

 62

CREATING PROTOTYPE VIRUS - DESTROYING FILES AND

TEXTS ON ANY COMPUTER

Prof. Ass. Naim BAFTIU*, Prof. Asoc. Samedin KRRABAJ**

*Prizren University “UKSHIN HOTI, Faculty of Computer Science, naim.baftiu@uni-prizren.com

**Prizren University “UKSHIN HOTI, Faculty of Computer Science, samedin.krrabaj@uni-prizren.com

Article history:

Accepted 21 April 2019

Available online 30 April 2019

Keywords:

Component,

Virus,

File,

C# Programming,

Visual Studio.

A b s t r a c t

Problem description -When we study how viruses work and prevent them, we've developed a very

simple application where we can see a prototype of a virus and virus function, as well as neutralizing

a file if we want to break it down its structure at the level of the bits Purpose-Understand how a virus

works by programming it in a high programming language - In our case, the C # programming

language with the Visual Studio program that uses the .Net Framework. With the Windows Form

Application module, the same application we are creating can also use it to neutralize a sentence if

we know it is infected by interfering with the file we set up itself and by disrupting the system his

Binary.

Introduction

Since computer science is a wider and more sub-direction, viruses

and defense play a very important role in science's development.

Every day we are confronted with viruses, and their prevention is

essential, because every day more and more virulent, so

destructive, viruses develop.

1. Research Methodology

The research methods will be based on prior virus research and

their understanding by renowned international authors in this

regard and a lot of transcript input, and also based on the literature

on the basics of programming where we will write a key method

for our application.

2. Content of the Work

Viruses as we know are all other applications, but the purpose of

which is badly intended. From the early virus and programming

knowledge, the following application is programmed very simple

and very short but relatively effective and a very good picture of

how viruses work.

We know that C # programming language is object-oriented, so

programming will also be based on objects, by visualizing them

with the Windows Form Application module.

C# (pronounced "See Sharp") is a simple, modern, object-

oriented, and type-safe programming language. C# has its roots

in the C family of languages and will be immediately familiar to

C, C++, and Java programmers. C# is standardized by ECMA

International as the ECMA-334 standard and by ISO/IEC as the

ISO/IEC 23270 standard. Microsoft's C# compiler for the .NET

Framework is a conforming implementation of both of these

standards.

C# is an object-oriented language, but C# further includes support

for component-oriented programming. Contemporary software

design increasingly relies on software components in the form of

self-contained and self-describing packages of functionality. Key

to such components is that they present a programming model

with properties, methods, and events; they have attributes that

provide declarative information about the component; and they

incorporate their own documentation. C# provides language

constructs to directly support these concepts, making C# a very

natural language in which to create and use software components.

 63

Several C# features aid in the construction of robust and durable

applications: Garbage collection automatically reclaims memory

occupied by unused objects; exception handling provides a

structured and extensible approach to error detection and

recovery; and the type-safe design of the language makes it

impossible to read from uninitialized variables, to index arrays

beyond their bounds, or to perform unchecked type casts.

C# has a unified type system. All C# types, including primitive

types such as int and double, inherit from a single root object type.

Thus, all types share a set of common operations, and values of

any type can be stored, transported, and operated upon in a

consistent manner. Furthermore, C# supports both user-defined

reference types and value types, allowing dynamic allocation of

objects as well as in-line storage of lightweight structures.

To ensure that C# programs and libraries can evolve over time in

a compatible manner, much emphasis has been placed on

versioning in C#'s design. Many programming languages pay

little attention to this issue, and, as a result, programs written in

those languages break more often than necessary when newer

versions of dependent libraries are introduced. Aspects of C#'s

design that were directly influenced by versioning considerations

include the separate virtual and override modifiers, the rules for

method overload resolution, and support for explicit interface

member declarations.

The rest of this chapter describes the essential features of the C#

language. Although later chapters describe rules and exceptions

in a detail-oriented and sometimes mathematical manner, this

chapter strives for clarity and brevity at the expense of

completeness. The intent is to provide the reader with an

introduction to the language that will facilitate the writing of early

programs and the reading of later chapters.

In our case we have:

♣ First, we will create the function for selecting the desired file

so that it can be processed, so the best method is to select a Button

and a Text Box. (Fig.1)

Figure 1. Text Box

Fig.1. Button “Assign File” in program we called “btnAssign”

ethier Textbox “txtAssign”

♣In the background will be inserted the openFileDialog module

that will be used as openFileDialog1 which will help you as the

file selection window. (Fig2).

