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This  paper  explores  and  promotes  the  notion  of  ‘procept’  in  an  undergraduate 

mathematics course in Linear Algebra for first year pure and engineering students. On the 

basis  of  students’  preference  for  procedural  to  conceptual  solutions  to  mathematical 

problems,  this  paper  augments  the  role  of  certain  concepts  in  pure  and  applied 

mathematics, particularly  in  the problem‐solving approaches at  the undergraduate  level 

by  providing  novel  solutions  to  problems  solved  in  the  usual  traditional manner.  The 

development of the concept of ‘procept’ and its applicability to mathematics teaching and 

learning  is  important  to mathematics  education  research and  tertiary pure and applied 

mathematics  didactics  in  South  Africa,  welcoming  the  amalgamation  of  the  theories 

developed  at  pre‐tertiary  level  mathematics  with  theorems  and  proof  at  the 

undergraduate level. 
 

 

This paper emanated from a series of semester lectures that we presented to first year pure and 
engineering mathematics students in an undergraduate Linear Algebra course at a large university in 
Gauteng in South Africa. 

The novelty of this paper is twofold. First, it transcends the boundaries between elementary (and 
secondary) mathematics education research and tertiary pure and applied mathematics didactics, 
welcoming the amalgamation of the theories developed at pre-tertiary level mathematics education with 
an approach to teaching theorems and proof at the undergraduate level. The paper explores and promotes 
the notion of procept in an undergraduate mathematics context which emanated from the teaching unit of 
skew lines in 3-dimensional space, Թଷ. Secondly, it augments the role of certain concepts in pure and 
applied mathematics, particularly in the problem-solving approaches at the undergraduate level by 
providing novel solutions to problems solved in the usual traditional manner. The classical approach in 
determining whether two non-parallel lines in Թଷ are skew is to equate their parametric equations and 
then solve the resultant system of equations by Gaussian elimination. This procedural approach to solving 
such a problem has always been the traditional computational mode of instruction in an undergraduate 
level Linear Algebra course. The nature of the solution then determines the orientation of the lines, either 
they intersect or they are skew. We provide an immediate (vector) characterisation that determines when 
two non-parallel lines in Թଷ are skew. We also propose a novel approach to determine the point of 
intersection of two lines in Թଷ in contrast to the traditional, procedural approach using Gaussian 
elimination. Furthermore, we consider and propose a proceptual solution to the shortest vector between 
two skew lines in Թଷ.  
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Process, object and symbol are integrated in a common entity defined by Gray and Tall (1994), as an 
elementary procept. This amalgam of a process that produces a mathematical object, and a symbol that 
either represents the process or the object are considered for simple arithmetic in Gray and Tall (1991). 

The notion of a procept emphasises the importance of having a single mathematical entity encompassing 
both a process and an object/concept. This duality between process and concept broadens to a wider 
audience in undergraduate mathematics. For instance, in differential calculus the partial derivative  

߲߭
ߣ߲

ሺߣ, ሻߛ ൌ  lim
௛՜଴

߭ሺߣ ൅ ݄, ሻߛ െ ߭ሺߣ, ሻߛ
݄

 

dually represents both process (as ݄ gets smaller) and concept (the limit itself).  

In integral calculus, the definite integral procept of a continuous function ݂ሺݔሻ on the interval ሾܽ, ܾሿ,  

න ݂ሺݔሻ ݀ݔ ൌ  lim
௡՜ஶ

෍ ݂ሺݔ௜
ݔ∆ሻכ

௡

௜ୀଵ

௕

௔

 

is the limit of Riemann sums with ݔ௜
,௜ሿ  of ሾܽݔ,௜ିଵݔsample points in the subintervals ሾ כ ܾሿ, represents the 

area under ݂ (for positive ݂) or the work done by a force ݂ in moving an object from ܽ to ܾ.  

The symbols 
∂

∂λ
  and ׬

௕
௔ invoke both a process and a concept involved and the expressions above may 

be viewed in a range of different contexts. The definition of continuity of a function ݂ at a point ݔ ൌ ܽ, 
lim௫՜ୟ ݂ሺݔሻ ൌ ݂ሺܽሻ as a mathematical equation is an amalgam of two elementary procepts.  
 
In undergraduate linear algebra, the symbol ࢇ ൈ  for two vectors in Թଷ is a dichotomy of a process (a ࢈
determinant calculation) and an outcome that produces a mathematical object (a vector cross product). 
The application of the cross product procept of two vectors in Թଷ tends to be fairly procedural in most 
traditional undergraduate texts (e.g. Anton & Rorres, 2005; Edwards & Penny, 1988; Salas & Hille, 
1995). 

The same can be said about the procedure of Gaussian elimination (or the Least-squares solution) and its 
applications. Undergraduate students are expected to perform routine calculations involving the cross 
product of two vectors in Թଷ, for example, finding the equation of a plane containing three points, finding 
the area of a parallelogram or triangle, or determining the volume of a parallelepiped or tetrahedron in 
applications of vectors in Թଷ. Most of the instruction at this level is aimed at equipping students with the 
necessary procedural knowledge in which the focus is on the process to compute or manipulate.  

The algorithm of Gaussian elimination in finding the solution to a system of equations is another typical 
example of the application of procedural knowledge in solving particular undergraduate linear algebra 
problems, for example, determining the geometric orientation of three planes in Թଷ or finding bases for 
the eigenspaces of a 3 ൈ 3 matrix. 

Piaget (1972) highlighted cognitive development as involving the duality of process and concept: 

...mathematical entities move from one level to another; an operation on such “entities” becomes in its turn 
an object of the theory, and this process is repeated until we reach structures that are alternately structuring 
or being structured by “stronger” structures. (p. 70) 

Skemp (1987) proposed a general varifocal theory in which a schema seen as a whole is a concept and a 
concept seen in detail is a schema. Dubinsky (1991) speaks of encapsulation of processes as objects, 
Sfard (1991) of reification of processes as objects, and Gray and Tall (1991, 1994) see the symbol as a 
pivot between process and concept  the notion of procept. Gray and Tall (1994) introduced the idea of a 
procept as the symbolisation of an object that arises from processes carried out on other objects. Such 
procepts can be viewed in two distinct but related ways, as a process or as an object. A procept is 
considered as a cognitive construct in which the symbol can switch from a focus on a process to compute 
or manipulate, to a concept that may be thought of as an entity that can be manipulated. Thus, a procept 
refers to the amalgam of concept and process represented by the same symbol.  
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Tall et al. (2001) believe that 
procepts are at the root of human ability to manipulate mathematical ideas in arithmetic, algebra and other 
theories involving manipulable symbols. They allow the biological brain to switch effortlessly from doing a 
process to thinking about a concept in a minimal way. (p. 81) 

A student possessing a strong proceptual understanding of some mathematical idea is able to effortlessly 
switch between viewing it as a process (and doing the process) and seeing it in the condensed form as an 
object. Based on these ideas of a procept and proceptual thinking and understanding (a process of one 
kind and a concept of another) we propose the notion of a proceptual solution as the type of alternative 
solution described in this paper, a solution realised with the integration of a particular process and a 
particular concept. 

