
 

Welding Technology Review – www.pspaw.pl    Vol. 91(5) 2019   27 

DOI http://dx.doi.org/10.26628/wtr.v91i5.1003 

 

Article 

Computational fatigue durability of butt welds with cracks  
in the flanges of the solid-web girder of the railway bridge 

Bernard Wichtowski1,* 

1 West Pomeranian University of Technology, Szczecin, Poland 
* Correspondence: Prof. Bernard Wichtowski, marek.wichtowski@zut.edu.pl 

Received: 12.03.2019; Accepted: 09.04.2019 

Abstract: In 2018, passed the 40th anniversary of the death of prof. Andrzej Fabiszewski (1924-1978),  

a forerunner of testing the quality of butt welds in exploited railway bridges. One of the first surveyed 

facilities was the viaduct on the Poznań-Szczecin line discussed in the article. A very bad state of welds 

was found and there were 61 internal cracks. In order to estimate the durability of the facility, strength 

tests of the steel of the structure were carried out and static calculations were made against standard  

and operational loads. The fatigue life of a crack in a flange joint of one girder was also analyzed. The 

results of these tests are included in the article. 
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Introduction 
Due to the progressive degradation of the bridge infrastructure, the issue of its sustainability is a 

global problem. Since the seventies of the twentieth century, it has been assumed that the quality of welds 

is of decisive importance for the durability of welded structures. The influence of welding incompatibilities, 

and in particular cracks in the welds, should be considered individually in accordance with the Fitness of 

Purpose methodology. According to the Fitness of Purpose method, it is possible to determine whether a 

given welding incompatibility is acceptable from the point of view of fracture mechanics and the actual 

load state of the joint [1÷4].    

Already in the 1950s, the precursor of the Fitness of Purpose idea in Poland was prof. Andrzej 

Fabiszewski (1924-1978). It was thanks to the Professor under the agreement with the Ministry of Transport 

MK133-06-02-04, in 1954-1990, X-ray examinations of welds of the leading bearing girders of approximately 

200 exploited bridges across the country were carried out. On the occasion of the 40th anniversary of the 

death of the Professor, his collaborators wish to bring the Professor's scientific activity closer with this 

article and article [5]. It was Professor Fabiszewski who in 1957-1958 described the results of tests of butt 

joints in 10 railway bridges, in which 984 roentgenograms of welded joints were made [6,7]. 

Negative test results for riveting joints with cracks in several objects. Among others: the first welded 

in Poland (from 1937-1939) four bridges on the railway line Nasielsk-Toruń (1959), a nine-span truss bridge 

(7 x 66.0 m + 2 x 16.0 m) by the Vistula River under The Citadel in Warsaw (1962) and a viaduct on the line 

Poznań-Szczecin 212.26 km  (1958). The decision to strengthen cracked joints was made on the basis of 

calculations from static standard loads, without experimental and theoretical fatigue analysis [3,8]. The 

Paris' formula considered the first one, in which the values from the fracture mechanics dl/dN = C(K)m 

were taken into account in 1957, and the coefficients C and m are experimental factors (H. Takashima) from 

1973, while the laboratory tests of cracks in the welds with rhombic overlays, the author carried out in the 

nineties of the twentieth century, obtaining the results shown in figure 1 [9].  

Using the regression line equation from these tests, the useful life of the viaduct was determined, 

which was presented in [10] ‒ figure 2. This analysis took into account the technical condition of the 

structure after repeated field tests in 1984. Durability should be understood as the number of load cycles 

that the girder can transfer from the beginning of the crack with a given length (width), to the growth of the 

crack to the critical dimension at which its avalanche propagation will begin (brittle fracture). 