Figure 2. File Dialog

We will also add a "checkbox" which we will call "checkbox1"

in the program and in the "Location" interface only to verify the

location selection, whether it is automatic through the module that

we will create or the manual written text.

Figure 3. Text Box Location

♣ In the program we will have a major variable that we will

manipulate and we will call it the "fileName" of string type

(text).

The following code will be the file selection mechanism where

the "event" code will be modified if you press the button:

3. Program structure

The key organizational concepts in C#

are programs, namespaces, types, members, and assemblies. C#

programs consist of one or more source files.

Programs declare types, which contain members and can be

organized into namespaces. Classes and interfaces are examples

of types. Fields, methods, properties, and events are examples of

members. When C# programs are compiled, they are physically

packaged into assemblies. Assemblies typically have the file

extension .exe or .dll, depending on whether they

implement applications or libraries.

4. Types and Variables

There are two kinds of types in C#: value types and reference

types. Variables of value types directly contain their data whereas

variables of reference types store references to their data, the

latter being known as objects. With reference types, it is possible

for two variables to reference the same object and thus possible

 64

for operations on one variable to affect the object referenced by

the other variable. With value types, the variables each have their

own copy of the data, and it is not possible for operations on one

to affect the other (except in the case of ref and out parameter

variables).

C#'s value types are further divided into simple types, enum

types, struct types, and nullable types, and C#'s reference types

are further divided into class types, interface types, array types,

and delegate types.

in our case we have:

private void btnAssign_Click(object sender, EventArgs e)

 {

 DialogResult result = openFileDialog1.ShowDialog();

 if (result == DialogResult.OK)

 {

 fileName = openFileDialog1.FileName;

 txtAssign.Text = fileName;

 }

 }

What happens if we click the button, then we will develop the

selection mechanism where the window will be displayed as a

result, and we have a conditional if we finish the selection,

variably earlier in the filenames declaration, will get the value of

the window for selection, at the same time textBoxi txtAssign

will get the value of the file name.

At the same time, we also develop the code for the location

confirmation checkbox

private void checkBox1_CheckedChanged(object sender,

EventArgs e)

 {

 if (checkBox1.Checked) txtAssign.ReadOnly = true;

 else checkBox1.Checked = txtAssign.ReadOnly = false;

 }

From the following code we can notice that we have the

conditionality if we have done the Tick checkbox, the textbox

attribute will go to ReadOnly, respectively unchanged, and if we

did not tick, the textbox would stay the same as before

unchanging.

We have now developed the selection mechanism, and the next

file destruction process will occur in the main variable of

FileName.

void destroyFile(string fileName)

{

 byte[] bytes = System.IO.File.ReadAllBytes(fileName);

 byte[] oldBytes = bytes;

 Random rnd = new Random();

 int num = rnd.Next(0, 255);

 for (int i = 0; i < bytes.Length; i++)

 {

 if (bytes[i] % 2 == 0)

 {

 bytes[i] = (byte)rnd.Next(0, (int)(bytes[i] * 1.618 <

256.0 ? bytes[i] * 1.618 : 255));

 }

 }

 File.WriteAllBytes(fileName, bytes);

 }

We will have a method which as input parameter will have the

fileName variable

void destroyFile(string fileName)

Then we will create a variable byte bytes where all of the file

bytes will be scanned by the Syste.IO.File.ReadAllBytes ()

method;

byte[] bytes = System.IO.File.ReadAllBytes(fileName);

Then a generic number will be generated, in the variable called

"rnd".

int num = rnd.Next(0, 255);

We will have a loop (rewrite) where we will use it to insert

Random numbers into the desired file for decay. The length of the

loop will be up to the end of the file. The data will be entered

through the kite ordering conditionality (proportional to two)

and will be entered through the loop control.

 65

Once the process is completed, "FileWriteAllBytes" will write

to the file those generated numbers (Bytes), where as input

parameters will have the fileName, and generated bytes.

File.WriteAllBytes(fileName, bytes);

Figure 4. Timer

Figure 5. Progress Bar

Then we will create a "Timer" (Fig4) that we will use to display

the "ProgressBar" and the main button (btnDestroy) to activate

the previous method created for the demolition (Fig5).