We highlight that this paper associates particularly the work of Gray and Tall (1991, 1994) to the 
mechanics of certain aspects of undergraduate mathematics. In the examples chosen in this paper, by 
doing the processes of Gaussian elimination, a Least-squares solution technique, and applying the 
procedure of Cramer's rule together with relating the concept of the cross product of two vectors in Թଷ, 
we develop an alternative solution to finding the point of intersection of two lines in Թଷ, as well as a 
similar type of solution in determining the shortest vector between two skew lines. These examples serve 
to illustrate the differences between the more traditional, fairly procedural approaches to methods of 
solution with the alternative proceptual solutions encompassing both the process and the concept. 

In the next section we provide the necessary notation and preliminary material on vectors and lines in Թଷ 
that we require. Then in Examples 1 and 2 we provide a traditional solution via Gaussian elimination to 
find the point of intersection of two lines in Թଷ, as well as the shortest distance between two lines that are 
skew. Certain aspects of the solution presented in Examples 1 and 2 will be subsequently required. We 
then consider linear independence and the necessary theory on the rank of a matrix. A criterion for the 
existence of the intersection of two lines in Թଷ is given and an alternative solution to the point of 
intersection is presented, derived from using the rank of a matrix and Cramer's rule. 

The point of intersection is considered as a Least-squares problem as stated in Theorems 5 and 6 where a 
vector solution is realised by integrating the procedure in solving a (unique) Least-squares problem with 
the concepts of the dot and cross product. The section on proceptual solutions concludes with  arriving at 
a vector solution to the shortest vector between two skew lines in  Թଷ and is similar to the approach of 
finding the point of intersection, save for the use of the process of solution by matrix inversion or that of 
Cramer’s rule. 

 

Preliminaries 

Given the points ܣଵሺܽଵଵ, ܽଵଶ, ܽଵଷሻ, ܣଶሺܽଶଵ, ܽଶଶ, ܽଶଷሻ and ܣଷሺܽଷଵ, ܽଷଶ, ܽଷଷሻ in Թଷ, we use the bold 
lowercase vector notation of their position vectors as ࢇଵ, ࢇଶ and ࢇଷ respectively. We will also make use 
of the following notations and matrix representations of given vectors. We will form the matrix with 
vectors as row vectors given by  

൭
ଵࢇ
ଶࢇ
ଷࢇ

൱ ൌ ൭
ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൱ 

or column vectors 

ሺࢇଵ
் ଶࢇ

்ሻ ൌ  ൭
ܽଵଵ ܽଶଵ
ܽଵଶ ܽଶଶ
ܽଵଷ ܽଶଷ

൱. 

The vectors ࢇଵ, ࢇଶ and ࢇଷ are linearly independent provided that for scalars ߙ௜ א Թ, the equation  

෍ ௜ߙ

ଷ

௜ୀଵ

௜ࢇ ൌ ૙ 

has only the trivial solution ߙ௜ ൌ 0  for each ݅ ൌ 1, 2, 3. Otherwise, the vectors ࢇଵ, ࢇଶ and ࢇଷ are linearly 
dependent. Alternatively, a viable result disseminated (and proved) to undergraduate students using a 
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matrix determinant is that  

ݐ݁݀ ଷ are linearly dependent if and only ifࢇ ଶ andࢇ ,ଵࢇ ൭
ଵࢇ
ଶࢇ
ଷࢇ

൱ ൌ 0. (Edwards & Penny, 1988, p. 134) 

Given ࢇ and ࢈ the position vectors of the points ܣሺܽଵ, ܽଶ, ܽଷሻ and ܤሺܾଵ, ܾଶ, ܾଷሻ the joining vector from ܣ 
to ܤ in Թଷ is ࡮࡭ ൌ ࢈ െ ࢇ ൌ ሺܾଵ െ ܽଵ, ܾଶ െ ܽଶ, ܾଷ െ ܽଷሻ. The projection of the vector ࢇ in the direction 
of, or on ࢈ is  

ࢇ࢈࢐࢕࢘࢖ ൌ ൬
ࢇ ڄ ࢈
࢈ ڄ ࢈

൰ ࢈ ൌ ൬
ࢇ ڄ ࢈
ԡ࢈ԡଶ൰  ࢈

and the scalar component of ࢇ on ࢈ is 

ࢇ࢈࢖࢓࢕ࢉ ൌ  
ࢇ ڄ ࢈
ԡ࢈ԡ

 

where ࢇ ڄ ࢈ ൌ ∑ ܽ௜ܾ௜
௡
௜ୀଵ  is the usual dot product and ԡ࢈ԡ ൌ ඥܾଵ

ଶ ൅ ܾଶ
ଶ ൅ ܾଷ

ଶ is the Euclidean norm of ࢈.  

The cross product of ࢇ with ࢈ is the vector ࢇ ൈ   calculated as the determinant1 ࢈

ࢇ ൈ ࢈ ൌ ݐ݁݀ ൭
࢏ ࢐ ࢑

ܽଵ ܽଶ ܽଷ
ܾଵ ܾଶ ܾଷ

൱ 

where ࢏,  .are the standard basis vectors of Թଷ ࢑ and ࢐

A line ℓ in Թଷ is usually characterised by two points on the line. Alternatively, ℓ is determined by a point 
,ሺܽଵܣ ܽଶ, ܽଷሻ on the line and a non-zero direction vector ࢊ ൌ ሺ݀ଵ, ݀ଶ, ݀ଷሻ for the line. The vector 
equation for ℓ  is then given by  

ℓ: ࢘ ൌ ࢇ ൅ ,ࢊߣ ߣ א Թ 

where ࢘ ൌ ሺݔ, ,ݕ ,ݔሻ is the position vector for each point ሺݖ ,ݕ  ࢘ ,through Թ ߣ ሻ on ℓ. Varying the scalarݖ
traces out the line ℓ. Using the algebra of vectors, one then realises the parametric equations for ℓ as  

ݔ ൌ ܽଵ
ݕ ൌ ܽଶ
ݖ ൌ ܽଷ

   
൅ ଵ݀ߣ
൅ ,ଶ݀ߣ ߣ א Թ
൅ .ଷ݀ߣ

 

The distinct lines ℓଵ: ࢘ଵ ൌ ࢇ ൅ ,ଵࢊߣ ߣ א Թ and ℓଶ: ࢘ଶ ൌ ࢈ ൅ ,ଶࢊߛ ߛ א Թ are parallel in the case when 
their direction vectors ࢊଵ and ࢊଶ are parallel, i.e. ࢊଵ ൌ  ଶ for some scalar ݇ or using the cross productࢊ݇
ଵࢊ ൈ ଶࢊ ൌ ૙. The following result will be used in subsequent sections of this paper. 

