
 27

DYNAMIC PROGRAMMING APPROACH
TO TESTING RESOURCE ALLOCATION
PROBLEM FOR MODULAR SOFTWARE

P.K. Kapur1 P.C. Jha1 A.K. Bardhan1

Abstract
Testing phase of a software begins with module testing. During this period modules are tested
independently to remove maximum possible number of faults within a specified time limit or
testing resource budget. This gives rise to some interesting optimization problems, which are
discussed in this paper. Two Optimization models are proposed for optimal allocation of
testing resources among the modules of a Software. In the first model, we maximize the total
fault removal, subject to budgetary Constraint. In the second model, additional constraint
representing aspiration level for fault removals for each module of the software is added.
These models are solved using dynamic programming technique. The methods have been
illustrated through numerical examples.

Key words: Software Reliability, Non Homogeneous Poisson Process, Resource Allocation,
Dynamic Programming

1. Introduction

Growth in software engineering technology has led to production of software for
highly complex situations occurring in industry, scientific research, defense and day
to day life. Consequently, the dependence of mankind on computers and computer-
based systems is increasing day by day. Any failure in these systems can cost
heavily in terms of money and/or human lives. Though high reliability of hardware
part of these systems can be guaranteed, the same cannot be said for software.
Therefore a lot of importance is attached to the testing phase of the software
development process, where around half the developmental resources are used [8].
Essentially testing is a process of executing a program with the explicit intention of
finding faults and it is this phase, which is amendable to mathematical modeling.

It is always desirable to remove a substantial number of faults from the software. In
fact the reliability of a software is directly proportional to the number of faults
removed. Hence the problem of maximization of software reliability is identical to

1 Department of Operational Research, Faculty of Mathematical Sciences,
University of Delhi, Delhi 110007, INDIA

 28

that of maximization of fault removal. At the same time testing resource are not
unlimited, and they need to be judiciously used. In this paper we discuss and solve
such a management problem of allocation of testing resources among modules,
through a Software Reliability Growth Model (SRGM). A Software Reliability
Growth Model (SRGM) is a relationship between the number of faults removed
from a software and the execution time/CPU time/calendar time. Several attempts
have been made to represent the actual testing environment through SRGMs
[1,4,5,9]. These models have been used to predict the fault content, reliability and
release time of a software. SRGMs have also been used to manage the testing phase.
Again large software consists of modules. Often these modules are developed
independently and each module may contain different number of faults and that of
different severity. Therefore distinct SRGMs should be used to represent the testing
process of each module, as testing for these modules are done independently. An
SRGM with testing effort [9] has been chosen to represent the fault removal process
for the two optimization problems discussed in this paper.

The first optimization model (P1) maximizes the total number of faults expected to
be removed, when available testing resource is known. The management normally
aspires for some reliability level that can be translated in terms of number of faults
removed. In the second optimization model (P2) we add a constraint in (P1) in
terms of minimum number of faults aspired to be removed from each module.
Dynamic programming technique is used to solve these problems. This is the first
time that this has been done in software engineering, according to our knowledge.
Dynamic programming approach, which is easy to solve and understand provides
global optima for these problems. The methodology discussed in the paper has been
illustrated through numerical examples.

Notations
N : Number of modules in the Software (>1)
ai : Expected number of faults in the ith module (i=1,2,…,N)
bi : Proportionality constant for the ith module
xi(t) : Current testing effort expenditure at testing time t

 and ∫=
t

ii dwwxtX
0

)()(for ith module

Xi, Z : The amount of testing resource to be allocated to the ith module
 and total testing resource available.
 mi(t) : Number of faults removed in (0,t] the ith module,
 mean value function of NHPP, i = 1,…,N
T : Total testing time

Xi
* : Optimal value of Xi , i = 1,…,N

fn(Z) : Optimal number of faults removed upto nth modules (i.e.
 corresponding to nth stage in a Dynamic Programming algorithm)

 29

aio : Aspiration level of ith module (i.e. number of faults desired to be
 removed from ith module)
pi : The minimum proportion of total faults to be removed from
 ith module.

