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The FET Curriculum Statements for Mathematics advocates that knowledge integrates theory, skills and 
values. This paper focuses on a guided problem-solving teaching model that provides a framework to do 
this. A task analysis approach is used within this framework to illustrate how educators could frame 
mathematical questions based on the relevant mathematical content. 
 
 
Introduction 
An analysis of matriculation examiners’ reports 
(KwaZulu-Natal Department of Education, 2000, 
2001 & 2002; Gauteng Department of Education, 
2000, 2001, 2002 & 2003) indicated a number of 
recurring issues evident in candidates’ work that 
lead to poor performance: 
• a poor understanding of mathematical 

terminology and concepts;  
• an inability to recall and apply formulae, and 

poor substitution skills;  
• an inability to recall and apply algorithms;  
• a lack of manipulative skills which relate to 

simplifying arithmetic, algebraic and 
trigonometric expressions, and solving of 
polynomial equations of degree two and three;  

• an inability to answer interpretative questions;  
• a poor knowledge of book-work, in particular 

statements of and proofs of theorems or rules in 
the context of given diagrams.  
These were reflected by the candidates’ 

responses to the sorts of questions that are typical 
of those that appear in examination papers (Box 1). 
To solve the equation in the first question a learner 
should be able to identify it as a quadratic equation 
and then recall and apply a suitable algorithm, for 
example, the factorisation technique for solving a 
quadratic equation. The second question requires 
an interpretation of the question together with 
required manipulative skills to transform the given 
equation to the equivalent centre-radius form, an 
integration of relevant knowledge from algebra and 
geometry supported by appropriate visualisation. 
These manipulative skills are required to deduce 
the embedded information from what is given. For 
the third question, a requirement is that the given 
information (in symbolic form) and figure be used 
to prove the theorem which states that if two 
triangles are equiangular then the corresponding 
sides are in proportion. 

This paper is based on a number of assumptions 
regarding the learning of mathematics: 
• Learning mathematics requires the mastery of 

concepts, relationships – which include 
conventions such as   – and algorithms, 
and their application.  

• Learning proceeds from the known to the 
unknown.  

• There are networks of concepts in the brain 
which aid understanding, so learning should 
result in a gradual expansion and modification 
of these networks. The latter is premised on the 
work of Hiebert and Carpenter (1992) who 
presented a theory of understanding based on 
the formation and interplay of internal and 
external representations.  

• Learning of a mathematical topic involves 
“many actions, processes, and objects that need 
to be organised and linked into a coherent 
framework, which is called a schema” 
(Dubinsky, Weller, McDonald & Brown, 2005). 
The authors refer to this as the APOS (actions, 
processes, objects and schema) approach.   

• It is possible to plan for meaningful teaching of 
mathematics by simultaneously addressing the 
cognitive and affective domains (Cangelosi, 
1996), by focusing on the actions, processes, 
objects and schema (APOS).  

• An APOS analysis of a topic could give insight 
into the type of thinking that an individual 
might be capable of. It does not indicate what 
happens in an individual’s mind since this is 
unknowable.  
This paper focuses on addressing the following 

question, beginning with the assumptions above: 
how might the educator work on tasks so as to 
promote mathematical learning and address the 
recurring problematic issues indicated in the 
matriculation examiners’ reports? 
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In trying to find an answer to this question, this 
paper will address three aspects. Firstly, it 
discusses an interpretation of Cangelosi’s problem-
solving model. Secondly, it illustrates how this 
model can be used to promote teaching and 
learning of mathematics, and finally, it shows how 
a task analysis approach can be used within this 
model to formulate mathematical activities. These 
activities are aimed at developing competencies 
required of mathematics educators, as implied in 
the FET Curriculum Statements for Mathematics 
(Department of Education, 2003).  

The structure of these activities is based on 
work done by Mason (2000). As such, the framing 
of questions and activities is guided by the 
following conjecture: If learners are both led 
through and invited to participate in typical 
mathematical activities, then they are more likely 
to appreciate mathematics as a discipline. This 
helps to focus on both the cognitive and affective 
domains as noted in the assumptions. It is 
particularly helpful for designing activities which 
elicit in the learner a willingness to try and 
appreciation of the relevant mathematical concept, 
during the different reasoning phases of the guided 
problem-solving teaching model (Figure 1).  