 

Lemma 1: Let  ࢛,   be non-zero vectors in Թଷ, then ࢝ and ࢜

࢛ .1 צ ࢛if and only if ԡ ࢜ ൈ ԡ࢜ ൌ 0. 
2. ԡ࢛ ൈ ԡଶ࢜ ൌ ԡ࢛ԡଶԡ࢜ԡଶ െ ሺ࢛ ڄ  ሻଶ (Lagrange’s identity)࢜
࢛ .3 ൈ ሺ࢜ ൈ ሻ࢝ ൌ ሺ࢛ ڄ ࢜ሻ࢝ െ ሺ࢛ ڄ  ࢝ሻ࢜
࢛ .4 ڄ ሺ࢜ ൈ ሻ࢝ ൌ ࢝ ڄ ሺ࢛ ൈ ሻ࢜ ൌ ࢜ ڄ ሺ࢝ ൈ  ሻ࢛

                                                      
1 We all know that a 3 ൈ 3 determinant is a mapping of the form ܯଷሺԹሻԹ, which is certainly not an element of 

Թଷ, whereas ࢇ ൈ ࢈ א Թଷ for all vectors ࢇ and ࢈ in Թଷ. What we should see/read in ݀݁ݐ ൭
࢏ ࢐ ࢑

ܽଵ ܽଶ ܽଷ
ܾଵ ܾଶ ܾଷ

൱ is simply a 

little memory aid, i.e. a ‘recipe’ to help us to remember how to calculate the vector product. In other words, it is as if 
you calculate a determinant, and treat the vectors ࢏,  as numbers for the time being. It should be emphasised ࢑ and ࢐
that this is not really a determinant. We regularly fall into similar traps when we deal with determinants, by saying, 
for example, “multiply the second row of the determinant by 2”, instead of “multiply the second row of the matrix of 
which the determinant is taken, by 2”. If one is not properly informed and aware of the difference between the ‘loose 
and informal’ and the ‘formal and strict’ way of referring to these processes, the whole point of distinguishing 
between process and concept could be missed. 
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The expansion of the vector triple product (3) in the above lemma appears in Craig (1951) and elementary 
results on vector and matrix algebra may be accessed in Anton and Rorres (2005), or Edwards and Penny 
(1988). 

 

The point of intersection: Gaussian elimination 

The lines ℓଵ: ࢘ଵ ൌ ࢇ ൅ ,ଵࢊߣ ߣ א Թ and ℓଶ: ࢘ଶ ൌ ࢈ ൅ ,ଶࢊߛ ߛ א Թ intersect if and only if there are unique 
reals ߣ and ߛ for which ࢘ଵሺߣሻ ൌ  ሻ  (Salas & Hille, 1995). The two lines are skew lines if they are notߛଶሺ࢘ 
parallel and do not intersect. The (traditional) approach of Salas and Hille to determine whether the 
distinct lines intersect (and then to find the point of intersection) is to consider the parametric equations 
for ℓଵ and ℓଶ. The two equations are equated, using the parametric form of ࢘ଵሺߣሻ ൌ  ሻ, to realise aߛଶሺ࢘ 
3 ൈ 2 linear system of equations. Thereafter, the method of Gaussian elimination is used to resolve the 
non-square system. If no solution arises in the resulting algorithm, the conclusion is that the lines do not 
meet. Further, consulting the direction vectors it is noted that, if ࢊଵ and ࢊଶ are not parallel then the lines 
are skew. 

In addition, the shortest distance between lines ℓଵ and ℓଶ is calculated using a projection vector,  

ܦ ൌ ฮࢊ࢐࢕࢘࢖భ ൈ ࢊమ
ฮ࡮࡭ ൌ ฬ

࡮࡭ ڄ ሺࢊଵ ൈ ଶሻࢊ
ԡࢊଵ ൈ ଶԡࢊ

ฬ                 … . .              Equation 1 

If the system has a unique solution given by ߣ௉ and ߛ௉ then the point of intersection ܲ is determined 
using the value ߣ௉ (or ߛ௉) in the parametric or vector equation for ℓଵ (or ℓଶ), i.e. finding ࢘ଵሺߣ௉ሻ in ℓଵ or 
 .௉ሻ in ℓଶ. We illustrate this application of procedural knowledge in the two concrete examples belowߛଶሺ࢘

 

Example 1 

Consider the lines with vector equations 

रଵ: ࢘ଵ ൌ ሺെ8, 14, െ7ሻ ൅ ,ሺ2ߣ 1, െ5ሻ  and  रଶ: ࢘ଶ ൌ ሺ41, െ8, െ7ሻ ൅  .ሺ1,4,1ሻߛ

For the above lines determine if the lines intersect. If so, find the point of intersection. If not, then find the 
shortest distance between ℓଵ and ℓଶ. 

Solution: We follow the classical process in Salas and Hille (1995) where ℓଵ and ℓଶ are parametrically 
represented as  

ℓଵ: ݔ ൌ
ݕ ൌ
ݖ ൌ

    
െ8 ൅
14 ൅
െ7 െ

   
ߣ2 ℓଶ:
ߣ       and      

ߣ5
    

ݔ ൌ 41
ݕ ൌ െ8
ݖ ൌ െ7

  
൅ ߛ
൅ ߛ4
൅ ߛ

 . 

The above parametric equations are equated to give  

െ8 ൅ ߣ2
14 ൅ ߣ
െ7 െ ߣ5

   
ൌ
ൌ
ൌ

   
41 ൅ ߛ
െ8 ൅ ߛ4
െ7 ൅ ߛ

 

 
The above then produces the 3 ൈ 2 system of equations 

െߛ ൅ ߣ2
െ4ߛ ൅ ߣ
െߛ െ ߣ5

   
ൌ 49
ൌ െ22
ൌ 0

 

The augmented matrix ൭
െ૚ ૛ :
െ૝ ૚ :
െ૚ െ૞ :

  
49

െ22
0

൱ of this system is then solved by Gaussian elimination. 

Reduction produces the equivalent ൭
1 െ2 :
0 െ7 :
0 0 :

  
െ49

െ218
െ169

൱ from which the last row shows that the system is 
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inconsistent. We can therefore conclude that the lines do not intersect. Furthermore, since the direction 
vectors for ℓଵ and ℓଶ are not parallel, the lines are not parallel. Consequently, the two lines are skew. 
To find the shortest distance between ℓଵ and ℓଶ, the point ܣሺെ8, 14, െ7ሻ that lies on ℓଵ is chosen and the 
point ܤሺ41, െ8, െ7ሻ that lies on ℓଶ is used. The procedure is continued by forming the joining vector ࡮࡭. 

The shortest distance is then calculated using Equation 1 to give ܦ ൌ
ଵ଻଴

√ଵଵ
, where the direction vector for 

ℓଵ is ࢊଵ ൌ ሺ2, 1, െ5ሻ and that of ℓଶ is  ࢊଶ ൌ ሺ1, 4, 1ሻ. 

An example where the lines do intersect is given below. The same procedure that is followed in 
Example 1 is employed but with a different consequence.  

 

Example 2 

Determine whether the two lines intersect, and if so, find the point of intersection where  

रଵ: ࢘ଵ ൌ ሺ1, 1,5ሻ ൅ ,ሺ2ߣ െ4, െ1ሻ  and  रଶ: ࢘ଶ ൌ ሺ4, െ1,4ሻ ൅  ሺെ1,6,1ሻߛ

If the lines do not intersect, then find the shortest distance between them. 

Solution: Proceeding as in the previous example would result in the augmented matrix  

ቌ
െሺെ૚ሻ ૛ :
െሺ૟ሻ െ૝ :
െሺ૚ሻ െ૚ :

  
3

െ2
െ1

ቍ ൌ ൭
1 2 :

െ6 െ4 :
െ1 െ1 :

  
3

െ2
െ1

൱ 

Performing the Gaussian algorithm on the augmented matrix gives  

൭
1 0 :
0 1 :
0 0 :

  
െ1
2
0

൱ 

 

The system has the unique solution ߛ௉ ൌ െ1 and ߣ௉ ൌ 2. The conclusion is then that the two lines ℓଵ and 
ℓଶ intersect in the unique point ܲሺ5, െ7, 3ሻ realised by using either ߛ ൌ െ1 in the parametric equation for 
ℓଶ or ߣ ൌ 2 in the parametric equation for ℓଵ. 