2. Mathematical Modelling

2.1 Resource Allocation Problem

Consider a software having N modules, which are being tested independently for
removing faults lying dormant in them. The duration of module testing is often fixed
when scheduling is done for the whole testing phase. Hence limited resources are
available, that need to be allocated judiciously. If mi faults are expected to be
removed from the ith module with effort Xi, the resulting testing resource allocation
problem can be stated as follows [5,6].

max ∑
=

N

i
im

1

subject to

∑
=

=
N

i
i ZX

1

, 0≥iX , i = 1,…,N … … (P1)

Above optimization problem is the simplest one as it considers the resource
constraint only. Later in this paper, we incorporate additional constraints to the basic
model. For solving (P1) a functional relationship between fault removal and
resource consumption is required, which is discussed in the following section.

2.2 SRGM For Modules

A Software Reliability Growth Model explains the time dependent behavior of fault
removal. As modules are tested independently distinct SRGMs would represent their
reliability growth. The influence of testing effort can also be included in the SRGMs
[9]. In this paper we discuss the resource allocation problem using such a SRGM for
the modules.
 Model Assumptions
1. Software consist of a finite number of modules and testing for each module is

done independently

 30

2. A module is subject to failures at random time caused by faults remaining in the
software.

3. On a failure, the fault causing that failure is immediately removed and no new
faults are introduced.

4. Fault removal phenomenon is modelled by Non Homogeneous Poisson Process
(NHPP).

5. The expected number of faults removed in ()ttt ∆+, to the current testing
resource is proportional to the expected remaining number of faults.

Under assumption 5, following differential equation may easily be written for ith
module

))((
)(

)(
tmab

tx

tm
dt
d

iii
i

i
−= , i = 1,…,N …. … (1)

Solving equation (1) with the initial condition that, at t = 0, Xi(t) = 0, mi(t) = 0 we get

)1()()(tXb
ii iieatm −−= , i = 1,…,N … … (2)

To describe the behaviour of testing effort, either Exponential or Rayleigh function
has been used [5,9]. Both can be derived form the assumption that, " the testing
effort rate is proportional to the testing resource available".

[])()(
)(

tXtc
dt

tdX
iii

i −= α , i = 1,…,N … … (3)

where ci(t) is the time dependent rate at which testing resources are consumed, with
respect to the remaining available resources. Solving equation (3) under the initial
condition 0)0(=X we get












−= ∫

t

iii dkkctX
0

)(exp1)(α , i = 1,…, N … … (4)

When β=)(tc , a constant

)1()(t
ii ietX βα −−= , i = 1,…,N … … (5)

If ttc .)(β= , (1) gives a Rayleigh type curve

)1()(2

2t

ii
i

etX
β

α
−

−= , i = 1,…,N … … (6)
In this paper we have chosen exponential function (5) to represent testing effort in
the optimization problems.

 31

2.3 Estimation Of Parameters

The testing effort data are given in the form of testing effort

)...(21 nk xxxx <<< consumed in time],0(it ; ni ,..,2,1= . The testing
effort model parameters αi and βi can be estimated by the method of least squares as
follows.

Minimize []∑
=

−
n

i
i XX

1

ˆ

subject to nn XX =ˆ (i.e. the estimated value of testing effort is equal to the actual
value).