Timer code:

private void timer1_Tick(object sender, EventArgs e)

 {

 progressBar1.Increment(10);

 if (progressBar1.Value == progressBar1.Maximum)

 {

 timer1.Stop();

 MessageBox.Show("The file is damaged

successfully!");

 }

 }

From the previous code we see how the progressbar changes

during each Timer beep, where the progress bar will increase to

the value of 10, and by conditioning we check that if the

progressbar is filled, then the Timer will stop and display a

window that will confirm the process.

The main button for breaking code:

private void btnDestroy_Click(object sender, EventArgs e)

 {

 timer1.Start();

 destroyFile(fileName);

 }

Where will start the previous Timer process, and will be called

"destroyFile" where as input parameter will have the fileName

variable that we have previously assigned.

Completed program:

Figure 6. The completed code is found in the other document

Findings and contribution of the work

In this paper my main hypothesis is the idea of how easy it is to

create a computer virus, but to destroy it. They can be used for

Educational purposes but also for other purposes whatever they

are in the digital world.

Through this project I will try to demonstrate how computer

viruses are working through programming that will impact on

expanding awareness of computer viruses awareness and

prevention, which can lead to enormous destruction of very

important data, be they personal, up to government levels.

References

1. Einführung in das Programmieren mit C# 4.0 2011

(Rev. 121022) ACHTUNG: Es ist ein ZIMK-

 66

Manuskript zu C# 6.0 verfügbar: https://www.uni-

trier.de/index.php?id=22777

2. Serazzi, Giuseppe; Zanero, Stefano (2004).

"Computer Virus Propagation Models". In Calzarossa,

Maria Carla; Gelenbe, Erol. Performance Tools and

Applications to Networked Systems(PDF). Lecture

Notes in Computer Science. Vol. 2965. pp. 26–

50. Archived (PDF) from the original on 2013-08-18.

3. Pro .NET 4 Parallel Programming in C# January 2010,

DOI: 10.1007/978-1-4302-2968-1 Adam Freeman

4. Jason Andress, Steve Winterfeld, Cyber Warfare

USA, 2014 978-0-12-416672-1.

5. Lance Hayden, Ph.D. IT security Metrice, USA, 2010,

ISBN: 978-0-07-171340-5.

6. Alfred J. Menezes, Paul C. Van Oorschot, Scott A.

Vanstone, Handbook of Applied Gryptography. USA,

1997. ISBN: 978-0-8493-8523-0

7. Stallings, William (2012). Computer security :

principles and practice. Boston: Pearson.

p. 182. ISBN 978-0-13-277506-9.

8. Aycock, John (2006). Computer Viruses and

Malware. Springer. p. 14. ISBN 978-0-387-30236-2.

9. Cohen, Fred (1984), Computer Viruses – Theory and

Experiments, archived from the original on 2007-02-

18

10. Bell, David J.; et al., eds. (2004).

"Virus". Cyberculture: The Key Concepts. Routledge.

p. 154. ISBN 9780203647059. Archived from the

original on 2017-03-16.

11. Mark Ciampa, Security+ Guide to Network Security

Fundamentals

12. USA, 2012, ISBN: 978-1-111-64017-0.

https://www.uni-trier.de/index.php?id=22777
https://www.uni-trier.de/index.php?id=22777
http://home.deib.polimi.it/zanero/papers/zanero-serazzi-virus.pdf
http://home.deib.polimi.it/zanero/papers/zanero-serazzi-virus.pdf
https://web.archive.org/web/20130818152730/http:/home.deib.polimi.it/zanero/papers/zanero-serazzi-virus.pdf
https://www.researchgate.net/scientific-contributions/2135986681_Adam_Freeman?_sg=-SqDP_JmMji7Jvpex8LkdI5V_wCZtl_FoV81wZH1i08VAVGYTAEP-oZVsfe4-ddBNeBgQBk.0WqVCvn08M3DnKKJE7nBgmdFDcOppAfZgFTgPmq2NnUlGQ36Q3yt_8zAz9LYQyUprC4-xmbipchb13YMpTEUPw
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-13-277506-9
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-30236-2
http://all.net/books/virus/index.html
http://all.net/books/virus/index.html
https://web.archive.org/web/20070218125016/http:/www.all.net/books/virus/index.html
https://books.google.com/books?id=5MFWZK0CSOQC&pg=PA154
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780203647059
https://web.archive.org/web/20170316230037/https:/books.google.com/books?id=5MFWZK0CSOQC&pg=PA154

	Introduction
	1. Research Methodology
	2. Content of the Work
	3. Program structure
	4. Types and Variables
	Findings and contribution of the work
	References