The above calculations are the norm presented to students procedurally in solutions to problems of this 
type (e.g. Anton & Rorres, 2005; Edwards & Penny, 1988). We reflect on this technique and ascertain 
whether the solution methodology can be improved and the problem resolved by vector methods. In this 
procedural approach no existence criterion is presented to acknowledge that the lines do intersect or not 
and this formed the basis for the investigation in the next section. 

 

The point of intersection: Cramer's rule 

Consider the distinct lines ℓଵ: ࢘ଵ ൌ ࢇ ൅ ଶ࢘ :ଵ and ℓଶࢊߣ ൌ ࢈ ൅  ଶ in Թଷ with position vectorsࢊߛ
ࢇ ൌ ሺܽଵ, ܽଶ, ܽଷሻ for the point ܣሺܽଵ, ܽଶ, ܽଷሻ on ℓଵ and ࢈ ൌ ሺܾଵ, ܾଶ, ܾଷሻ for the point ܤሺܾଵ, ܾଶ, ܾଷሻ on ℓଶ. 
The vectors ࢊଵ ൌ ሺ݀ଵଵ, ݀ଵଶ, ݀ଵଷሻ and ࢊଶ ൌ ሺ݀ଶଵ, ݀ଶଶ, ݀ଶଷሻ are the direction vectors for ℓଵ and 
ℓଶ respectively. It is immediate that the shortest distance given in Equation 1, 

ܦ ൌ ฮࢊ࢐࢕࢘࢖భ ൈ ࢊమ
ฮ࡮࡭ ൌ ฬ

࡮࡭ ڄ ሺࢊଵ ൈ ଶሻࢊ
ԡࢊଵ ൈ ଶԡࢊ

ฬ 

between ℓଵ  and ℓଶ  provides a necessary and sufficient condition that determines an intersection. 
Certainly, if ܦ ൌ 0 then ℓଵ  and ℓଶ  must intersect, otherwise ℓଵ  and ℓଶ  are parallel or skew. This 
translates to a dot product criterion to determine whether ℓଵ  and ℓଶ intersect or not. Since ܦ ൌ 0 if and 
only if ࡮࡭ ڄ ሺࢊ૚ ൈ ૛ሻࢊ ൌ  0, we may conclude that ℓଵ  and ℓଶ  intersect in a unique point provided that 
the scalar triple product ࡮࡭ ڄ ሺࢊ૚ ൈ ૛ሻࢊ ൌ  0. 
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Based on the given vector equations of the two lines, we immediately have the determinant criterion  

ݐ݁݀ ൭
࡮࡭
ଵࢊ
ଶࢊ

൱ ൌ ݐ݁݀ ൭
ܾଵ െ ܽଵ ܾଶ െ ܽଶ ܾଷ െ ܽଷ

݀ଵଵ ݀ଵଶ ݀ଵଷ
݀ଶଵ ݀ଶଶ ݀ଶଷ

൱ ൌ 0 

which confirms that ℓଵ  and ℓଶ intersect.  If this determinant is non-zero and the direction vectors ࢊଵ and 
 .ଶ  are not parallel, then the lines are skew. This determinant criterion is equivalent to linear dependenceࢊ
In our particular case of lines in Թଷ, this criterion for linear dependence may be contextualised in the 
following result. 
 
Theorem 1: The distinct non-parallel lines ℓଵ: ࢘ଵ ൌ ࢇ ൅ ଶ࢘ :ଵ and ℓଶࢊߣ ൌ ࢈ ൅  ଶ in Թଷ intersect in aࢊߛ
unique point if and only if the vectors ࢊ ,࡮࡭ଵ and ࢊଶ are linearly dependent. 

This also has a geometric interpretation. The scalar triple product gives the volume  
ܸ ൌ ࡮࡭| ڄ ሺࢊ૚ ൈ  ଶ. Certainly, if theࢊ ଵ andࢊ ,࡮࡭ ૛ሻ| of the parallelepiped defined by the vectorsࢊ
volume is zero then the three vectors must lie on the same plane. Consequently, the two lines must 
intersect. Another geometric interpretation is given by Smith and Henderson (1985), where it is shown 
that the skewness of two lines ℓଵ and ℓଶ necessitates the existence of a tetrahedron with volume 

ܸ ൌ
૚

૟
࡮࡭| ڄ ሺࢊ૚ ൈ  ଶ lie onࢊ ଵ andࢊ ,࡮࡭ ૛ሻ|. Again, if the volume of the tetrahedron is zero, the vectorsࢊ

the same plane so that the two lines intersect.  

Once the fact that the two lines ℓଵ and ℓଶ do intersect is established, we can proceed with the traditional 
approach. However, on a closer look behind this traditional procedure, an interesting observation is made 
based on the existence of an intersection that has just been described. Suppose that ڄ ࡮࡭ ሺࢊ૚ ൈ ૛ሻࢊ ൌ  0 , 
then ߣ and ߛ exist such that  

ሻߣଵሺ࢘ ൌ ሻߛଶሺ࢘ ֜ ࢇ ൅ ૚ࢊߣ ൌ ࢈ ൅  ૛ࢊߛ

֜ ଵࢊߣ െ ଶࢊߛ ൌ ࢈ െ ࢇ
֜ ሺ݀ߣଵଵ െ ,ଶଵ݀ߛ ଵଶ݀ߣ െ ,ଶଶ݀ߛ ଵଷ݀ߣ െ ଶଷሻ݀ߛ ൌ ሺܾଵ െ ܽଵ, ܾଶ െ ܽଶ, ܾଷ െ ܽଷሻ

 

This then gives the linear system 

ଵଵ݀ߣ െ ଶଵ݀ߛ ൌ ܾଵ െ ܽଵ
ଵଶ݀ߣ െ ଶଶ݀ߛ ൌ ܾଶ െ ܽଶ
ଵଷ݀ߣ െ ଶଷ݀ߛ ൌ ܾଷ െ ܽଷ

 

which as a matrix equation, becomes 

൭
݀ଵଵ െ݀ଶଵ
݀ଵଶ െ݀ଶଶ
݀ଵଷ െ݀ଶଷ

൱ ൬
ߣ
൰ߛ ൌ  ൭

ܾଵ െ ܽଵ
ܾଶ െ ܽଶ
ܾଷ െ ܽଷ

൱ 

In the notation of the defining vectors, the latter matrix equation is 

ሺࢊଵ
் െࢊଶ

்ሻ ൬
ߣ
൰ߛ ൌ ሺ்࡮࡭ሻ                            … . .                     Equation 2 

We note that based on the solutions of Example 1 and Example 2 in the previous section, the deliberate 
bold digits in the matrices makes for a shorter route to the solution as described by the matrix Equation 2.  
From the given equations of two lines in Թଷ, 