The guided problem-solving model 
The guided problem-solving model, which is an 
interpretation of Cangelosi’s (1996) problem-
solving model, is illustrated in Figure 1. This 
approach has three phases: 
1) Inductive reasoning (conceptual phase); 
2) Inductive and deductive reasoning (simple 

knowledge and knowledge of a process phase); 
3) Deductive reasoning (application phase). 

It is important to note that there is always an 
interplay between inductive and deductive 
reasoning. They occur continuously and are in a 
constant iterative relationship in mathematical 
thinking. For example, in an inductive process, 
there is frequently a preliminary ‘generalising’ 
step. A conclusion or the finalising of the inductive 
aspect forms the beginning of the deductive aspect. 
Generalising at each of the different phases implies 
that a deductive mode of reasoning comes into 
play. Furthermore, applications or the solving of 
problems requires knowledge of algorithms, and 
could lead to the discovery of new relationships. 
Hence, there is an interplay between phases (see 
Figure 1). 

In the inductive reasoning phase, inductive 
learning activities should be used to construct a 
concept or discover a discoverable relationship. 
Instruction through guided inquiry could help 
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learners to construct a concept such as the concept 
of a quadratic equation or a cyclic quadrilateral, or 
discover a discoverable relationship, for example, a 
perfect square is always greater than or equal to 
zero. For the former, the use of an ‘examples and 
non-examples approach’ could be useful. 

The inductive and deductive reasoning phase is 
the intermediate phase, which focuses on the 
teaching of simple knowledge and algorithms. 
While the basis for learning meaningful 
mathematics is to help learners construct concepts 
and to discover relationships, learners also have to 
remember conventional names for these concepts 
and relationships. They should therefore be 
exposed, by means of a direct instruction process, 
to mathematical information which they are 
required to remember. Requisite information 
includes the following examples. 
• Simple knowledge: recalling specific responses 

(not a multi-step process) to specific stimuli. 
Here learning activities should target the end 
product, namely, the correct statement of the 
simple knowledge.    

 Example: State the standard form of the 
quadratic equation. 

• Comprehension: extracting and interpreting 
meaning from symbolic representations.  
Example: What do the following mean to you? 

 (a)   x(x + 1) = 12 
 (b)  a.b = 0 ⇒  a = 0 or b = 0. 
• Knowledge of a process: engaging in an 

algorithm or multi-step process. Here, learning 
activities should aim to help learners achieve 
algorithmic skills. 

 Example: Outline the procedure to solve a 
quadratic equation by the factorisation 
technique. 
The direct instruction process for teaching of 

simple knowledge, comprehension and knowledge 
of a process should also have a number of 
appropriate stages. Guided instructional activities 
could be designed to stimulate a willingness to 
attempt the mastery of simple knowledge, and 
promote comprehension and algorithmic skills. 

In the final phase, deductive reasoning is 
required. Cangelosi (1996: 157) has suggested that 
“...deductive reasoning is the cognitive process by 
which people determine whether what they know 
about a concept or abstract relationship is 
applicable to some unique situation”. Therefore, in 
this phase, the rules of logic have to be adhered to. 
Application lessons require learners to put into 
practice previously developed or acquired 
concepts, relationships, information and 
algorithms. Learners must determine whether or 
not any of these may apply to a problem. 
Therefore, activities which stimulate learners to 
reason deductively should be planned in this phase. 

The guided problem-solving model could be 
useful in addressing and rectifying the recurring 
issues that contribute to poor performance amongst 
matriculation candidates. There are two 
simultaneous processes in this model, one an 
interplay, and the other a progression or drift to 
deduction. Since the FET Curriculum Statements 
for Mathematics advocate that knowledge 
integrates theory, skills and values, it calls for a 
development towards deductive reasoning.  