In recent years, several countries (Canada, the United States, the United Kingdom, Switzerland  

and Denmark) have adopted a new probabilistic assessment of the bearing capacity of used bridges. It is  

a method of separated, calibrated safety factors with reduced requirements in relation to newly designed 

structures ‒ according to the author, the "redundancy" method [11]. Based on the requirements of this 
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method and the Fitness of Purpose method, the article analyzes the fatigue life of the most dangerous 

fracture of the viaduct. In addition, the calculations are supposed to justify the purposefulness of 

reinforcement of flange welds with cracks, which was made in 1959. 

 
Fig.1. Regression line with the confidence interval and the results of fatigue tests of 16 samples (p − range of 

pulsating stress, Ni − number of load cycles) 

 
Fig. 2. Bridge service life in the function of Zrj, Popr. and number of load cycles 

Viaduct construction and testing 
The supporting structure of the triple-track viaduct, with the bottom roadway, is 6 welded plate 

girders with a support span of 15.0 m (Fig. 3 and 4). The girders have a web with a section of 1700 x 12 mm, 

whose plates are joined at the length of the girder with two and exceptionally on the F bearer with three 

butt welds covered with double-sided gibs of t = 8 mm. These contacts are located at a distance of 4.50 m 

from supports on girders A, B (track No. 3) and C, D (track No. 2) and at distances 0.76 m and 2.80 m  

on the girder E, and on the girder F according to figure 3. 

The plate girders' flanges have a fixed width and variable thickness over the length of the viaduct  

(Fig. 3b and 3c). The individual sections of the flanges are connected with a butt weld, and the number  

of these joints, depending on the girder’s construction, ranges from 2 to 5 in the flange. All flange joints, 

with the exception of 10 mm outer cap joints in girders A and B (8 joints in total), are covered with one-

sided diamond pads of dimensions given in figure 3. 
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Fig. 3. a) Girder F in the track No. 1, b) cross-sections of girder plates: A,B,C,D and  c) of girders E and F 

 
Fig. 4. General view of the railway viaduct 

The construction of the viaduct has been subjected to X-ray examinations twice, after 9 and 36 years  

of operation. The research involved the butt welds of 13 vertical joints of webs and 34 horizontal joints  

in flanges (18 in upper and 16 in lower flanges). In total, 132 roentgenograms of welds were performed.  

The numerical list of the tested joints and their determined quality levels in a particular viaduct are shown 

in table I. 

Table I. A numerical list of welds according to the quality level (in the nominative number of radiographs with cracks) 

Girder  

and track 

Joints 
Rtg. 

Quality level of welds 

Type Number B C D >D 

1 2 3 4 5 6 7 8 

A i B 

track 3 

upper flange 

web 

bottom flange 

6 

4 

6 

12 

20 

10 

− 

− 

− 

4 

1 

3 

1 

3 

1 

7/3 

16/12 

6/2 

C i D 

track 2 

upper flange 

web 

bottom flange 

4 

4 

4 

7 

20 

8 

− 

− 

− 

1 

1 

− 

− 

− 

− 

6/3 

19/19 

8/6 

E i F 

track 1 

upper flange 

web 

bottom flange 

10 

5 

10 

16 

25 

14 

1 

1 

− 

5 

− 

1 

4 

2 

3 

6/5 

22/21 

10/4 

In total 

upper flange 

web 

bottom flange 

20 

13 

20 

35 

65 

20 

1 

1 

− 

10 

2 

4 

5 

5 

4 

19/11 

57/52 

24/12 

In total 53 132 2 16 14 100/75 
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The roentgenograms of welds, in accordance with the provisions of PN-X/M-69772, were qualified to 

the appropriate defect class R1÷R5. Currently, these classes are comparable with the quality levels of welds: 

B +, B, C, D and >D, determined according to PN-EN ISO 5917: 2014 and according to these quality levels 

welds in table I are described. Qualification of up to 114 tested weld sections (86.4%) to the level of quality 

D and >D indicates a very low quality of butt welds in the viaduct. These joints are unacceptable in new 

bridge constructions. 75 roentgenograms (56.8%) showed 61 cracks, whose length was 10 to 410 mm in the 

webs and from 40 to 420 mm in the flanges. The found cracks in primary research, in 1957, were the reason 

for riveting the flange joints. In total, 14 joints were riveted; 6 joints in the upper and 8 in the bottom 

flanges. 

