УДК.621.891:621.316

В данной работе рассмотрена методология применения метода акустической эмиссии при идентификации механизмов изнашивания и определения величины износа трибосистем. Проведена оценка метрологических характеристик автоматизированных систем трибодиагностики.

Ключевые слова: акустическая эмиссия, нанотехнологии, трибосистема, износ, чувствительность, погрешности, прогнозирование.

Введение

На сегодняшний день в трибометрии нашли широкое применение ряд, в основном, опосредственных методов контроля величины износа трибосистем [1]; например метод с использованием профилографов/склерометров, метод, основанный на определении количества частиц износа в масле, и др. Минимальная величина интенсивности изнашивания, которую можно определить этими методами составляет до $I_h = 10^{-7}$ m/m (линейная), либо $I_m = 10^{-7}$ kg/m³ (массовая).

Если в недавнем прошлом исследования в области трения и износа концентрировались в основном, на различных видах повреждаемости поверхностей фрикционного контакта, которые характеризуются интенсивностью изнашивания до $I_h = 10^{-5}$ m/m (линейная). Современное развитие нанотехнологий позволяет получать на поверхностях трения покрытия, имеющие износостойкость на несколько порядков выше износостойкость по сравнению с широко распространенными конструкционными материалами (до $I_h = 10^{-8} \square 10^{-11}$ m/m (линейная), либо $I_m = 10^{-8} - 10^{-11}$ kg/m³ (массовая)). Это делает невозможным применение традиционных методов измерения интенсивности (скорости) изнашивания при проведении испытаний на трение и износ вновь создаваемых трибосистем. Поэтому актуальным является разработка ускоренных методов оценки скорости изнашивания таких трибосистем, желательно в реальном масштабе времени. Это позволяет ставить и решать задачи качественно новой трибодиагностики, обратной задачи трибометрии [2].

Одним из методов диагностики, позволяющих получить информацию о процессах объемного и поверхностного разрушения материалов, является метод акустической эмиссии (АЭ) [2]. Работы по исследованию физики процессов и изучению разрушения материалов и конструкций с использованием метода АЭ проводятся во многих странах, прежде всего в США, Японии, Великобритании, ФРГ, России и других государств мира. Результаты, опубликованные за последние десятилетия, затрагивают широкий круг аспектов в изучении явления АЭ, которые касаются теоретических разработок в моделировании механизмов формирования и распространения, хранения и анализа информации о процессах объемного [3] и поверхностного разрушения [4].

Цель и постановка задачи

Целью данной работы является выбор и оценка энергетических характеристик акустикоэмиссионного излучения при контактном взаимодействии, определения точности и чувствительности критериев измерения скорости изнашивания трибоситемы, классификация трибосистемы по показателям износостойкости в нанодиапазоне.

Одной из важных задач акустико-эмиссионных исследований является оценка метрологических характеристик сигнала, позволяющая достоверно определить характеризующих процессов, вызывающих излучение и выделить идентифицирующие процесс критерии.

Изложение материалов исследования

Как известно метод АЭ позволяет на микроуровне обнаруживать дефекты и автоматизировать процесс измерения регистрируемых параметров. Он основан на регистрации упругих волн, излучаемых дефектами, которые развиваются в нагруженных конструкциях. Упругие волны напряжений деформаций, которые зарождаются и распространяются в материале объекта контроля, поступают на вход преоб-

разователей АЭ установленные на исследуемом изделии. С входа преобразователей АЭ электрический сигнал передается на вход измерительной аппаратуры, фильтруется, усиливается и преобразуется из аналогового в цифровой, а затем вводится в компьютер, где производится обработка информации. При этом с использованием разработанного программного обеспечения и в соответствии с методикой регистрации и обработки сигналов АЭ принимается решение о дефектности объекта контроля [2].

Полная математическая модель, учитывающая подробности "тонкой структуры" импульса достаточно сложна, поэтому при анализе импульсов используются числовые параметры, дающие упрощенные представление о его форме. К таким параметрам можно отнести: амплитуду A; длительность импульса τ_u ; длительность фронта τ_{ϕ} и длительность среза τ_c импульса.

Линейное пространство сигналов L является нормированным, если каждому сигналу $U(t) \in L$

однозначно сопоставлено число U – норма этого сигнала, причем должны выполняться определенные аксиомы нормированного пространства. Норму сигналов в линейном пространстве вводят разными способами [2]: Так для сигнала $(U(t), t \in T)$ можно записать:

$$U(t) = \sqrt{\frac{1}{T} \int_{0}^{T} U^{2}(t) \partial t} .$$
⁽²⁾

Квадрат данной нормы является энергией, а после приведения этой величины ко времени дискретизации – мощностью сигнала.

Вместе с тем широкие возможности современной вычислительной техники основаны на оперировании с дискретными числами (дискретными сигналами). Простейшую модель дискретного сигнала $U_{\partial}(t)$ можно представить как счетное множество точек t_i (i = 1, 2, 3, ..., n) на оси времени, в каждой из которых определено отсчетное текущее значение сигнала U_3 . Как правило, шаг дискретизации является постоянной величиной, т.е. $\Delta t = t_{i+1} - t_i = \text{const}$.