ℓଵ: ࢘ଵ ൌ ࢇ ൅ ଶ࢘ :ଵ and ℓଶࢊߣ ൌ ࢈ ൅  ଶࢊߛ

we may directly form the augmented matrix  

ሺࢊଵ
் െࢊଶ

்  : ଶࢊሻ  or  ሺെ்࡮࡭
் ଵࢊ

் :  ሻ்࡮࡭

and then pursue the Gaussian algorithm in attaining a solution where ࡮࡭ ൌ ࢈ െ  If ℓଵ and ℓଶ intersect .ࢇ
(non-zero scalar triple product of the vectors ࢊ ,࡮࡭ଵ and ࢊଶ), the solution for ߣ and ߛ in Equation 2 may 
be simplified with the use of Cramer's Rule as illustrated below. Since Equation 2 is consistent with a 
unique value for ߣ and ߛ, the rank of the coefficient matrix and that of the augmented matrix must be 
given by the Existence and Uniqueness Theorem of a solution of a system of linear equations in 
Theorem 2 below (Lipschutz & Lipson, 2001, p. 79). 
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Theorem 2: Consider a system of linear equations in ݊ unknowns with augmented matrix 
ܯ ൌ ሾܣ :  ሿ. Thenܤ

a)  the system has a solution if and only if ݇݊ܽݎሺܣሻ ൌ  ሻܯሺ݇݊ܽݎ
b)  the solution is unique if and only if ݇݊ܽݎሺܣሻ ൌ ሻܯሺ݇݊ܽݎ ൌ ݊. 

The rank of a matrix ܣ, symbolically ݇݊ܽݎሺܣሻ, is usually defined as the number of non-zero rows in an 
echelon form of ܣ. The symbol ݇݊ܽݎሺܣሻ is an amalgam of a process (finding an echelon form of ܣ using 
Gaussian elimination or Theorem 3 below) to produce a mathematical object. Indeed, the rank of a matrix 
is also a procept. Now the rank of a matrix may be determined by the following determinant criterion. 
The proof may be found in Beesack (1962).  

 
Theorem 3: The rank of a matrix ܣ is ݎ if and only if ܣ has some ݎ ൈ  submatrix with a non-zero ݎ
determinant and all square submatrices of larger size have determinant zero. 

In examining the matrix Equation 2, at least one of the three 2 ൈ 2 submatrices of the coefficient matrix 
has to have non-zero determinant. Selecting that submatrix realises a 2 ൈ 2 square system with 
appropriate omission of the corresponding component of the column vector given by ࡮࡭. Applying 
Cramer's rule to the resulting square system gives the unique solution to ߣ and ߛ without the use of 
Gaussian elimination. We illustrate this next by providing an alternative solution to Example 2 via 
Cramer's rule using Theorem 4: 

Theorem 4: In Equation 2, if the coefficient matrix has at least one 2 ൈ 2 submatrix ܵ whose determinant 
is non-zero, then Equation 2 has the same solution as that of the (sub)augmented matrix determined by ܵ 
if and only if ࡮࡭ ڄ ሺࢊ૚ ൈ ૛ሻࢊ ൌ  0 if and only if ࢊ ,࡮࡭ଵ and ࢊଶ are linearly dependent. 

Proof: Suppose that the coefficient matrix of Equation 2 has a submatrix ܵ such that ݀݁ݐሺܵሻ ് 0 and that 
the solution to the subsystem determined by ܵ is the same as that of Equation 2. Since ݀݁ݐሺܵሻ ് 0, the 
subsystem determined by ܵ has a unique solution, say ߣௌ and ߛௌ. These are then particular solutions to 
Equation 2 so that by Theorem 2, ݇݊ܽݎሺࢊଵ

் െࢊଶ
்  : ሻ்࡮࡭ ൌ 2. Consequently by Theorem 3, 

ݐ݁݀ ൭
࡮࡭
ଵࢊ
ଶࢊ

൱ ൌ 0, showing that the three vectors ࢊ ,࡮࡭ଵ and ࢊଶ are linearly dependent. 

For the sufficiency, suppose that ࢊ ,࡮࡭ଵ and ࢊଶ are linearly dependent and that the coefficient matrix of 
Equation 2 has a submatrix ܵ with non-zero determinant. Since the three vectors are linearly dependent, 
the 3 ൈ 3 matrix whose columns are that of ࢊ ,࡮࡭ଵ and ࢊଶ has zero determinant. Using determinant 
properties (column switching and factorisation) we see that  

ݐ݁݀ ൭
݀ଵଵ െ݀ଶଵ ܾଵ െ ܽଵ
݀ଵଶ െ݀ଶଶ ܾଶ െ ܽଶ
݀ଵଷ െ݀ଶଷ ܾଷ െ ܽଷ

൱ ൌ 0 

Consequently, since ݀݁ݐሺܵሻ ് 0 the rank of the coefficient matrix of Equation 2 is 2 and the rank of the 
augmented matrix, ݇݊ܽݎሺࢊଵ

் െࢊଶ
்  : ሻ்࡮࡭ ൌ 2. Thus Equation 2 has a unique solution. Suppose that 

ܵ ൌ ൬
݀ଵଵ െ݀ଶଵ
݀ଵଶ െ݀ଶଶ

൰. We show that the subsystem determined by ܵ, namely 

൬
݀ଵଵ െ݀ଶଵ
݀ଵଶ െ݀ଶଶ

൰ ൬
ߣ
൰ߛ ൌ ൬

ܾଵ െ ܽଵ
ܾଶ െ ܽଶ

൰ 

has the same solution as that of Equation 2. The solution to this subsystem, say ߣௌ and ߛௌ, may be 
resolved by Cramer's rule. Thereafter, as can be verified, a routine substitution of ߣௌ and ߛௌ into 

ሺࢊଵ
் െࢊଶ

்ሻ ൬
ߣ
 ൰ satisfies Equation 2. Hence, since Equation 2 has a unique solution it is the same as thatߛ

of the subsystem determined by ܵ. The same conclusion is realised if ܵ is any of the other two 
submatrices with non-zero determinant. 

Returning to Example 2, we may use the method given by Theorem 1 in determining whether the two 
lines intersect and finding the point of intersection (by Theorem 4), if it exists. We have  
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࡮࡭ ൌ ሺ3, െ2, െ1ሻ, ࢊଵ ൌ ሺ2, െ4, െ1ሻ and ࢊଶ ൌ ሺെ1, 6, 1ሻ.  Using the scalar triple product (as a matrix 
determinant), ࡮࡭ ڄ ሺࢊ૚ ൈ ૛ሻࢊ ൌ  0. Thus ℓଵ and ℓଶ intersect in a unique point ܲ that may be found by 
solving for ߣ and ߛ in the (2-rank) Equation 2, i.e. 

൭
2 െ1

െ4 6
െ1 1

൱ ൬
ߣ
൰ߛ ൌ ൭

3
െ2
െ1

൱. 

The coefficient matrix has rank 2 and all its 2 ൈ 2 submatrices have non-zero determinant (easily 
verified). The unique solution may be derived using Cramer's rule by solving the subsystem, say 

ቀ 2 െ1
െ4 6

ቁ ൬
ߣ
൰ߛ ൌ ቀ 3

െ2
ቁ 

to get ߣ ൌ 2 and ߛ ൌ െ1. Using ߣ ൌ 2 in ℓଵ (or ߛ ൌ െ1 in ℓଶ) we get the position vector for the point of 
intersection ࡼࡻ ൌ ሺ5, െ7, 3ሻ. Selecting any of the other two subsystems will give this same solution. 
Hence, it all culminates in identifying and selecting a submatrix (that has non-zero determinant) of the 
coefficient matrix of Equation 2 in arriving at a solution without the use of the Gaussian algorithm. 