Spectrometric chemical analysis of the steel sheet of the upper girder's overlay E (t = 13 mm) showed 

the composition given in the table II. At the same time, for chemical purposes, the chemical composition of 

St4S and St4V steel according to PN-88/H-84020 was also given there. The analysis of the chemical 

composition of steel shows that a significant phosphorus content of 0.107% has a decisive impact on the 

properties of the steel tested. Phosphorus above 0.05% causes coarse graining of the steel and much greater 

brittleness. It also increases Rm, ReH and HB, and reduces elongation and impact strength. Due to the 

tendency to segregate, it may cause hot or cold cracks. The hot fracture resistance index calculated has an 

HCS value of 11.62 and exceeds the limit value of 4.0 for low carbon steel [12]. In contrast, the carbon 

equivalent due to cold cracking Ce’= 0.318 and the hardness of the heat affected zone equals HVmax = 182. 

These values are lower than the limit values  Ce’ = 0.4 and HV = 300.  

Table II. Chemical composition of bridge steel and compared steel 

Type of steel 
Chemical composition, % wt. 

C Mn Si P S Cu Cr Ni 

Girder E 0.12 0.535 0.02 0.107 0.054 0.032 0.064 0.042 

St4S max 0.24 max 1.10 max 0.15 max 0.05 max 0.05 max 0.30 max 0.30 max 0.30 

St4V max 0.18 max 1.30 max 0.15 max 0.04 max 0.04 max 0.30 max 0.30 max 0.30 

Using a sample for chemical tests and a sample from the lower girder's flange overlay E (t = 13 mm), 

steel hardness measurement was carried out using the Brinell's method, from which the values of  

Rm = 528 and 422 MPa and Re = Rm = 0.65528  340 were determined and 275 MPa. The values of these 

limits are in the values provided for by the metallurgical standard for steel St4S and St4V with the size  

Rm = 420÷550 MPa and Remin = 275 MPa.  

Steel impact tests carried out on Charpy's specimens made of E-girder's flange steel showed its high 

aging. The following values of impact energy were obtained: KV = 6.5, 22.7 and 57.0 J at temperature:  

-20 °C; 0 °C i +20 °C. 

Stress analysis in welds and fatigue life of a flange crack 
The purpose of the global assessment of the behavior of the bridge structure was the strength analysis 

of the maximum loaded butt joints of the individual girder (Table III). The stresses were determined from 

the constant load and from the basic standard load system at the class k = +2 and the operational load with 

two ET21 electric locomotives (Col. 3÷5). The dynamic coefficient  = 1.212 is taken into account. Column 6 

shows the load asymmetry coefficient  = e/n, and column 7 shows the number of load cycles after  

70 years of operation (24 and 17 trains per day).  

Table III. Maximum stress values in butt joints and coefficients  and Ni 

Girder Type of joint 

Max. stress in MPa 

 = e/n 
Load cycles 

Ni  106 Fixed load 
Load system 

P − norm. P − exploit. 

1 2 3 4 5 6 7 

A, B 
web 

bottom flange 

20.5 

26.3 

102.9 

141.1 

45.4 

59.1 

0.441 

0.419 
0.613 

C, D 
web 

bottom flange 

20.7 

22.9 

103.1 

121.6 

45.4 

51.4 

0.440 

0.423 
0.434 

E, F 
web 

bottom flange 

23.7 

28.7 

117.3 

144.7 

50.9 

64.5 

0.434 

0.446 
0.613 
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The most dangerous one was the crack in the butt joint with a cross-section of 430  13 mm in the 

bottom flange of the girder F. Vertical crack in the root zone of the weld has a height of 2a = 4 mm over  

the entire width of the cover: 2b = 2l = 430 mm. The coordinates of the cracking center y = 856.5 mm,  

and the stresses are: n = 140 MPa, (e = 62.4 MPa) and cw = 27.7 MPa. The calculations were made 

according to [8] for the standard and operating load, the results of which are given in brackets.  