Любому аналоговому сигналу можно сопоставить его дискретный образ, имеющий например, вид последовательности прямоугольных видеоимпульсов одинаковой длительности, высота которых пропорциональна значению U(t) в отсчетных точках. При идеальной дискретизации время выборки сигнала бесконечно мало, т.е. дискретизация осуществляется с помощью бесконечно коротких импульсов, совокупность которых формирует так называемую гребенчатую функцию III(t). Если задан сигнал $x(t) \leftrightarrow X(v)$, то дискретизация x(t) с частотой F_a – это умножение функции x(t) на сумму импульсов Дирака, разделенных промежутками времени $T_a = 1/F_a$. Такую сумму импульсов Дирака можно записать в виде:

$$IIIF_{a}(t) = \sum_{k=-\infty}^{\infty} \delta\left(t - \frac{k}{F_{a}}\right).$$
(3)

Если обозначить $x_d(t)$ как дискретизированный сигнал, то:

$$x_{d}(t) = x(t) \sum_{k=-\infty}^{\infty} \delta\left(t - \frac{k}{F_{a}}\right).$$
(4)

Реальные устройства приема и обработки сигналов обладают конечной шириной полосы пропускания. Тогда для сигнала x(t) спектр, которого распределен в интервале $(-f_c, f_c)$, можно записать:

$$x(t) = \sum_{k=-\infty}^{\infty} x\left(\frac{k}{F_a}\right) \frac{\sin \pi F_a\left(t - \left(\frac{k}{F_a}\right)\right)}{\pi F_a\left(t - \left(\frac{k}{F_a}\right)\right)},\tag{5}$$

т.е. для частоты дискретизации F_a справедливо неравенство $F_a \ge 2f_c$, где f_c – наибольшая частота спектра функции x(t) однозначно восстанавливается по дискретным значениям $x(k/F_a)$, $k = 0, \pm 1, \pm 2, ...$. Точное значение отсчета сигнала в двоичной форме по уровню, имеет следующий вид:

$$x = \sum_{n=0}^{\infty} a_n 2^{-n} , (6)$$

Проблеми трибології (Problems of Tribology) 2013, № 1

где коэффициенты $a_n = 0$ или 1.

Однако сигналы после цифрового преобразования представляются в виде последовательности чисел с ограниченным числом разрядов (*N*). Поэтому получается машинное представление отсчета сигнала:

$$X = \sum_{n=0}^{N-1} a_n 2^{-n} + \beta_N 2^{-N}.$$
 (7)

Коэффициент β_N равен либо α_N , либо α_{N+1} в зависимости от того, нуль или единица содержится в (N+1) разряде.

Таким образом, непрерывный сигнал x(t) на некотором интервале $\{0, T\}$ описывается своими отсчетными значениями $(x_0, x_1, x_2, ..., x_{M-1})$, взятыми соответственно в моменты времени $(0, \Delta t, ..., (M-1)\Delta t)$, где Δt шаг дискретизации; $M = T/\Delta t$ полное число отсчетов (рис. 1).

Рис. 1 – Диаграмма измерения усредненной мощности сигналов АЭ при регистрации износа

Наличие цифровых массивов чисел, описывающих сигнал x(t), позволяет определять все его основные параметры, включая и усредненную спектральную мощность, где интеграл заменяется суммированием на интервале усреднения действия сигнала. При этом размерность по регистрируемому параметру в данном случае усредненной мощности определяется размерностью единицы младшего разряда для заданного числа разрядов аналого-цифрового преобразователя, а размерность по времени – размерностью шага дискретизации Δt .

Если рассматриваются импульсные потоки за определенное время испытаний на износ, то производится обработка и построение зависимостей изменения усредненных значений мощности сигналов АЭ как на определенных интервалах, так и во всем диапазоне времени испытаний трибосистемы:

$$\overline{x}(kt) = \frac{1}{n} \sum_{i=1}^{n} \Pi_{ik} ;$$

$$\Pi_{ik} \in \left[\left(k - 1 \right) \tau, k\tau \right], \ k = 1, 2, ..., m,$$
(8)

где Π_{ik} – обрабатываемый параметр сигнала;

 τ – длительность интервала усреднения на данной длине реализации T_1 , $(m = T_1/\tau)$;

n – количество сигналов на k-ом интервале усреднения.

При обработке непрерывного сигнала с колебаниями вокруг некоторого уровня, на интервале наблюдения (0, t) отсчетные цифровые значения $(x_0, x_1, x_2, ..., x_{M-1}) > 0$, обработка и вывод усредненных значений может осуществляться в соответствии с выражением (8).

Пиковые значения регистрируемых параметров АЭ оцениваются величиной информации, что делает возможным использование относительных информационных единиц в качестве критерия оценки скорости изнашивания трибосистем.

Такой подход обеспечивает получение максимального количества информации об износе трибосистемы. Позволяет регистрировать переход к различным видам повреждаемости (рис. 2).

"Наноизносный" режим подразумевает суммарный износ трибосистемы, который не может быть измерен после 8-ми часов непрерывных испытаний на максимальных эксплуатационных режимах весовым методом с точностью 10⁻⁵ грамма.

После полного проведения эксперимента проводится построение итоговых интегральных характеристик изнашивания трибосистем во времени испытаний и их анализ (рис. 3).