 

Proceptual solutions 

 

The point of intersection between two skew lines 

According to Tall (1995), mathematical growth starts from perceptions of, and actions on, objects in the 
environment. Successful actions on objects use symbolic representations flexibly as procepts – processes 
to do and concepts to think about – in arithmetic and algebra. The concept image of a procept uses the 
symbol to link to suitable processes and relationships in the cognitive structure. Thus, although we may 
not have anything in our mind which is like a physical object, we have symbols that we can manipulate as 
if they were mental objects. Tall et al. (2001) consider the word procedure as a specific sequence of steps 
carried out one step at a time, while the term process is used in a more general sense to include any 
number of procedures with the same effect: 

Those who are procedurally oriented are limited to a particular procedure, with attention focused on the 
steps themselves, whilst those who see symbolism as process or concept have a more efficient use of 
cognitive processing. (Tall et al., 2001, p. 90) 

In this section we will recall some basic facts on the Least-squares problem. Thereafter, we consider the 
Least-squares procedure in solving an inconsistent system of equations together with the cross product 
concept in Թଷ to arrive at a proceptual solution to the point of intersection of two distinct lines in Թଷ.  

Suppose that ܣ is an ݉ ൈ ݊ matrix with ݉ ൒ ݊ and ݇݊ܽݎሺܣሻ ൌ ࢈ Let .ݎ א Թ௠ be any given vector. The 
Least-squares problem involves finding a vector ࢞෥ א Թ௡ such that the Euclidean norm ԡ࢈ െ  ෥ԡ is a࢞ܣ
minimum, i.e ԡ࢈ െ ෥ԡ࢞ܣ ൑ ԡ࢈ െ ࢞ ԡ for each࢞ܣ א Թ௡.   ࢞෥ is called a Least-squares solution of ࢞ܣ ൌ  .࢈
It is well-known (e.g. Osborne, 1961; Edwards & Penny, 1988) that a Least-squares solution ࢞෥ satisfies 
the normal equation  ࢞ܣ்ܣ ൌ  .࢈்ܣ

The algorithm to solve a Least-squares problem would involve the process of finding the product ܣ்ܣ. 
Thereafter, computing ࢈்ܣ and then performing Gaussian elimination on the augmented matrix for the 
normal equation ࢞ܣ்ܣ ൌ ݊ Naturally, there is only one Least-squares solution if the .࢈்ܣ ൈ ݊ matrix 
 is invertible. A useful criterion for the unique Least-squares solution is given by Theorem 5 in Lay ܣ்ܣ
(2005) which is particular to our situation. 

Theorem 5: The matrix ܣ்ܣ is invertible if and only if the columns of ܣ are linearly independent. In this 
case, the equation ࢞ܣ ൌ ෥࢞  ෥, and it is given by࢞ has only one Least-squares solution ࢈ ൌ ሺܣ்ܣሻିଵ࢈்ܣ. 

We also have the following well-known theorem (see e.g. Edwards & Penny, 1988): 

Theorem 6: If the ݉ ൈ ݊ matrix ࡭ has rank ݊, then the ݊ ൈ ݊ matrix ࡭ࢀ࡭ is invertible. 
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Returning to Թଷ, the lines  ℓଵ: ࢘ଵ ൌ ࢇ ൅ ଶ࢘ :ଵ and ℓଶࢊߣ ൌ ࢈ ൅  ଶ and our Equation 2ࢊߛ

ሺࢊଵ
் െࢊଶ

்ሻ ൬
ߣ
൰ߛ ൌ ሺ்࡮࡭ሻ, 

we see that if the three vectors ࢊ ,࡮࡭ଵ and ࢊଶ are linearly dependent then the coefficient matrix 
ܣ ൌ ሺࢊଵ

் െࢊଶ
்ሻ of Equation 2 has rank 2 so that ܣ்ܣ  is invertible. Furthermore, the direction vectors 

are not parallel so that the columns of ܣ are linearly independent. By the results above, Equation 2 has a 
unique Least-squares solution given by  

൬
ߣ
൰ߛ ൌ ሺܣ்ܣሻିଵሺܥ்ܣሻ 

where ܥ ൌ ሺ்࡮࡭ሻ. However, since we are in Թଷ, ܣ்ܣ is a 2 ൈ 2 matrix and in this unique solution case, 
ሺܣ்ܣሻିଵ is easily found using its determinant and its adjoint. The process in finding the unique value of ߣ 
and ߛ is continued by finding ܥ்ܣ and thereafter computing the final product ሺܣ்ܣሻିଵሺܥ்ܣሻ. 

Now, amalgamating into the above process the vector concepts of the cross product and the dot product, 
produces the following direct solution. In the context of the vector equations of the lines, we realise a 
vector solution to the point of intersection without inference to matrix algebra. We first remark that  

ܣ்ܣ ൌ ൬
ԡࢊଵԡଶ െࢊଵࢊڄଶ

െࢊଵࢊڄଶ ԡࢊଶԡଶ ൰ 

and by Lagrange's identity in Lemma 1,  

ሻܣ்ܣሺݐ݁݀ ൌ ԡࢊଵԡଶԡࢊଶԡଶ െ ሺࢊଵ ڄ ଶሻଶࢊ ൌ ԡࢊଵ ൈ  .ଶԡଶࢊ

Then  

൬
ߣ
൰ߛ ൌ ሺܣ்ܣሻିଵሺܥ்ܣሻ 

ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ൬
ԡࢊଶԡଶ ଵࢊ ڄ ଶࢊ

ଵࢊ ڄ ଶࢊ ԡࢊଵԡଶ ൰ ൬
ଵࢊ

െࢊଶ
൰ ሺ࡮࡭ሻ 

ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ൬
ԡࢊଶԡଶ ଵࢊ ڄ ଶࢊ

ଵࢊ ڄ ଶࢊ ԡࢊଵԡଶ ൰ ൬
࡮࡭ ڄ ଵࢊ

െ࡮࡭ ڄ ଶࢊ
൰ 

ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ൬
ሺࢊଶ ڄ ࡮࡭ଶሻሺࢊ ڄ ૚ሻࢊ െ ሺࢊଵ ڄ ࡮࡭ଶሻሺࢊ ڄ ଶሻࢊ
ሺࢊଵ ڄ ࡮࡭ଶሻሺࢊ ڄ ૚ሻࢊ െ ሺࢊଵ ڄ ࡮࡭ଵሻሺࢊ ڄ  ଶሻ൰ࢊ

ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ൬
࡮࡭ ڄ ሺሾࢊଶ ڄ ଵࢊଶሿࢊ െ ሾࢊଵ ڄ ଶሻࢊଶሿࢊ
࡮࡭ ڄ ሺሾࢊଵ ڄ ଵࢊଶሿࢊ െ ሾࢊଵ ڄ ଶሻࢊଵሿࢊ