The guided problem-solving model is based on 
the theory of moving from the known to the 

 Inductive reasoning phase 
 
▪ construct a concept 
▪ discover a relationship 
▪ willingness to try, appreciation 

Inductive and deductive 
reasoning phase 

▪ simple knowledge 
▪ comprehension 
▪ knowledge of a process 

Deductive reasoning phase 
 

▪ application             ▪ willingness to try 
▪ solve problems      ▪ appreciation 

 
 

Figure 1. A guided problem-solving teaching model. 
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unknown, taking into consideration how 
conceptual development occurs. A movement from 
the inductive reasoning phase towards the next two 
phases requires the gradual development of 
schemata and networks in the brain. Schemata 
provide a mental framework for understanding and 
remembering information (Bartlett, 1958). 
Schemata or mental models provide meaning and 
organisation to experiences, and allow the 
individual to go beyond the given information 
(Bruner, 1973). The nature of expertise is largely 
due to the possession of schemata that guide 
perception and problem-solving (Chi, Glaser & 
Farr, 1988).  

If this is accepted then it seems that the 
facilitation of the learning process in mathematics 
needs to focus on the development and 
modification of schemata. The movement in 
phases within the guided problem-solving model is 
characterised by greater abstraction. During each 
of the phases, well formulated problems (or 
questions) should form an integral part of the 
design of learning activities. The educator has to 
design suitable learning activities to focus on the 
relevant aspects indicated in each of the phases. 
These learning activities should guide learners to 
attain the relevant objectives or intended outcomes 
for each phase.  

A task analysis approach, discussed below, 
could assist in the design of such activities. To help 
learners improve their understanding of 
mathematical concepts, activities should be 
designed which encourage them to explore, 
generalise, explain, argue and finally prove. 
Commenting on the importance of getting learners 
to explain and justify their reasoning, Jones (2000) 
indicates 

... the requirement to explain and justify 
their reasoning requires students to make 
the difficult transition from a 
computational view to a view that 
conceives of mathematics as a field of 
intricately related structures. (2000: 58) 
The design of four tasks, which aim to facilitate 

such a transition, will be explained in this paper. 
 
Task analysis approach embedded within a 
teaching model for mathematics 
The previous section led to the conclusion that a 
task analysis approach could be used to develop 
component knowledge and skills for certain 
problem types within the framework of the guided 
problem-solving model. Task analysis has two 
useful functions (Usability First, 2005): 

• It refers to a set of methods for decomposing 
tasks into subtasks to understand procedures 
better and provide support for those tasks. 

• It is useful for spotting potential errors that 
could arise from steps in the process which 
could be difficult or confusing.  
The second point indicates that task analysis 

has the potential to serve a predictive function, 
such as identifying possible impediments to 
learning. Task analysis for the purpose of 
instructional design “... is a process of analysing 
and articulating the kind of learning that you 
expect the learners to know how to perform” 
(Jonassen, Tessmer & Hannum, 1999: 3). This 
implies that within the framework of the FET 
National Curriculum Statements for Mathematics 
(Department of Education, 2003), task analysis is 
useful to design baseline and diagnostic 
assessments. Baseline assessment is used to 
establish what learners know or already can do, 
and therefore helps in the planning of activities. 
Diagnostic assessment is used to discover the 
cause or causes of a learning barrier, and 
“therefore assists in deciding on support strategies” 
(Department of Education, 2003: 64). 

The performance of a task analysis on typical 
examination questions could be useful to educators 
when designing instruction. It could be used to: 
• determine the instructional goals and 

objectives,  
• define and describe (in detail) the tasks and 

sub-tasks,  
• specify the required type of knowledge, 
• select learning outcomes appropriate for 

instructional development,  
• prioritise and sequence tasks,  
• determine instructional activities and strategies 

that foster learning,  
• select appropriate media and learning 

environments, and  
• construct performance assessments and 

evaluation.   
Jonassen et al. (1999) noted that the task 

analysis process has five distinct functions: 
• classification of tasks according to learning 

outcomes, 
• identifying or generating a list of tasks,  
• prioritising tasks and choosing those that are 

more feasible and appropriate,  
• identifying and describing the components of 

the tasks, and 
• defining the sequence in which instruction 

should occur to best facilitate learning.  
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However, for these functions to be realised, the 
assumption is that the educator is competent in the 
subject content. 