Проблеми трибології (Problems of Tribology) 2013, № 1

Разработанная методология регистрации скорости изнашивания в относительных информационных единицах позволяет регистрировать наноизносный режим трения, который не может быть измерен гостированными методами за 8 ... 50 часов непрерывных испытаний трибосистемы на машине трения (рис. 4), средний уровень пиковых значений скорости изнашивания, в этом случае не превышает 10 информационных единиц, а при повреждаемости увеличивается на два порядка.

С учетом цифрового преобразования сигналов усредненной мощности в интерфейсе пользователя по существу регистрируется информация о скорости изнашивания. Ценой деления скорости изнашивания является информация в относительных единицах. Поэтому проблема определения точности и чувствительности метода АЭ сводится к задаче определения связи единицы информации об износе с реальным износом.

б – период исчерпания ресурса и переход к повреждаемости

Проблеми трибології (Problems of Tribology) 2013, № 1

Рис. 4 – Диаграмма изменения скорости изнашивания за один файл (5 мин)

Рис. 5 – Фрактография поверхностей трения трибосистемы с ионно-плазменными покрытиями, работающими в условиях наноизносное трение x450:

a – MoN; б – TiAlN

Рис. 6 – Зависимость удельной эмиссионной активности ξ_{A3} от износа ϵ

С учетом цифрового преобразования сигналов усредненной мощности в интерфейсе пользователя по существу регистрируется информация о скорости изнашивания. Ценой деления скорости изнашивания является информацию в относительных единицах. Поэтому проблема определения точности и чувствительности метода АЭ сводится к задаче определения связи единицы информации об износе с реальным износом.

Переход от косвенных измерений износа к прямым может быть решен путем градуировки средств измерений. В нашем конкретном случае необходимо определить цену информационной единицы в единицах износа измеряемых весовым методом с помощью весов ВЛР-200 с точностью 10⁻⁵ грамм, а также определить погрешности средств измерений и результатов измерений. Для решения этой задачи были проведены испытания на износ по схеме кольцо-кольцо (трибосистема сталь по стали 30ХЗВА, азотирование, твердость 780 HV), где на поверхности трения подвижных и неподвижных образцов наносились ионно-плазменные покрытия на основе MoN и TiAlN, которые имеют высокие противоизносные свойства. В процессе нанесения покрытий варьировалась толщина покрытий и физико-механические свойства подслоя.

Фрактографическое представление наноизносного трения данных покрытий отображено на рис. 5. Заметный износ наблюдается на поверхности трибоэлемента с покрытием TiAlN.

Испытания проводили на серийной машине трения 2070 СМТ-1 в условиях граничной смазки. Рабочая среда авиационный керосин TC-1, расход 2 л/ч, при следующих условия: нагрузка – 1600 H; скорость скольжения – 0,5 м/с; время испытания – 480 мин.

Скорость изнашивания регистрировалась с помощью информационно-диагностической системы на основе метода АЭ [4].

В результате многократных измерений суммарного весового износа и информации об износе в каждом из 30 опытов, табл. 1, получена зависимость вида y = f(x), рис. 6, которая занимает некоторую полосу, что обусловлено особенностями изнашивания каждой трибосистемы, различием физикомеханических свойств поверхностных слоев и связанных с ними погрешностей.

Таблица	1
	_

Исходные данные							
№ эксперимента	Весовой износ, ϵ , г	Информация, I, отн. инф. ед.	ξ _{<i>A</i>Э} , г/отн. инф. ед.	№ эксперимента	Износ, Е, г	Информация I, отн. инф. ед.	ξ _{<i>дЭ</i> , г/отн. инф. ед.}
1	0,10525	373226950	South	16	0,00035	25735294	1,36×10 ⁻¹¹
2	0,0586	714463414	Задир	17	0,00025	19230769	1,30×10 ⁻¹¹
3	0,0049	408333334	$1,20 \times 10^{-11}$	18	0,00025	18656716	1,34×10 ⁻¹¹
4	0,00425	363251012	$1,17 \times 10^{-11}$	19	0,0002	14705882	1,36×10 ⁻¹¹
5	0,0035	304347826	$1,15 \times 10^{-11}$	20	0,0001	7194244	1,39×10 ⁻¹¹
6	0,0021	164062500	$1,28 \times 10^{-11}$	21		3521126	-
7	0,00175	143443452	$1,22 \times 10^{-11}$	22	C HC C HC HO I	3571428	-
8	0,00172	138709678	$1,24 \times 10^{-11}$	23	Her Her DB	3546099	-
9	0,00165	12890746	$1,28 \times 10^{-11}$	24	1111- 13H 16J 16Y	3511660	-
10	0,0011	88000814	$1,25 \times 10^{-11}$	25	KOI KOH KOH KOH	3512260	-
11	0,00095	73076924	1,30×10 ⁻¹¹	26	ие В В В Не ОСТ	3511440	-
12	0,0007	52238806	1,34×10 ⁻¹¹	27	Clair Clair	3472222	-
13	0,0006	45112782	1,33×10 ⁻¹¹	28	TO TO TO	3378378	-
14	0,0005	37593984	1,33×10 ⁻¹¹	29		3311258	-
15	0,0005	39062500	$1,28 \times 10^{-11}$	30	M	3164556	_

В процессе выполнения эксперимента были полученные исходные данные для обработки (табл. 1), которые представляют измеренные и полученные косвенным путем следующие характеристики износа элементов трибосистемы:

- количественная характеристика износа ε – получена путем взвешивания образца до и после эксперимента;

- общее количество информации об износе I за время испытаний (480 мин) – получена путем подсчета количества информации об износе в каждом измерении с интервалом $\Delta t = 20$ мсек;

- удельная эмиссионная активность ξ_{43} :

$$\xi_{A\Im} = \frac{\varepsilon}{I},\tag{9}$$

и представляет собой количество вещества, удаленного в процессе износа из трибосистемы, приходящееся на единицу информации.