Once the estimates of αi and βi are known, the parameters of the SRGMs (2) for the
modules can be estimated through Maximum Likelihood Estimation method using
the underlying Stochastic Process, which is described by a Non Homogeneous
Poisson Process. During estimation, estimated values of αi and βi are kept fixed. If
the fault removal data for a module is given in the form of cumulative number of
faults removed yj in time (0,tj]. The likelihood function for that module is given as

[]
∏
=

−−

−

−
− −

−

−

−
=

n

j

tmtm

jj

yy
jiji

iiiii
jiji

jj
e

yy
tmtm

WybaL
1

))()((

1

1 1
1

)!(
)()(

),/(,(

3. Optimal Allocation Of Resources

From the estimates of parameters of SRGMs for modules, the total fault content in

the software ∑
=

N

i
ia

1

is known. Modules testing aims at removing maximum number

of them, within available resources. Hence (P1) can be restated as

Maximize ∑∑
=

−

=
−=

N

i

Xb
i

N

i
ii iieaXm

11
)1()(

Subject to ZX
N

i
i ≤∑

=1
, iX 0≥ i = 1, … , N … (P1A)

(P1A) can be solved using Dynamic Programming Approach. From Bellman's
principle of optimality, we can write the following recursive equation [2].

 32

{ })1(max)(11

11
11

Xb
ZX

eaZf −

=
−=

{ })()1(max)(1
0

nn
Xb

n
ZX

n XZfeaZf nn

n
−+−= −

−

≤≤
, n = 2,…,N … (7)

To index the modules, they can be arranged in descending order of their values of
aibi i.e. NN bababa ≥≥≥ ...2211 . Through this approach resources are allocated
to the modules sequentially. But for some values of Z (Z < Zr) one or more modules
with higher index number i.e. having lower detectability may not get any allocation.
We summarize this result in the following simple theorem.
Theorem - 1

If for any n = 2,…,N;
nn

nnZ
ba
V

e n 1111 −−− ≤≤ − µµ , then values

of Nnn XXX ..., ,1+ are zero and problem reduces to (n-1) stage problem with

















−

+
= −−

−
− rr

rr
r

rr
r ba

VZ
b

X 11
1

1
log1 µ

µ
µ

, r = 1,…,(n-1) … (8)

 where

∑
=

= i

j j

i

b1
)1(

1
µ and ∏

=
=

i

j

b
jjii

jibaV
1

()/)(µµ , i = 1,…,N

Proof of the theorem is given in appendix.

As a result of the above allocation procedure, some modules may not be tested at all.
This situation is not advisable. Again management often aspires to achieve certain
minimum reliability level for the software and that for each module of the Software
i.e. a certain percentages of the fault content in each module of the Software is
desired to be removed. Hence (P1) needs to be suitably modified to maximize
removal of faults in the software under resource constraint and minimum desired
level of faults to be removed from each of the modules in the software. The resulting
testing resource allocation problem can be stated as follows:

∑ ∑
= =

−−=
N

i

N

i

Xb
ii iieam

1 1
)1(max

subject to

0)1(iii
Xb

ii aapeam ii =≥−= − , i = 1, … , N

 33

∑
=

≤
N

i
i ZX

1
, 0≥iX , i = 1, … , N … (P2)

(P2) can be solved using Dynamic Programming Approach either by reducing the
dimensionality of the problem through Lagrange multiplier or converting to (P1) by
substitution. We first consider the dimensionality reduction in Dynamic
Programming Approach [2] as follows.

{ }[]∑
=

−− −−+−=
N

i
i

Xb
ii

Xb
i

X
aeaeaX iiii

1
0)1()1(),(minmax ααφ

α

subject to ZX
N

i
i ≤∑

=1
 0, ≥iiX α i = 1, … , N (P3)

Where iα (i = 1, … , N) is Lagrange multiplier for ith constraint corresponding to
the ith module. The above problem can be solved by Dynamic Programming
approach in which Kuhn-Tuckker optimality conditions are obtained at each stage
[2]. At any stage αi (i = 1,…,N) can be zero or non-zero depending upon
ineffectiveness or effectiveness of constraint respectively. Hence each stage has two
possibilities and corresponding to each possibility of preceding stage present stage
has two possibilities. So at any stage i, total number of cases is 2i-1. Infact, above
problem reduces to that of finding an optimal path by searching for an optimal
solution at each stage in which only one option could be chosen. This procedure
does not provide a closed form solution. Hence without further elaboration of the
above method, the substitution method is adopted for converting the problem (P2) to
the problem (P1) as follows:

0)(iii aXm ≥ implies
0

ii)1(i i
Xb aea ≥− −

Hence, ii Z
a

a
b

X =











−−≥

i

i

i

01log1 (say), i = 1, … , N

Therefore (P2) can be restated as,

Maximize ∑∑
=

−

=
−=

N

i

Xb
i

N

i
i iieam

11
)1(

subject to ii ZX ≥ i = 1, … , N

∑
=

≤
N

i
i ZX

1
, 0≥iX , i = 1, … , N (P4)

 34

Let iii ZXY −= (i = 1, … , N), then (P4) can be written as the problem (P1)
given below

∑ ∑
= =

−−=
N

i

N

i

Yb
ii iieam

1 1
)1(maxmax

subject to

∑ ∑
= =

=−≤
N

i

N

i
ii ZZZY

1 1
 (say)

0≥iY , i = 1, … , N

0iii aaa −= , i = 1, … , N (P5)

The Problem (P5) is similar to the problem (P1) and hence using theorem-1 the
problem (P5) can also be solved.

If for any i = 2, … , N
ii

iiZ
ba
Ve i 111 −−− ≤≤

µµ ,then Nii YYY ,...,, 1+ are zeroes,

then problem (P5) reduces to a (1−i) stage problem and its solution is given as






















−

+
= −−

−
+ nn

nn
n

nn
n ba

VZ
b

Y 11
1

1
log1 µ

µ
µ

, n = 1,…,(i-1) … (9)

∑
−

=

−−=
1

1
)(

i

n

Z
ni neVaZf µ … … (10)

Through equation (9) optimal allocation of resources to the modules can be
calculated. In the following section we numerically illustrate these results.

4. Numerical Example

It is assumed that parameters ai and bi for the ith module (i=1,.....N) are already
estimated using the software failure data. Consider a software having 10 modules
whose parameter estimates are as given in Table-1. Suppose the total resource
available for testing is 97000. First the problem (P1) is solved and from the
recursion equation (7) optimal allocation of resources (Xi

*) for the modules are
computed. These are listed in Table-1 along with the corresponding expected
number of fault removed, percentages of faults removed and faults remaining for
each module. The total number of faults that can be removed through this allocation
is 152 (i.e. 60.6% of the fault content is removed from the Software). It is observed

 35

that in some modules (module-9,10) the remaining faults after allocation is high.
This can lead to frequent failure during operational phase. Obviously this will not
satisfy the developer and he may desire that at least 50% of fault content from each
of the modules of the Software is removed (i.e. pi=0.5 for each i = 1…10). Since
faults in each module are integral values, nearest integer larger then 50% of the fault
content in each module is taken as lower limit that has to be removed. The new
allocation of resource along with expected number of fault removed, percentages of
faults removed and faults remaining for each module after solving the problem (P2)
through the problem (P5) is summarized in Table-2. The total number of faults that
can be removed through this allocation is 146.8(i.e. 58.4% of the fault content is
removed from the Software). In addition to the above if it is desired that a certain
percentage of the total faults are to be removed then additional testing resources
would be required. It is interesting to study this tradeoff and Table-3 summarizes
results, where the required percentage of faults removed is 60%. To achieve this,
3000 units of additional testing effort is required. The total number of faults that can
be removed through this allocation is 150.8(i.e. 60.09% of the fault content is
removed from the Software). Analysis given in Tables-1, 2 and 3 help in providing
the developer an insight into the resource allocation and the corresponding fault
removal phenomenon and the objective can be set accordingly.