 
Learner-centred activities derived from the 
task analysis 
Previously built-up understanding could either 
hinder or promote the understanding of new ideas 
Davis, 1992); this has implications for both 
learning and teaching. Educators should therefore 
make efforts to determine whether learners have 
the relevant prior knowledge or abilities required 
for the understanding of new ideas. The task 
analysis and APOS approach – identifying required 
actions (manipulative skills), processes, objects 
and schema – can be of benefit to educators. There 
are a number of possibilities that this approach 
opens up for professional training, including: 
• the design of spot tests or pre-tests,  
• the restructuring of questions or problems to 

make them more learner-centred, and  
• the development of summaries and strategies to 

aid problem-solving.  
• A task analysis approach could also help to 

pinpoint the different competencies required by 
mathematics educators to do these. The 
following sections note required competencies, 
and illustrate some of the possible situations in 
which task analysis could be useful. 

 
Spot tests or pre-tests 

Mathematics educators should have some way of 
determining whether or not the requisite prior 
knowledge, skills and abilities are really in place. 
This could be done by oral questioning or 
designing a spot test for learners to complete. Spot 

tests could also be used to determine whether 
learners are able to outline the key steps in the 
proof of a theorem, based on the context of a given 
diagram. A time limit should be placed on the 
completion of such tests, and each test should be 
followed by a class discussion. Spot tests or pre-
tests could thus be useful for baseline and 
diagnostic assessments. 
 

Task 1 
Suppose that the objective or specific outcome for 
the first lesson unit on solution of quadratic 
equations is: 

At the end of the lesson learners should 
be able to solve quadratic equations of 
the type 3 2 52x x+ =  by using the 
factorisation technique. 
Required for this lesson unit: 
1.1 Pinpoint the prior knowledge / 

abilities assumed.  
1.2 For the prior knowledge / abilities 

indicated in (1.1), design a spot test 
that could help you to determine 
whether learners have these 
knowledge and abilities.  

A possible response to Task 1: 
1.1 Prior knowledge/abilities assumed: 

a) Ability to factorise quadratic 
polynomials of the types x2 - 4 ;      
x2 + 3x ;   3x2 + 2x – 5 

b) Knowledge and application of 
the zero product rule: 

 For real numbers p and q,   
 p.q = 0 ⇔  p = 0 or q = 0. 
c) Ability to solve linear equations 

of the type: 2x + 5 = 0; 3x - 2 = 0. 

SPOT TEST [10 minutes]
1. Factorise
1.1 x2 + 3x
1.2 x2 - 4
1.3 3x2 + 2x - 5
1.4 2x2 - 3x + 1

2. Complete: For real numbers p and q if   p . q = 0  then                         
2.1 What do you understand by the result given in 2.  above?

3. Solve for x:
3.1 x(x + 3) = 0
3.2 (x + 2) (x - 2) = 0
3.3 3x2 + 2x - 5 = 0
3.4 x(2x - 3) = -1

4. Now formulate a procedure to solve quadratic equations of the type x(ax + b) = d.
 

 
Box 2. Example of a spot test. 
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An example of a spot test that may be used to 
pinpoint prior knowledge and abilities (1.1) is 
illustrated in Box 2. 

In the context of the guided problem-solving 
model, this spot test targets the inductive and 
deductive reasoning phase. Note that question 1.4 
of this test is designed to formulate an algorithm 
(which links component parts) to solve quadratic 
equations. A class discussion could focus on 
connecting, refining and justifying steps in the 
algorithm. 
 

Restructuring a problem – an example from 
analytical geometry 

Educators should be able to work out problems 
based on the different sections of the syllabus.  For 
a given problem they should be able to pinpoint the 
relevant prior knowledge and abilities required by 
learners. If the problem is deemed to be difficult 
for learners, educators could use this information 
to restructure the problem, with the aim of helping 
them solve it. This restructuring could include:  
(a) rewriting the given information clearly,  
(b) providing a diagram or figure to support the 

visualisation of the given information, and  
(c) formulating suitable sub-questions to enable 

learners solve the problem.  
A typical example of what would need to be 

done is illustrated in Task 2. 
 