В процессе статистической обработки результатов эксперимента решались следующие задачи:

1. Проверка воспроизводимости эксперимента в каждой от 1 до 20 точки.

2. Расчет по выбранной математической модели.

3. Проверка адекватности математического описания.

При решении первой задачи для проверки воспроизводимости эксперимента в каждой от 1 до 20точках использовался критерий Кохрена, имеющий вид:

$$G = \frac{g}{\sum_{g=1}^{N} S_1^2 \{y\}},$$
(10)

где s_i^2 – оценочные значения дисперсий (выборочные дисперсии), соответствующие каждой *i*-й точке эксперимента (в нашем случае *i* = 1...20).

Проверка свидетельствует о том, что гипотеза об однородности выборочных дисперсий отвечает результатам наблюдений.

Расчет математической модели выполнялся в следующей последовательности.

I. Выбор вида модели. Выполнялся подбор кривых из некоторого семейства для получения зависимости $\xi_{A\Im} = f(\varepsilon)$.

Пригодность моделей для прогнозирования зависит от того, какая часть суммы квадратов отклонений относительно среднего (SS относительно среднего) приходится на сумму квадратов отклонений, которая обусловлена регрессией (SS, которая обусловлена регрессией), и какая приходиться на сумму квадратов отклонений относительно регрессии (SS относительно регрессии). В этом плане критерием выбора вида регрессионной модели может служить величина R^2 , которая в нашем случае является отношением:

$$R^{2} = \frac{\left(\xi_{A\Im i}^{*} - \overline{\xi}_{A\Im}\right)^{2}}{\left(\xi_{A\Im i}^{*} - \overline{\xi}_{A\Im}\right)^{2} + \left(\xi_{A\Im i} - \xi_{A\Im i}^{*}\right)^{2}},$$
(11)

где ξ_i^* – оценочное значение $\xi_{A\Im}$ в соответствующей і-й точке; $\overline{\xi}_{A\Im}$ – среднее значение $\xi_{A\Im}$.

Очевидно, можно говорить о приемлемости модели, если R^2 не сильно отличается от "1". Результаты проверки с использованием данного показателя представлены в табл. 2.

Таблица 2

№ п/п	Вид регрессионной модели	Значение R^2	Примечание*
1	Линейная	0,7426	Не может быть использовано
2	Квадратичная	0,8248	Не может быть использовано
3	Логарифмическая	0,7926	-
4	Экспоненциальная	0,7505	Не может быть использовано
5	Степенная	0,7854	-

Выбор вида регрессионной модели

Примечание: *"Не может быть использовано" обозначает невозможность использования указанных моделей по причинам недостаточной точности прогнозирования процесса изнашивания при низких значениях износа.

П. Расчет коэффициентов модели с проверкой их значимости. Использование метода наименьших квадратов позволило получить соответствующие коэффициенты модели, которые представлены в табл. 3.

Для статистического оценивания коэффициентов регрессии использовался критерий Стьюдента:

$$t_a = |a| / s\{a\}; \ t_b = |b| / s\{b\},$$
 (12)

где $s\{a\}$, $s\{b\}$ – стандартные отклонения оценок соответствующих коэффициентов регрессии.

Для принятия решения о статистической значимости коэффициентов требуется выполнение следующего условия:

$$t_a; t_b \ge t_{\kappa p}^m, \tag{13}$$

где $t_{\kappa p}^{m}$ – критическое значение критерия, которое может быть найдено с использованием статистических таблиц.

Таблица 3

Вид модели	Математическая	Коэффициенты	
	запись модели	а	b
Логарифмическая	$\xi_{A\Im i}^{*} = a \ln(\mathbf{I}_i) + b$	5,27×10 ⁻¹³	2,23×10 ⁻¹¹
Экспоненциальная	$\xi_{A\Im i}^{*} = aI_{i}^{b}$	2,7×10 ⁻¹¹	-0,0414

Вил и коэффициенты регрессионных молелей

Проблеми трибології (Problems of Tribology) 2013, № 1

В табл. 4 представлены результаты использования данного критерия для случая логарифмической модели.

Таблица 4

Наименование	Коэффициенты	Стандартная ошибка	t - статистика
Y-пересечение, b	$2,2324 \times 10^{-11}$	$1,1512 \times 10^{-12}$	19,3917
Переменная, а	$-5,2698 \times 10^{-13}$	$6,3873 \times 10^{-14}$	8,2505
Критическое значение, <i>t</i>	-	-	1,7291

Результаты проверки коэффициентов логарифмической модели

В случае табл. 5 для выполнения расчетов использовалась замена выражения:

$$\xi_{A\Im i}^{*} = aI_i^{b},$$

на эквивалентное вида:

$$\ln(\xi_{A\ni i}^{*}) = \ln(a) + b \times \ln(I_i).$$

И в первом, и во втором случаях полученные коэффициенты модели можно считать статистически значимыми.

