей / В. М. Власов. – М.: Машиностроение, 1987. – 304 с.

3. Гаркунов Д. Н. Триботехника / Д. Н. Гаркунов. – М.: Машиностроение, 1985. – 424 с.

4. Фролов К. В. Методы совершенствования машин и современные проблемы машиноведения / К. В. Фролов. – М.: Машиностроение, 1984. – 224 с.

5. Бутаков Б. И. Основные принципы технологии импульсного и малоскоростного воздействия на структуру и свойства металлов и сплавов: дис. на соискание ученой степени доктора техн. наук: 05.02.01 / Бутаков Б. И. – К., 1992. – 533 с.

6. Бутаков Б. И. Оценка точности определения глубины наклепа при поверхностном пластическом деформировании / Б. И. Бутаков // Вестник машиностроения. – 1982. – № 11. – С. 22–24.

7. Фридман Я. Б. Механические свойства металлов / Я. Б. Фридман. – М. : Оборонгиз, 1952. – 556 с.

8. Кобрин М. М. Эпюры остаточные напряжений при контактной и контактно-сдвиговой схеме поверхностного пластического деформирования / М. М. Кобрин // Вестн. машиностроения. – 1963. – № 1. – С. 56-60.

9. Солонин И. С. Математическая статистика в технологии машиностроения / И. С. Солонин. – М. : Машиностроение, 1972. – 216 с.

10. Смирнов Н. В. Курс теории вероятностей и математической статистики / Н. В. Смирнов, И. В. Дунин-Борковский – М. : Наука, 1969. – 512 с.

11. Степнов М. Н. Статистическая обработка результатов механических испытаний / М. Н. Степнов. – М.: Машиностроение, 1972. – 232 с.

12. Бутаков Б. И. Статистическая оценка точности определения глубины изменения механических свойств упрочненного поверхностного слоя / Б. И. Бутаков // Оборудование и технологии высоковольтного разряда в жидкости. – К.: Наук. думка, 1987. – С. 48-53.

13. Хальд А. Математическая статистика с техническими приложениями / А. Хальд – М. : Изд-во иностр. литературы, 1956. – 664 с.

14. Браславский В. М. Технология обкатки крупных деталей роликами / В. М. Браславский. – М.: Машиностроение, 1975. – 160 с.

15. Хейфец С. Г. Аналитическое определение глубины наклепанного слоя при обкатке роликами стальных деталей / С. Г. Хейфец // Сб. ЦНИИТМАШа. – М.: Машгиз, 1952. – кн. 49. – С. 7-17.

16. Кудрявцев И.В. Влияние кривизны поверхностей на глубину пластической деформации при упрочнении деталей поверхностным наклепом / И.В. Кудрявцев, Г.Е. Петушков // Вестник машиностроения. – 1966. – № 7. – С. 41-43.

17. Дрозд М.С. Расчет глубины распространения пластической деформации в зоне контакта тел произвольной кривизны / М.С. Дрозд, А.В. Федоров, Ю.И. Сидякин // Вестник машиностроения. – 1972. – № 1. – С. 54-57.

18. Черный А.Г. Исследование зависимости пределов выносливости упрочненных валов от характеристик поверхностного пластически деформированного слоя и параметров процессов упрочнения: дис. на соискание ученой степени кандидата техн. наук: 05.02.01 / Черный А. Г. – М., 1971. – 215 с.

19. Прочность, устойчивость, колебания: Справочник в 3-х томах. Т. 2. Под ред. И.А. Биргера и Я.Г. Пановко – М.: Машиностроение, 1968. – 463 с.

20. Беляев Н. М. Местные напряжения при сжатии упругих тел / Н. М. Беляев // Инженерные сооружения и строительная механика. – Л., 1924. – С. 20-32.

21. Браславский В. М. Исследование поверхностного слоя валов, упрочненных обкаткой роликами / В. М. Браславский, Б. И. Бутаков, Б. И. Гольдштейн и др. // Пр-во крупных машин. Технология механической обработки и сборки. – 1975. – Вып. XXV. – С. 162-170.

22. Гольдштейн М. И. Исследование отпуска закаленного железа / М. И. Гольдштейн, В. М. Фарбер // Физика металлов и металловедение. – 1963. – 25, вып. 1. – С. 94-96.

23. Орлов Л. Г. Деформация поликристаллического железа у предела текучести / Л. Г. Орлов // Физика твердого тела. – 1967. – № 8. – С. 23-34.

Надійшла 25.01.2012

Проблеми трибології (Problems of Tribology) 2012, № 1