Task 2 
Study the problem: 

Determine the equation of the tangent to 
the circle x2 - 2x + y2 + 4y = 5 at the 
point (-2; -1). 
Now answer the following questions 
based on the above problem. 
2.1 Solve the above problem. 
2.2 Write down the relevant prior 

knowledge/abilities required by 
learners to work out the problem. 

2.3 Restructure the above problem with 
the aim of helping learners to solve 
the problem. 

An example of a possible restructuring of the 
given problem is provided in Box 3. The original 
problem required learners to integrate different 
component tasks into a solution. If the relevant 
component knowledge and abilities are in place, 
learners should also be exposed to a subsequent 
task such as the following:  

Consider the problem: The straight line  
0102 =−+ xy  intersects with the circle 

with centre O (the origin) at points A and 
T, where A is on the x-axis. Determine 
the co-ordinates of D if OD is 
perpendicular to AT and D lies on AT. 
Write down the key steps that lead to a 
solution of this problem. 
In the context of the guided problem-solving 

teaching model such activities help to make the 
transition to the deductive reasoning phase. 
 
Deductive reasoning – an example from geometry 
Examiners’ reports indicated that learners perform 
poorly in the proofs of geometry theorems. This 
could be as a result of the way in which these 
theorems were introduced to learners. For example, 
a theorem was stated and then the proof was given. 
Learners also have many misconceptions and make 
common errors that relate to the application of the 
theorem’s statement.   

A mathematics educator could help learners by  
(a) pinpointing the relevant prior knowledge/ 

abilities required by learners to prove the 
theorem [first analyse the proof of the theorem],  

(b) designing a worksheet that helps learners arrive 

 
 

1. The figure shows the circle defined 
by the equation x2 - 2x + y2 + 4y = 5.
The line l is a tangent to the circle at 
the point M(-2;-1).

1.1 Determine the co-ordinates of P, the centre of
the circle.

1.2 Calculate the gradient of MP.
1.3 Why is MP perpendicular to the line l ?
1.4 Now determine the defining equation of the

tangent l.

P

M(-2;-1)

Y

X

l

 
Box 3. Restructuring a problem – an example. 
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deductively at the statement [draw the relevant 
diagram, write up the given information and 
formulate suitable lead-on questions by using 
the relevant prior knowledge/abilities],  

(c) formalising the statement of the theorem [write 
the statement in the “if.....then” form and use 
diagrams to illustrate the “cause and effect”], 
and  

(d) giving quick and simple applications based on 
the pre-requisites to apply the statement of the 
theorem.  
Task 3 was designed to help mathematics 

educators develop these competencies. 
 

Task 3 
The competencies stated above could be developed 
through the following example: 

3.1 Complete the following statement of 
a theorem: If two triangles are 
equiangular then their ....................  

3.2 For the statement of the theorem in 
(3.1) above you are required to do 
the following: 

a) List the prior knowledge/abilities 
required by learners to prove the 
statement. 

b) Design a worksheet which could 
enable learners to deductively 
arrive at the statement.  

 

1. In ∆ ABC and ∆ PQR    

  
$ $A   P=  

      
$ $B  Q=  

 and $ $C  R=          

     

A

B C

K M P

Q R

1
2

\\

\\

/

/

 

        
1.1 On AB point K is marked so that AK = PQ. 
 On AC point M is marked so that AM = PR. KM is joined. 

1.2 Prove that ∆ AKM ≡ ∆ PQR. 

1.3 Why is $ $K Q?1 =  

1.4 Now show that $ $K  B1 = . 

1.5 Deduce that KM BC. 

1.6 Why is 
AK

AB
  

AM

AC
=  ? 

1.7 Now show that 
PQ

AB
  

PR

AC
= . 

1.8 Point E is marked on BA such that BE = QP and point F is marked on BC 
such that BF = QR. Write down equal ratios similar to those in 1.7 by using 
QP, BA, QR and BC. 

1.9 Use the ratios from 1.7 and 1.8 to write down ratios that relate all the sides 
of ∆ PQR and ∆ ABC. 

1.10 Now write down a general statement about the corresponding sides of 
equiangular triangles. 

 

Box 4. Example of a worksheet – deductive response (Task 3.2b). 