Таблица 5

Наименование	Коэффициенты	Стандартная ошибка	t - статистика	
<i>Y</i> -пересечение, $\ln(a)$	-24,3343	0,0925	262,9756	
Переменная, а	-0,0414	0,0051	8,0685	
Критическое значение, t	-	-	1,7291	

Результаты проверки коэффициентов степенной модели

Ш. Проверка гипотезы об адекватности математического описания опытным данным. Проверка выполнялась с использованием *F*-критерия Фишера имеющего вид:

$$F^{p} = \frac{\overline{S}_{y}^{2}}{\overline{S}_{ocm}^{2}}, \qquad (14)$$

где \overline{S}_y^2 – оценочная дисперсия среднего;

 \overline{S}_{ocm}^2 – оценочное значение остаточной дисперсии.

При этом условие, при котором принимается гипотеза об адекватности математического описания, имеет вид:

$$F^{p} \ge F^{m}_{\kappa p}, \tag{15}$$

где $F_{\kappa p}^{m}$ – табличное (критическое) значение критерия Фишера, взятое для соответствующих значений степеней свобод:

$$\mathbf{v}_1 = n - 1; \ \mathbf{v}_2 = n - p - 1,$$
 (16)

где *n* – количество экспериментальных точек;

р – количество факторов, и, как правило, 5 % степени значимости.

Результаты проверки моделей представлены в табл. 6.

Таблица 6

Проверка адекватности моделеи				
	Расчетное	Критическое		
Вид модели	значение	значение		
	F - критерия	F - критерия		
Логарифмическая	68,0711	2 3216		
Экспоненциальная	65,1003	2,5210		

Таким образом, для обоих случаев математического описания выполняется условие (7), что свидетельствует о правомочности использования моделей соответствующих видов для прогнозирования износа.

Проблеми трибології (Problems of Tribology) 2013, № 1

IV. Прогнозирование скорости изнашивания в трибосопряжениях, которые работают в наноизносном режиме трения. С учетом данных о скорости изнашивания полученных с помощью метода АЭ порядок прогнозирования следующий:

1. Выполняем измерение количества информации при износе I.

2. Используя модель соответствующего вида (см. табл. 3) выполняем косвенное измерение ξ_{42} .

3. Оцениваем количественную характеристику износа є по формуле (9).

Спрогнозированные значения количественной характеристики износа є для случая табл. 1 представлены ниже табл. 7.

Таким образом, результаты математического моделирования позволили выполнить оценку чувствительности метода АЭ при регистрации износа в анализируемых трибосопряжениях. Она находится в пределах диапазона изменения удельной эмиссионной активности $\xi_{A > i} = 1,2 \times 10^{-11} \dots 1,45 \times 10^{-11}$ г/отн.

инф. ед. При этом погрешность прогнозирования обеспечивается на уровне не более 2 ... 2,5 % при условии нормального механохимического износа. В условиях перехода к повреждаемости (табл. 1, номер эксперимента 1, 2) погрешности резко возрастают и применение метода АЭ в этом случае ограничивается диагностическими признаками, показанными на рис. 2.

Таблица 7

Количественные характеристики износа				
N⁰	Весовой	Информация	لا	
эксперимента	износ,	об износе,	$\varsigma_{A \ni i}$,	
	ε, Γ	I, отн. инф. един.	г/ относ. инф. един.	
21	0,0000506	3521126	$1,4473 \times 10^{-11}$	
22	0,0000513	3571428	$1,4464 \times 10^{-11}$	
23	0,0000510	3546099	$1,4468 \times 10^{-11}$	
24	0,0000505	3511660	$1,4474 \times 10^{-11}$	
25	0,0000505	3512260	$1,4474 \times 10^{-11}$	
26	0,0000505	3511440	$1,4474 imes 10^{-11}$	
27	0,0000500	3472222	$1,4481 \times 10^{-11}$	
28	0,0000487	3378378	$1,4497 \times 10^{-11}$	
29	0,0000477	3311258	$1,4509 \times 10^{-11}$	
30	0,0000457	3164556	$1,4537 \times 10^{-11}$	

В случае приближения к границам наноизносного режима трения точность прогнозирования незначительно снижается. Точность измерения весового износа 4 ... 5 % в данном случае и будет определять методику прогнозирования.

Таким образом, создан инструмент не только для измерения скорости изнашивания, но и для управления трибосистемами переводя их работу в наноизносный режим трения. Однако для сравнительной оценки этого режима необходима разработка критерия износостойкости, которая учитывала полученные выше результаты.

В качестве критерия износостойкости материалов при трении в работе [5] предлагалось использовать удельную роботу изнашивания A_u , которая представляет собой отношение работы A, что затрачивается на отделение некоторой части материала в трибосистеме к весу этой части ΔI :

$$A_u = \frac{A}{\Delta I} \,. \tag{17}$$

Использование энергетического подхода к процессам трения и изнашивания позволило использовать данный критерий для классификации различных видов износа и повреждаемости.