൰ 

ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ൬
࡮࡭ ڄ ሾࢊଶ ൈ ሺࢊଵ ൈ ଶሻሿࢊ
࡮࡭ ڄ ሾࢊଵ ൈ ሺࢊଵ ൈ …              ଶሻሿ൰ࢊ .                    Lemma 1ሺ3ሻ 

ൌ
1

ԡࢊଵ ൈ ଶԡࢊ

ۉ

ۈ
ۇ

࡮࡭ ڄ ሾࢊଶ ൈ ሺࢊଵ ൈ ଶሻሿࢊ
ԡࢊଵ ൈ ଶԡࢊ

࡮࡭ ڄ ሾࢊଵ ൈ ሺࢊଵ ൈ ଶሻሿࢊ
ԡࢊଵ ൈ ଶԡࢊ ی

ۋ
ۊ

 

ൌ
1

ԡࢊଵ ൈ ଶԡࢊ
ቆ

૛ࢊభൈࢊ࢖࢓࢕ࢉ
ሺ࡮࡭ ൈ ૛ሻࢊ

૛ࢊభൈࢊ࢖࢓࢕ࢉ
ሺ࡮࡭ ൈ  ૚ሻቇࢊ

which is the direct (proceptual) Least-squares solution to Equation 2. Thus, two distinct non-parallel lines 
ℓଵ: ࢘ଵ ൌ ࢇ ൅ ଶ࢘ :ଵ and ℓଶࢊߣ ൌ ࢈ ൅  ଶ in Թଷ intersect in a unique point ܲ whose position vector isࢊߛ
  ଶሻ , whereߛଶሺ࢘  ଶሻ  orߣଵሺ࢘

ଶߣ ൌ
૛ࢊభൈࢊ࢖࢓࢕ࢉ

ሺ࡮࡭ ൈ ૛ሻࢊ

ԡࢊଵ ൈ ଶԡࢊ
   and   ߛଶ ൌ

૛ࢊభൈࢊ࢖࢓࢕ࢉ
ሺ࡮࡭ ൈ ૚ሻࢊ

ԡࢊଵ ൈ ଶԡࢊ
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if and only if the vectors ࢊ ,࡮࡭ଵ and ࢊଶ are linearly dependent. It is noteworthy that ߣଶ and ߛଶ in the 
above solution can be easily resolved using a determinant calculation together with that of the vector 
ଵࢊ ൈ   ଶ asࢊ

ଶߣ ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ݐ݁݀  ൭
࡮࡭
ଶࢊ

ଵࢊ ൈ ଶࢊ

൱     and    ߛଶ ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ݐ݁݀  ൭
࡮࡭
ଵࢊ

ଵࢊ ൈ ଶࢊ

൱ .    

 

The shortest vector between two skew lines 

We now consider the procedure of finding a solution to the shortest vector between two skew lines in 
Թଷ by the process of matrix inversion (or Cramer's rule) incorporating the concept of the cross product 
and thus realising a proceptual solution.  

To this end, consider the two skew lines ℓଵ: ࢘ଵ ൌ ࢇ ൅ ଶ࢘ :ଵ and ℓଶࢊߣ ൌ ࢈ ൅  ଶ in Թଷ. Apart fromࢊߛ
directly finding the shortest distance between ℓଵ and ℓଶ, using the norm of the projection of ࡮࡭ in the 
direction of the vector ࢊଵ ൈ  ଶ, one also procedurally determines the shortest vector between ℓଵ and ℓଶࢊ
as follows. The general vector joining ℓଵ and ℓଶ is found algebraically as  

ଶ࢘ െ ଵ࢘ ൌ ࢈ െ ࢇ ൅ ଶࢊߛ െ ଵࢊߣ ൌ ࡮࡭ ൅ ଶࢊߛ െ  .ଵࢊߣ
 

The shortest vector between ℓଵ and ℓଶ is then the one which is perpendicular to both ℓଵ and ℓଶ. In effect 
this gives the two equations ሺ࢘ଶ െ ଵሻ࢘ ڄ ଵࢊ ൌ 0 and ሺ࢘ଶ െ ଵሻ࢘ ڄ ଶࢊ ൌ 0 realising a 2 ൈ 2 system of linear 
equations in ߣ and ߛ. The approach is to solve for these two variables using Cramer's rule. Once ߣ and ߛ 
are found, the shortest vector is calculated. Although tedious, this approach also provides a way to the 
shortest distance between the two lines. 

To develop a proceptual solution to the above problem, we now solve the dot product equations above for 
the arbitrary skew lines ℓଵ and ℓଶ.  Lemma 1 in the preliminary section will be required. Now, 

ሺ࢘ଶ െ ଵሻ࢘ ڄ ଵࢊ ൌ 0 ֜ ࡮࡭ ڄ ଵࢊ ൅ ଶࢊ ߛ ڄ ଵࢊ െ ଵࢊ ߣ ڄ ଵࢊ ൌ 0
֜ ࡮࡭ ڄ ଵࢊ ൌ ଵࢊ ߣ ڄ ଵࢊ െ ଶࢊ ߛ ڄ ଵࢊ

 

and 

ሺ࢘ଶ െ ଵሻ࢘ ڄ ଶࢊ ൌ 0 ֜ ࡮࡭ ڄ ଶࢊ ൅ ଶࢊ ߛ ڄ ଶࢊ െ ଵࢊ ߣ ڄ ଶࢊ ൌ 0
֜ െ࡮࡭ ڄ ଶࢊ ൌ െࢊ ߣଵ ڄ ଶࢊ ൅ ଶࢊ ߛ ڄ ଶࢊ

 

produces the matrix equation 

൬
ଵࢊ  ڄ ଵࢊ െࢊଶ ڄ ଵࢊ

െࢊଵ ڄ ଶࢊ ଶࢊ  ڄ ଶࢊ
൰ ൬

ߣ
൰ߛ ൌ ൬

࡮࡭ ڄ ଵࢊ
െ࡮࡭ ڄ ଶࢊ

൰                      …             Equation 3 

On closer inspection, the above Equation 3 is precisely  

ሺܣ்ܣሻ ൬
ߣ
൰ߛ ൌ ்ܣ ڄ ൫ࢀ࡮࡭൯                            … .                                     Equation 4 

where ܣ ൌ ሺࢊଵ
் െࢊଶ

்ሻ as before. Since ℓଵ and ℓଶ are skew their direction vectors, ࢊଵ and ࢊଶ 
respectively, are not parallel. Thus ԡࢊଵ ൈ ଶԡࢊ ് 0.  If one considers the coefficient matrix in the above 
Equation 4, we have by Lagrange's identity 

ሻܣ்ܣሺݐ݁݀ ൌ ݐ݁݀ ൬
ଵࢊ  ڄ ଵࢊ െࢊଶ ڄ ଵࢊ
ଵࢊ ڄ ଶࢊ െࢊଶ ڄ ଶࢊ

൰ ൌ െԡࢊଵ ൈ ଶԡଶࢊ ് 0. 