Aneshkumar Maharaj 
 

 41 

c) Briefly outline strategies to 
eliminate common errors / 
misconceptions relating to the 
application of this theorem. 

An example of a response to (b), after the prior 
knowledge and abilities were detected, is provided 
in an example worksheet (Box 4).  

To get learners to integrate component tasks 
into a solution, such an activity should be followed 
by a suitable spot test, for example see Box 5.   

These activities are designed to make the 
transition towards the deductive reasoning phase of 
the guided problem-solving teaching model. 

 
Develop summaries and strategies to support 

problem-solving 
Summaries and strategies help to expand and 
improve the connections of the network in the 
brain. The devising of plans should be taught, as it 
is a form of representation, and an important part 
of problem-solving. To develop into successful 
problem-solvers learners need to spend time 
analysing problems and the directions that could be 
taken (Fernandez, Hadaway & Wilson, 1994). This 
should lead to the development of frameworks 
(schemata) aimed at pinpointing the different 
phases and the processes that are necessary when 
solving particular types of problems. Such 
schemata illustrate that the development of 
mathematical thinking is a sequence of ever more 
advanced transitions from operational to structural 
outlooks. A mathematics educator should facilitate 
the development of summaries and teaching-
learning strategies in mathematics to help learners. 
These strategies could include frameworks or 
schemata, which involves representing, connecting 
and justifying procedures. Task 4 has been 
designed as an example of what could be done to 
help educators develop summaries and strategies. 
 

Task 4 
For any one of the sections in the mathematics 
syllabus for grades 10 to 12, give an example of a 
summary or strategy that you helped your learners 
to develop. The following should be indicated. 

4.1 The grade and topic/section.  
4.2 Full details of the summary or 

strategy. 
4.3 Has this summary or strategy helped 

your learners improve their 
performance in mathematics? 
Motivate your response. 

An example of a strategy that may be used to 
solve equations is illustrated in Figure 2. The 
schema for solving equations algebraically 
associates particular problem-solving procedures 
with each of the algebraic objects (linear, quadratic 
and cubic equations). Such a schema requires that 
learners first identify the type of equation 
(structure) they are confronted with. This should be 
followed by an algorithm which outlines a 
particular procedure, for example, the factorisation 
technique for quadratic equations. Such a schema 
can help learners to “… understand, deal with, 

  A 

B C 

P 

Q 
 

R 

 
In triangles ABC and PQR 

.R̂ Ĉ  and  Q̂ B̂   ,P̂Â ===  
Write down the key steps to prove the 

theorem that states .
QR

BC

PQ

AB =  

  
 
Box 5. Example of a spot test. 
 

 

 

Linear  

Use of quadratic 
formula 

Factorisation 
technique 

Quadratic  Cubic  

Solving equations 

LHS – terms in 
unknown 

RHS – constant 
terms 

! Grouping 
! Use of factor 

theorem 

 
 

Figure 2. Schema for solving equations algebraically. 
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organise, or make sense out of a perceived problem 
situation” (Dubinsky 1991: 102), as it includes a 
more or less coherent collection of objects and 
processes. In this case, the task entails solving 
equations – of degree one, two or three – in one 
unknown. By focussing on the structural nature of 
such schemata, explicit descriptions of possible 
relationships between schemata can be detected. 
Instruction should therefore focus on the need for, 
the usefulness of and the development of such 
schemata to aid thinking and bringing into play 
encoded labels for algorithms. 
 
Conclusion  
The task analysis approach, with a focus on 
detecting required actions, processes, objects and 
schema, could be used to design process-based 
learner-centred activities within the framework of 
the guided problem-solving model. It is evident 
from the four tasks outlined in this paper that this 
approach requires competent educators who have a 
sound knowledge of the content to be taught. The 
approach can be used to design questions and 
activities that address the typical common errors, 
misconceptions and difficulties of learners as 
identified in the examiners’ reports. Some 
examination questions contain complex component 
tasks. Therefore, there is also a need to follow-up 
with activities that require learners to integrate 
component tasks. Within the framework of the 
guided problem-solving model, such activities 
target the deductive reasoning phase. 
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