По величине данного критерия, возможно, проводить сравнительный анализ износостойкости различных трибосистем. Однако основным его недостатком является необходимость проведения долговременных испытаний на трение и изнашивание, которые, как известно, имеют высокую стоимость. Дальнейшее развитие подхода к критериальной оценке износостойкости предложено в работе [6]. В качестве критерия износостойкости в этом случае выступает критическая плотность потока энергии деформации, которая отвечает предельному насыщению внутренней энергией продуктов изнашивания материалов и состоит из упругой и пластической составляющих.

В работе [6] вывод данного критерия получен с учетом влияния на среднюю скорость изнашивания материалов трибосистем ϑ^* (* – знак осреднения), разных масштабных уровней нагрузки. Исходное энергетическое соотношение представлено авторами работы [2] в виде уравнения:

Проблеми трибології (Problems of Tribology) 2013, № 1

$$\vartheta^* = \operatorname{const}\left(\frac{\omega_{_{\partial H}}}{\omega_{_{\partial p}}^*}\right)^{n/3},\tag{18}$$

где $\Omega_{_{\!\!RH}}$ – плотность потока внешней энергии;

 $\Omega_{\kappa p}^{*}$ – усредненная критическая плотность потока энергии деформации, что распространяется в материалах в виде упругих и пластических деформаций;

n – параметр, который дискретно изменяется в зависимости от масштабных уровней изнашивания по правилу, близкому правилу геометрической прогрессии, в соответствии с изменением энергии активации основных процессов структурных превращений в деформированных объемах материала. При увеличении масштабов от микро к макроуровню показатель степени п изменяется от одного до восьми порядков.

Критическая плотность потока энергии деформации $\Theta_{\kappa p}^*$ представлена как:

$$\omega_{\kappa p}^{*} = \frac{E_{ynp}V_{\kappa p}^{ynp} + E_{n\pi}^{*}V_{\kappa p}^{n\pi}}{3},$$
(19)

где E_{ynp} и E_{nn}^* – предельная энергоемкость материалов при изнашивании в упругой и упругопластических областях;

Таким образом, данный подход и критерии отображают многомасштабность поверхностного разрушения, и дает возможность сравнительных оценок. Однако для определения параметра п также нужны значительные по объемам испытания также как и в первом подходе рассмотренном выше. Оба подхода могут быть теоретической базой для разработки расчетных методов при сравнительной оценке износостойкости трибосистем применение же их для оценки наноизносного режима трения невозможно по ряду показателей. В первую очередь в данных подходах неопределенными оказываются величина удельной работы разрушения, если она не привязывается к значениям максимальных эксплуатационных нагрузок, которые, как правило, оцениваются параметром *PV*. При низких показателях этого параметра сравнительный анализ трибосистем работающих в режиме "наноизносного" трения вообще не возможен.

Необходимо отметить, что АЭ имеет существенный недостаток на данном этапе развития метода. Пока что удается разделить износ трибоэлементов элементы, которых изготовлены из различных материалов только на режимах наноизносного трения, что отображено на рис. 7.

Рис. 7 – Диаграмма изменения усредненной мощности сигналов АЭ W_{ус} по времени: 1 – средний уровень при отделении частиц износа стали Сталь 40; 2 – средний уровень при отделении частиц износа БрАЖ 9-4; 3 – средний уровень от микродефектов и пластической деформации поверхностных слоев

Данный результат получен при переводе трибосистемы в наноизносный режим трения путем управления тепловым потоком в условиях неравновесной самоорганизации (см. далее).

Разработанная методика обработки акустико-эмиссионного излучения и определения скорости изнашивания, позволяет регистрировать скорость изнашивания, начиная с отделения первой частицы износа в трибосистеме в единицах измерения мощности АЭ. Методика дает возможность определить общие закономерности механизмов изнашивания разных трибосистем, разработать критерии оценки их технического состояния, и прогнозирования ресурса машин и механизмов. Таким образом, метод АЭ можно отнести к нанотехнологиям в измерении изнашивания. И этот метод может быть использован как для оценки, так и для классификации наноизносного режима трения трибосистем.

Современные методы контроля процессов изнашивания с использованием метода АЭ делает возможным сопоставлять энергетические параметры АЭ с мощностью, которая подводится к трибосистеме в процессе ее работы.

Величина, которая характеризует подведенную мощность W_L на единицу площади S контактного взаимодействия, представлена выражением:

$$\frac{W_L}{S} = P \frac{dI_h}{dt},\tag{20}$$

где $\frac{W_L}{S}$ – удельная мощность изнашивания;

P – приложенная нормальная нагрузка в трибосистеме [H/м²];

d

 I_h – скорость изнашивания.

В условиях равновесного самоупорядочивания W_L удовлетворяет принципу наименьшего действия (минимального производства энтропии) тогда:

$$\int_{t_1}^{t_2} W_L dt \to \min, \qquad (21)$$

где $\Delta t = t_2 - t_1$ – интервал времени усреднения.