Hence, we have the same unique solution  

൬
ߣ
൰ߛ ൌ ሺܣ்ܣሻିଵ்ܣ൫ࢀ࡮࡭൯ ൌ

1
ԡࢊଵ ൈ ଶԡࢊ

ቆ
૛ࢊభൈࢊ࢖࢓࢕ࢉ

ሺ࡮࡭ ൈ ૛ሻࢊ
૛ࢊభൈࢊ࢖࢓࢕ࢉ

ሺ࡮࡭ ൈ  .૚ሻቇࢊ

Cramer's rule could also be used with the use of Lemma 1 to produce the same result. Alternatively, the 
shortest vector between the skew lines ℓଵ and ℓଶ may be found using differential calculus by minimising 
the norm of the general joining vector ࢘ଶ െ   .ଵ࢘
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In finding just the shortest distance between the skew lines, Srinivasan (1999) illustrates this procedure in 
an example, but presents no underlying theory.  We now examine the underlying theory governing this 
procedure as follows: 

Let ߭ሺߣ, ሻߛ ൌ ԡ࢘ଶ െ  ,ଵԡଶ.  Expanding࢘

߭ሺߣ, ሻߛ ൌ ԡ࡮࡭ԡଶ െ ࡮࡭ሺ ߣ2 ڄ ଵሻࢊ ൅ ࡮࡭ሺߛ2 ڄ ଶሻࢊ ൅ ଵԡ ଶࢊଶԡߣ ൅ ଶԡ ଶࢊଶԡߛ െ ଵࢊሺ ߛߣ2 ڄ  .ଶሻࢊ

Minimising ߭ would produce ߣ and ߛ that will give the shortest vector between ℓଵ and ℓଶ. To this end we 
generate two equations  

߲߭
ߣ߲

ൌ 0   and   
߲߭
ߛ߲

ൌ 0. 

Then 

߲߭
ߣ߲

ൌ 0 ֜ െ2ሺ࡮࡭ ڄ ଵሻࢊ ൅ ଵԡ ଶࢊԡ ߣ2 െ ଵࢊሺߛ2 ڄ ଶሻࢊ ൌ 0

֜ ଵࢊሺ ߣ ڄ ଵሻࢊ െ ଵࢊሺߛ ڄ ଶሻࢊ ൌ ࡮࡭ ڄ ଵࢊ

 

and 

߲߭
ߛ߲

ൌ 0 ֜ ଵࢊሺ ߣ ڄ ଶሻࢊ െ ଶࢊሺߛ ڄ ଶሻࢊ ൌ ࡮࡭ ڄ  ଶࢊ

produces the same matrix Equation 3, the solution of which is determined above. Looking at the solution 
for the point of intersection (of the two lines), it turns out that the values of  

ଶߣ ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ݐ݁݀  ൭
࡮࡭
ଶࢊ

ଵࢊ ൈ ଶࢊ

൱     and    ߛଶ ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ݐ݁݀  ൭
࡮࡭
ଵࢊ

ଵࢊ ൈ ଶࢊ

൱     

are exactly the same as that of the parameters for the shortest vector between the two skew lines. In all, 
the linear dependence of the three vectors ࢊ ,࡮࡭ଵ and ࢊଶ is crucial in the orientation of the two non-
parallel lines ℓଵ: ࢘ଵ ൌ ࢇ ൅ ଶ࢘ :ଵ and ℓଶࢊߣ ൌ ࢈ ൅  ,ଶ in Թଷ. If these three vectors are linearly dependentࢊߛ
then the two lines intersect in a unique point. Otherwise the two lines are skew. 

We summarise these findings in our concluding theorem. 

 

Theorem 7: Let ℓଵ: ࢘ଵ ൌ ࢇ ൅ ଶ࢘ :ଵ and ℓଶࢊߣ ൌ ࢈ ൅   ଶ  be two non-parallel lines in Թଷ. Thenࢊߛ

a) ℓଵ and ℓଶ intersect in a unique point ܲ whose position vector is given by ࢘ଵሺߣଶሻ  or ࢘ଶሺߛଶሻ if and 

only if ݀݁ݐ ൭
࡮࡭
ଵࢊ
ଶࢊ

൱ ൌ 0 if and only if ࢊ ,࡮࡭ଵ and ࢊଶ are linearly dependent 

b) ℓଵ and ℓଶ are skew and the shortest vector between ℓଵ and ℓଶ is given by 

ଶ࣏ ൌ ࡮࡭ ൅ ଶࢊ ଶߛ െ  ଵࢊଶߣ

if and only if ݀݁ݐ ൭
࡮࡭
ଵࢊ
ଶࢊ

൱ ് 0 if and only if ࢊ ,࡮࡭ଵ and ࢊଶ are linearly independent 

where 

ଶߣ ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ݐ݁݀  ൭
࡮࡭
ଶࢊ

ଵࢊ ൈ ଶࢊ

൱     and    ߛଶ ൌ
1

ԡࢊଵ ൈ ଶԡଶࢊ ݐ݁݀  ൭
࡮࡭
ଵࢊ

ଵࢊ ൈ ଶࢊ

൱ .    

 
Returning to the Least-squares problem, when a Least-squares solution ࢞෥ is found for ࢞ܣ ൌ  the ,࢈
Euclidean norm ԡ࢈ െ  ෥ԡ is the Least-squares error. In the inconsistent system Equation 2 (two skew࢞ܣ



Procepts and proceptual solutions in undergraduate mathematics 

48 

lines) the Least-squares error is the norm of the shortest vector ԡ࡮࡭ ൅ ଶࢊ ଶߛ െ  ଵԡ (the shortestࢊଶߣ
distance between the two skew lines). Indeed, if the Least-squares error is zero then the lines intersect in a 
unique point. 

 

Concluding remarks 

In South Africa, the general perception is that secondary school teaching of mathematics tends to be fairly 
procedural and that students that enter university are better equipped to deal with procedural problems 
than with conceptual problems (Engelbrecht, Harding, & Potgieter, 2005). Teaching for procedural 
knowledge means teaching definitions, symbols and isolated skills in an expository manner without first 
focusing on building deep, connected meaning to support those concepts (Skemp, 1987). Teaching for 
conceptual knowledge, on the other hand, begins with posing problems that require students to reason 
flexibly. Through the solution process, students make connections to what they already know, thus 
allowing them to extend their prior knowledge and transfer it to new situations (National Council of 
Teachers of Mathematics, 2000). 

This paper introduces proceptual solutions as a type of alternative solution to problems at tertiary level 
mathematics, the particular case of solving for the point of intersection of two lines and the shortest 
vector between two skew lines. Such proceptual solutions require a more efficient use of cognitive 
processing, as they require a cognitive switch between doing a process and thinking about a concept. We 
also propose and encourage a proceptual approach to mathematics instruction at tertiary level. Such a 
proceptual view, which in our example amalgamates the Gaussian elimination, Cramer's Rule and Least-
squares solution processes and the dot product and cross product concepts, encourages a cognitive switch 
from a focus on the process of algorithmic manipulations of symbols to a deeper, conceptual 
understanding and thinking about the concepts. As proceptual thinking grows in conceptual richness, 
procepts can be manipulated as simple symbols at higher levels or scaffolded to perform computations, to 
be decomposed or recomposed at will. The unique features of the proceptual solution as described in this 
paper, suggest that it might be of benefit for mathematics educators to look for such solutions in the 
teaching and learning of mathematics. 

We also mention that the direct (vector) solutions presented allow greater access to such type of problems 
and deeper applications of vector concepts in the sciences and engineering undergraduate Linear Algebra 
courses. 
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