Critical crack depths were calculated using the formula: 

  𝑎𝑘𝑟 =  
𝐾𝐼𝑐

2

𝛼𝜋𝜎2/𝑄
= 8,7 ∙ 10−3;    (48,010−3) m > 0,5 t − a = 4,510−3 (1) 

with values: 

 = 1.0 − for internal crack, 

Q = 0.86; (0.94) − according to Fig. 2.10. [8], 

KIc = 25 MPam1/2 − for steel grade St3 

Identical values were obtained from the G.R. Irwin formula: 

 𝐾𝐼𝑐

2 =  
𝛼𝜋𝛼𝑘𝑟𝜎2

𝑄
   (2) 

Critical cracking depths are greater than half the thickness of the 0.5t cover plate = 6.5 mm, so the 

formula for the number of cycles to destroy the element (3) should be from a0 = 2 mm to ak = 6.5 mm: 

 

𝑁𝑐𝑟 =  
2𝑄𝑚/2

(𝑚−2)𝐶∆𝜎𝑚𝑀𝑘
𝑚𝜋𝑚/2 (

1

𝑎0
(𝑚−2)/2 −

1

𝑎𝑘
(𝑚−2)/2)     (3)  

where: 

the C and m constants are determined by H. Takashima's formulas:  

logC = 0.00483Re − 12.432 = −11.104 → C = 7.87510−12 (4)  

m = 4.52 − 0.0026Re = 3.80   dla Re = 275 MPa 

correction coef. Mk = 1−0,1(l/b) + (l/b)2 = 1.9 

 = 112.3 MPa, (34.7MPa) 

 

After inserting (4) to (3) and performing arithmetic operations, we obtained: 

 Ncr = 4194; (430736)  (5) 

The number of load cycles obtained should be converted into spectra of real loads. It was assumed 

that it is analogous to the British railways shown in figure 6 according to [13,14]. By treating Ncr as the 

number of cycles of maximum loads that cause the same fatigue failure as the number of stepwise-variable 

real loads cycles, the maximum number of Nmax cycles was calculated from the Swanson's formula [14]:  

 𝑁𝑐𝑟/ 𝑁𝑚𝑎𝑥 = ∑ (
𝑁𝑖

𝑁𝑚𝑎𝑥
)4

𝑖=1 (
𝜎𝑖

𝜎𝑚𝑎𝑥
)

2
= 0,1976; (0.1976) (6) 

Finally, the number of load cycles was obtained for individual loads: 

Nn−max = 4194/0.1976 = 21225; (Ne-max = 430736/0.1976 = 2179838). 

With the assumed operational loads in the form of two ET21 electric locomotives and a permanent 

load, the cracks in the analyzed butt joint will not develop into fatigue cracks throughout the lifetime of the 

facility. 

 
Fig. 5. Stress spectrum for the girder of viaduct [13] 
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Summary 
• The results of X-ray examinations of butt welds in the viaduct confirmed that their quality is very low. 

• The analysis of Figure 2 shows that the alignment of Zrj with a stress of e = 103.3 MPa will occur after 

89.4 years of operation of the viaduct; in the case of constancy of the daily travel of 24 trains (without 

taking into account the load spectrum).  

• The calculations confirmed the validity of assumptions of the new method for assessing the durability 

of bridges, the "redundancy" method, regarding accepting actual loads from vehicles on a given used 

facility. 

• Based only on calculations from standard loads, riveting the flange joints with cracks in 1958 seems 

right. 

• In the presented fatigue calculations of the fracture, the influence of the rhombic overlay on the joint 

and stress concentration were completely omitted [9]. 
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