Table - 1
Module ai bi Xi

* mi* % of faults
removed

% of faults
remaining

1 63 5.33E-05 25435 46.7689 74.24 25.76
2 13 0.000252 5280.7 9.56979 73.61 26.39
3 6 0.000526 2459.5 4.3553 72.59 27.41
4 51 5.17E-05 21549 34.2571 67.17 32.83
5 15 0.000171 6354.5 9.93004 66.2 33.8
6 39 5.72E-05 16554 23.8778 61.23 38.77
7 21 9.94E-05 8857.2 12.2916 58.53 41.47
8 9 0.000174 3412.3 4.03476 44.83 55.17
9 23 5.06E-05 5845.6 5.88626 25.59 74.41
10 11 8.78E-05 1251.9 1.14528 10.41 89.59
Total 251 97000 152.117 60.6 39.4

 36

Table-2

Module ai aio Zi* Yi* mi(Yi) mi* % of
faults
removed

% of faults
remaining

1 63 32 13300 7495.5 10.2 42 67 33
2 13 7 3064.6 1235.6 1.61 8 66.21 33.79
3 6 3 1317.3 672.1 0.89 4 64.89 35.11
4 51 26 13793 2969.7 3.56 30 57.96 42.04
5 15 8 4464.8 440.4 0.51 8 56.71 43.29
6 39 20 12565 0 0 20 51.28 48.72
7 21 11 7465.7 0 0 11 52.38 47.62
8 9 5 4652.5 0 0 5 55.56 44.44
9 23 12 14586 0 0 12 52.17 47.83
10 11 6 8978.1 0 0 6 54.55 45.45
Total 251 130 84187 12813.3 16.8 146 58.48 41.52

Table-3
Module ai aio Zi* Yi* mi(Yi) Xi* mi* % of

faults
removed

% of
faults
remaining

1 63 32 13300 8624.7 11.74 21924.6 44 69.43 30.57
2 13 7 3064.6 1474.2 1.93 4538.82 9 68.7 31.3
3 6 3 1317.3 786.52 1.048 2103.79 4 67.47 32.53
4 51 26 13793 4134.5 5.13 17927.4 31 61.05 38.95
5 15 8 4464.8 793.16 0.984 5257.95 9 59.9 40.1
6 39 20 12565 0 0 12565.5 20 51.3 48.7
7 21 11 7465.7 0 0 7465.66 11 52.38 47.62
8 9 5 4652.5 0 0 4652.5 5 55.55 44.45
9 23 12 14586 0 0 14585.7 12 52.18 47.82
10 11 6 8978.1 0 0 8978.11 6 54.55 45.45

Total 251 130 84187 15813 20.8 100000 151 60.09 39.91

 37

5. Conclusion

In this paper we have discussed a couple of optimization problems occurring during
module testing phase of software development life cycle. A dynamic programming
approach for finding the optimal solution has been proposed. Using simple recursion
equations it is shown how fault removal for each module and that of the software
can be maximized, by judicious allocation of resources. It is observed that after
certain duration of testing, fault removal becomes difficult in the sense that greater
effort will be required to remove each additional fault. As the reliability of software
is of utmost importance scientific decision making is required while deciding the
resource budget. The tradeoff as shown in section-4 can be useful in this regard.

Alternatively if the developer is not too keen on an optimal solution but is satisfied
with an efficient solution, Goal Programming approach may be desirable in that
case. We are further looking into this aspect.

Appendix:
Proof of the theorem-1
We have following recursion equations given in (7):

{ })1(max)(11

1
11

Xb
ZX

eaZf −

=
−=

{ })()1(max)(1
0

nn
Xb

n
ZX

n XZfeaZf nn

n
−+−= −

−

≤≤
, n = 2, … , N

The above problem can be solved through forward recursion in N stages as follows.
Stage-1: Let n=1 then we have

{ })1(max)(11

1
11

Xb
ZX

eaZf −

=
−= =)1(11

Zbea −−

Stage-2: Let n=2 then we have

{ })()1(max)(212
20

2 22 XZfeaZf Xb
ZX

−+−= −

≤≤

Substituting)(21 XZf − in above we have

{ })1()1(max)()(
12

20
2 2122 XZbXb

ZX
eaeaZf −−−

≤≤
−+−=

 38

Now let, { })1()1()()(
1222 2122 XZbXb eaeaXF −−− −+−= then

{ })(max)(22
20

2 XFZf
ZX ≤≤

=

The maxima can be found through calculus.