Условие минимума задается уравнением Лагранжа:

$$\frac{\left(\frac{\partial W_L}{\partial I_h}\right)}{dt} - \frac{\partial W_L}{\partial I_h} = 0.$$
⁽²²⁾

Данное уравнение справедливо при условии:

$$\frac{d\left(\partial W_L/\partial I_h\right)}{dt} = 0.$$
⁽²³⁾

Откуда:

$$\frac{\partial W_L}{\partial I_h} = \text{const},$$
 (24)

или

$$\frac{2I_h}{kV} = \text{const}, \qquad (25)$$

где $k = \mu^*$ – безразмерный коэффициент изнашивания, который учитывает физикомеханические свойства материалов, условия трения и смазки, который может быть рассчитан как усредненное значение коэффициента трения за время испытания, что и дискретизация измерения мощности АЭ [8];

V – скорость скольжения.

Таким образом:

$$I_h = \operatorname{const} \frac{\mu^* V}{2} \,. \tag{26}$$

Что дает возможность записать (26) в виде:

 $I_h = C, \qquad (27)$

где С – постоянная.

Таким образом, на стационарном режиме изнашивания, удельная мощность изнашивания W_L это есть произведение квадрата скорости изнашивания I_h^2 к коэффициенту пропорциональности μ :

$$W_L = \mu^* I_h^2. \tag{28}$$

Вернемся к информативному параметру АЭ – усредненной мощности АЭ с единицы площади контактного взаимодействия W^* .

$$W^* = \frac{I_h}{\xi_{A\Theta}},\tag{29}$$

где ξ_{43} – удельная эмиссионная активность – величина изнашивания трибосопряжения за интервал времени усреднения W^* . Физическая сущность представляет собой мощность АЭ, которая регистрируется при отделении единицы массы трибоэлемента.

Проблеми трибології (Problems of Tribology) 2013, № 1

Приведем скорость изнашивания в выражениях (28) и (29) к одному пути трения:

$$\begin{cases} I_{h}^{*} = \sqrt{\frac{W_{L}^{*}}{\mu^{*}}}; \\ I_{h}^{*} = \xi_{A} W^{*}. \end{cases}$$
(30)

Таким образом:

$$I_{h}^{*} = \frac{W_{L}^{*}}{W^{*}\mu^{*}} \cdot \frac{1}{\xi_{A\Im}} \,. \tag{31}$$

Обозначим обратную величину первого множителя $\xi^{**} = \frac{W^* \mu^*}{W_L^*}$ – коэффициент диссипации

внешней подводимой энергии к трибосистеме выраженный в процентах оценивает долю подводимой мощности, к трибосистеме, которая преобразуется в процессы разрушения поверхностных слоев. С учетом высокой чувствительности метода АЭ к процессам поверхностного разрушения, эта величина может быть параметром оценки видов наноизносного режима трения. Она не противоречит двум ранее подходам, а является логическим этапом с появлением новых технологий.

Подведенная энергия к трибосистеме определяется конструкционными материалами, смазочными средами, используемыми соответствующих областях машиностроения и оценивается внешней удельной энергетической нагрузкой. Мощность подводится в трибосистему через триботехнический показатель μ^* , большая ее часть преобразуется в тепло (более 90 %), а остальная часть в процессы пластической деформации, разрушение и сопутствующее ему виды энергий – акустическую, электромагнитную и т.д. [4].

Разработанная методология измерения скорости изнашивания трибосистемы в единицах измерения мощности позволила разделить сигналы АЭ при нормальном изнашивании и повреждаемости в зависимости от их энергоемкости (рис. 7, табл. 8).

Таблица 8

N⁰			Энергоемкость в единицах измерения	
п/п	механизмы повреждении (изнашивания)	мощности		
			$B_{T} imes 10^{-8}$	
1	Процессы пластической деформации и образования микротре-	0 3	0 375	
	щин в поверхностном слое	0 0	0 0,70	
2	Отделение единичных частиц износа	3 10	3,75 12,5	
3	Участок стационарного изнашивания (после приработки)	10 25	12,5 31,25	
4	Сопутствующие механизмы микроповреждаемости (микрозадир)	300 600	375 750	

Энергоемкость сигналов АЭ для различных механизмов накопления повреждений в трибосистемах работающих в режиме наноизносного трения

Энергоемкости сигналов АЭ при разрушении вторичных структур различного типа различаются и выше для вторичных структур II рода, что наглядно видно из выражений, полученных в работе [7].

Мощность сигнала АЭ при разрушении вторичных структур I типа:

$$W_{I} = \left(U_{0}^{*}\right)^{2} \varepsilon_{0}^{2} k \exp\left(-2b\varepsilon_{0}\right), \qquad (32)$$

где U_0^* – амплитудное смещение, которое зависит от физико-механических свойств материала;

 $\boldsymbol{\varepsilon}_0$ – относительная деформация;

b – постоянная материала.

Мощность сигнала АЭ при разрушении вторичных структур II типа:

$$W_{II} = U_0^2 \delta_{unm}^2 \frac{\exp\left(-2b\sigma_{0\,3\kappa\sigma}\right) \left(2b\sigma_{0\,3\kappa\sigma}+1\right)}{b\sigma_{0\,3\kappa\sigma}},\tag{33}$$

где U_0 – максимально возможный сдвиг во время разрушения;

 $\delta_{{}_{\textit{инт}}}$ – численное значение интеграла в отдельных актах хрупкого разрушения;

 $\sigma_{0_{2KB}}$ – начальное эквивалентное напряжение.