)(
1122

2

22 2122)(XZbXb ebaeba
dX

XdF −−− −=

The sufficiency condition can be checked through the second derivative condition:

0)()(2
11

2
222

2

22
2

2122 ≤−−= −−− XZbXb ebaeba
dX

XFd

The following three situations can occur.

(i) 0
)(

2

22 <
dX

XdF
 (ii) 0)(

2

22 =
dX

XdF
 (iii) 0

)(

2

22 >
dX

XdF

If 0
)(

2

22 <
dX

XdF , then X2 =0.

At X2 =0 0)(11122
2

22 <−= − Zbebaba
dX

XdF

i.e.
22

1111
ba
bae Zb <≤

Which implies 2211 baba > ,in other words the detectability in module -1 is higher
than module –2.

Similarly 0)(

2

22 >
dX

XdF
 implies X2 = Z

and we have 12

11

22 ≥> Zbe
ba
ba

 Hence 1122 baba > , the testing resources would be allocated to module -2 first as
the detectability is higher there.

Finally if 0)(

2

22 =
dX

XdF









−
+

=∗
22

11
1

21
2 log1

ba
baZb

bb
X , i.e.









−
+

=∗
22

11
1

21
2 log1

ba
VZ

b
X µ

µ
µ

,

 39

and















+−= ++

−

=
∑ 21

1
21

2
22
11

)()()(
11

22
1

22

11
2

2

1
2

bb
b

bb
b

Z
ba
ba

i
i ba

baa
ba
baaeaZf

 i.e. 2
2

1
2 2)(VeaZf Z

i
i

µ−

=
−= ∑

Where 1

1

1 1
1 b

b

==µ , 11 aV = ,
21

21

21

2 11
1

bb
bb

bb
+

=
+

=µ
















+= 2

2
1
2

)()(
11

22
1

22

11
22

b
V

baV
ba

VaV

µ
µ
µ

µ
µ

Now proceeding by induction it can be shown for nth stage,









−
+

= −−
−

−

∗

nn

nn
n

nn
n ba

VZ
b

X 11
1

1
log1 µ

µ
µ

and n
Z

n

i
in VeaZf nµ−

=
−= ∑

1
)(for n=1…N

The proof is complete.

References

1. Goel A.L., Software Reliability Models: Assumptions, limitations and

applicability, IEEE Trans. On software engineering, SE-11, pp. 1411-1423,
1985.

2. Hadley, G., Nonlinear and Dynamic Programming, Addision-Wesley,
Reading Mass, 1964.

3. Ichimori, T, Yamada, S. And Nishiwaki M., Optimal allocation policies for
testing-resource based on a Software Reliability Growth Model,
Proceedings of the Australia –Japan workshop on stochastic models in
engineering, technology and management, pp. 182-189, 1993.

4. Kapur P.K. and Garg R.B.; Cost reliability optimum release policies for a
software system with testing effort, OPSEARCH, vol. 27, no. 2, pp. 109-
118, 1990.

5. Kapur P.K., Garg R.B. and Kumar, S.; Contributions to Hardware and
Software Reliability, World Scientific, Singapore, 1999.

 40

6. Kapur, P.K. and Bardhan, A.K., Modelling, allocation and control of
resources: an interdisciplinary approach in software reliability and
marketing, Operations Research, Eds. M. Agarwal and K. Sen, Narosa
Publishing House, New Delhi 2001.

7. Kubat P. and Koch H.S., Managing test procedures to achieve reliable
software, IEEE Trans. On Reliability, Vol. R-32, pp. 299-303, 1983.

8. Musa J.D., Iannino A. And Okumoto K, Software Reliability-
Measurement, Prediction and Application, Mc Graw Hill, 1987.

9. Yamada S. And Ohtera H. And Narihisa H., Software Reliability Growth
 Model with testing effort, IEEE Trans. On Reliability, vol. R-35, pp. 19-
 23, 1986.