Проведение сравнительных испытаний на трение и изнашивание в условиях $W_L = \text{const}$ делает

возможным по значению усредненной мощности АЭ W^* измеренной по завершению приработки сделать вывод об увеличении или уменьшении износостойкости трибосистем, относительно эталона, и позволяет значительно сократить время испытаний на изнашивание при разработке новых конструкционных и смазочных материалов [8].

Выводы

Разработанная методика обработки акустико-эмиссионного излучения и определения скорости изнашивания, позволяющая регистрировать скорость изнашивания с отделением первой частицы материала трибосистемы в информационных единицах [отн. инф. ед./с]. Применение данной методики позволяет определить общие закономерности механизмов изнашивания разных трибосистем, разработать критерии оценки их технического состояния, а также методики прогнозирования ресурса машин и механизмов.

Оценка чувствительности метода АЭ при регистрации износа находится в пределах диапазона изменения удельной эмиссионной активности $\xi_{A\Im i} = 1,2 \times 10^{-11} \dots 1,45 \times 10^{-11}$ г/отн. инф. ед. При этом погрешность прогнозирования обеспечивается на уровне не более 2 ... 2,5 %. Таким образом, метод АЭ можно отнести к нанотехнологиям в измерении износа.

Литература

1. Трибология: Исследования и приложения: Опыт США и стран СНГ / Под. ред. В.А. Белый, К. Лудема, Н.К. Мышкин. – М.: Нью-Йорк, 1993. – 454 с.

2. Бердинских В.А., Запорожец В.В. Стохастическое решение обратной задачи трибометрии // Трение и износ. – 1980. – Т.1, № 6. – С.976-986.

3. Филоненко С.Ф. Акустическая эмиссия. Измерение, контроль, диагностика. – К.: КМУГА, 1999. – 312 с.

4. Свиреденок А.И. / Под ред. Белого В.А. / Акустические и электрические методы в триботехнике. – М.: Наука и техника, 1987. – 280 с.

5. Стадніченко В.М. Моделювання сигналів акустичної емісії при різних механізмах руйнування поверхневого шару трибосистем / В.М. Стадніченко // Проблеми тертя та зношування. – 2007. – №1, С. 30-36.

6. Костецкий Б.И. Поверхностная прочность материалов при трении / Б.И. Костецкий, И.Г. Носовский, А.К. Караулов и др. – Киев: Техника, – 1976. – 296 с.

7. Погодаев Л.И. Структурно-энергетическая модель изнашивания / Л.И. Погодаев и др. // Трение и износ. – 2001. – Т. 22, №2. – С. 168-172.

8. Стадніченко В.М. Моделювання сигналів акустичної емісії при різних механізмах руйнування поверхневого шару трибосистем / В.М. Стадніченко // Проблеми тертя та зношування. – 2007. – №1, С. 30-36.

9. Запорожец В.В., Стадниченко В.М. Методология ускоренной оценки износостойкости образцов с электроискровыми покрытиями // Проблеми трибології. – 2010. - №4. – С. 25-32.

Поступила в редакцію 20.11.2012

Zaporozhec V., Stadnichenko V., Troshin O. Theoretical and experimental basics of acoustic emission identification of mechanisms wear and inventory forecasting tribosystems.

In this work is considered methodology of application of the acoustic emission method at identification mechanisms of wear and magnitude of wear of tribosystem. It was conducted assessment of metrological characteristics of automated systems tribodiagnostic.

Key words: acoustic emission, nanotechnology, tribosystem, wear, sensitivity, error, prediction.

References

1. Belyj V.A., Ludema K., Myshkin N.K. (Ed.). Tribologija: Issledovanija i prilozhenija: Opyt SShA i stran SNG. Moskow - Mashinostroenie; N'ju-Jork: Allergton Press, 1993. 454p.

2. Berdinskih V.A., Zaporozhec V.V. Stohasticheskoe reshenie obratnoj zadachi tribometrii, Trenie i iznos, 1980, T.1, No. 6, P. 976-986.

3. Filonenko S.F. Akusticheskaja jemissija. Izmerenie, kontrol, diagnostika. K.: KMUGA, 1999, 312 p.

4. Sviredenok A.I., Pod red. Belogo V.A., Akusticheskie i jelektricheskie metody v tribotehnike, M.: Nauka i tehnika, 1987, 280 p.

5. Stadnichenko V.M. Modeljuvannja signaliv akustichnoï emisiï pri riznih mehanizmah rujnuvannja poverhnevogo sharu tribosistem, Problemi tertja ta znoshuvannja, 2007, No. 1, pp. 30-36.

6. Kosteckij B.I. Nosovskij I.G., Karaulov A.K. Poverhnostnaja prochnost' materialov pri trenii , Kiev: Tehnika, 1976, 296 p.

7. Pogodaev L.I. Strukturno-jenergeticheskaja model iznashivanija, Trenie i iznos, 2001, T. 22, No. 2, pp. 168-172.

8. Stadnichenko V.M. Modeljuvannja signaliv akustichnoï emisiï pri riznih mehanizmah rujnuvannja poverhnevogo sharu tribosistem, Problemi tertja ta znoshuvannja, 2007, No. 1, pp. 30-36.

9. Zaporozhec V.V., Stadnichenko V.M. Metodologija uskorennoj ocenki iznosostojkosti obrazcov s jelektroiskrovymi pokrytijami , Problemi tribologii, 2010, No. 4, pp. 25-32.