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Abstract 

In this paper we have introduced strong forms of b-continuous multifunctions namely 

b#-multicontinuity and *b-multicontinuity and studied their properties and characterizations. 

Also investigate the relationship with other type of functions with suitable examples. 
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1. Introduction 

Recently topologists concentrate their research in several types of continuous multi 

functions. A weak form of b-continuous multifunctions was studied in [4]. The 

variations of multi continuity were discussed in [5]. The weak and strong forms of 

continuity of multi functions were introduced in [6]. Certain properties of topological 

spaces preserved under multivalued continuous mappings were investigated in [7]. 

Certain strong forms of mixed continuous multi functions were characterized in [8] and 

the upper and lower -continuous multi functions were studied in [11]. The notions of 

b#-continuity and *b-continuity were respectively discussed and studied in [9] and [3].  

 

In this paper we have introduced strong forms of b-continuous multifunctions namely 

b#-multicontinuity and *b-multicontinuity and also studied their properties and 

characterizations with suitable examples. 

 

2. Preliminaries 

Throughout this paper it is assumed that X and Y are non-empty sets and  and  are 

topologies on X and Y respectively and   and  denote the collections of closed sets 

in X and Y respectively. The notation P: X⇉Y is used for a multivalued function. For 

the notations in multifunction theory, the reader may consult (Thangavelu, 

Premakumari, 2015). We use the following abbreviations and notations. 

 “continuous” =”c”, “upper continuous” = “u.c” and “lower continuous” = “l.c”. Further  

 V (, x, P(x),)   V , xX and P(x)V. 

 U[, x, P, V,]   U , xU and P(U)V. 

V (, x, P(x), )   V , xX and P(x)V. 

 U [, x, P, V, ]   U, xU and P(u)V uU. 

{b#, *b}. 

 

Definition 2.1. The set A is called (resp. b, *b)-open[1] (resp.[2], resp.[3]) if A 

Cl(Int(Cl(A))) (resp. Cl(Int(A))Int(Cl(A)), Cl(Int(A))Int(Cl(A)) and b#-open [9,10] 

if A=Cl(Int(A))Int(Cl(A)). The complements of (resp. b,*b, b#)-open sets are (resp. 

b,*b, b#)-closed sets.  

Lemma 2.2. The set B is  

(i) -open  b-open 

(ii) open  b-open    

(iii) b-open-open   

 

Definition 2.3. The multifunction P is u.c [5,6,7] if  V(, x, P(x), ),  U[, x, 

P,V, ]  and is l.c if   V(, x, P(x), ),  U[, x, P, V, ].                                                                         
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Analogously u.b-c [4] and u.-c [11] may be defined by replacing “” in [, x, P, V,] 

respectively by “bO(X,)” and “O(X,)”. Also l.b-c [4] and l.-c [11] may be defined 

by replacing “” in [, x, P, V, ] by “bO(X,)”  and “O(X,)” respectively.   

 

Definition 2.4. The multifunction P is c if P is u.c and l.c. The notions b-c and -c can 

be similarly defined.  

 

3.-multi continuity where {*b, b#} 

Definition 3.1.  The multivalued function P is u.b#-c (resp. u.*b-c ) if P+(V) is b#-open 

(resp. *b-open)  V. 

 

Proposition 3.2. Consider the following statements. 

(i)P is u.-c. 

(ii)P −(B) is -closed   B.  

(iii)P −(Cl (B)) is -closed  BY. 

(iv)P+ (Int (B)) is -open  BY.  

The implications (i)  (ii)  (iii)  (iv) always hold. 

Proof:  Suppose (i) holds. Let B that implies, P+(Y\B) is -open so that X\ P−(B) = 

P+(Y\B) is -open that further shows that P−(B) is -closed. This proves (i) (ii).  

 

Now we assume (ii). Let V that implies by (ii), P−(Y\V) is -closed so that X\ P+(V) 

is -closed that further shows that P+(V) is -open. This proves (ii) (i). Other 

implications follow easily.  

 

Proposition 3.3. If P is u.-c then  V(, x, P(x), ), U[ O(X,), x, P, V, ]. 

 

Proof:  Let P be u.-c and V(, x, P(x), ). Since P(x)V, xP+(V). Since P+(V) is 

-open   a -open  set U with xU P+(V). Clearly U[ O(X,), x, P, V, ].  

 

Proposition 3.4.  P is u.-c  it is u.b-c and u.-c. 

  

Definition 3.5. The multifunction P is l.b#-c(resp. l.*b-c) if P−(V) is b#-(resp.*b)-open 

 V. 

 

Proposition 3.6. Consider the following statements. 

(i)P is l.-c. 

(ii) P+ (B) is -closed   B. 

(iii) P+ (Cl (B)) is -closed  B Y. 

(iv) P− (Int (B)) is -open  B Y. 

The implications (i)  (ii)  (iii)  (iv) always hold. 
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Proof:  Suppose (i) holds. Let B  that implies P−(Y\B) is -open so that X\ P+(B) is 

-open that further shows that P+(B) is -closed. This proves (i) (ii).  

Now we assume (ii). Let V that implies by (ii)), P+(Y\V) is -closed so that X\ 

P−(V) is -closed that further shows that P−(V) is -open. This proves (ii) (i). The 

rest follows easily. 

 

Proposition 3.7. If P is l.-c then V (, x, F(x), ),  U[O(X,), x, P, V, ]. 

 

Proof: Analogous to Proposition 3.3. 

 

Proposition 3.8. P is l.-c it is l.b-c and l.-c 

 

Definition 3.9. P is b#-c (resp.*b-c) if it is u.b#-c (resp.u.*b-c) and l.b#-c(resp. l.*b-c). 

 

The next proposition follows from previous definition, Proposition 3.2 and Proposition 

3.6. 

 

Proposition 3.10. Consider the following statements.  

(i) P is -continuous. 

(ii)  P+ (V) and P− (V) are -open  V.  

(iii) P+ (B) and P− (B) are -closed  B. 

 (iv)  P+ (Int (B)) and P− (Int (B)) are -open B  Y. 

(v)  P+ (Cl (B)) and P− (Cl (B)) are -closed B  Y. 

The implications (i)  (ii)  (iii)  (iv)  (v) always hold. 

The following diagrams always hold. 

 

Diagram 3.11. Let t=u or l. 

(i) t.b#-c  t.b-c  t.*b-c. 

(ii) t.c  t.b-c  t.-c. 

 

Examples 3.12. In this section some examples are given to illustrate certain results in 

the third section.  

        Let X = {p, q r, s}, Y = {1, 2, 3},  = {, {1}, Y},  

 = {, {r}, {q}, {q, r}, {p, q}, {p, q, r}, {q, r, s}, X}.  

 

(i) F1(p) = {1, 2}, F1(q)={1, 3} F1(r) = {1} and F1(s) = {1} then  F1
+({1})={r, s} is b#-

open so that F1 is u.b#-c.  

 

(ii) If F2(p) = {1, 2}, F2(q)={1}, F2(r) = {1, 3} and F2(s)  = {3} then  F2
+({1})={r} is 

*b-open  that implies  F2 is u.*b-c. 
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(iii) If F3(p) = {1}, F3(q)={1}, F3(r) ={1,2} and F3(s) = {1} then F3
+({1})={p, q, s} is b-

open and -open  and hence F3 is u.b-c and u.-c. However F3 is not u.-c as F3
+({1})= 

{p, q, s} is not -open.  

 

(iv) If  F4(p) ={2}, F4(q)={3}, F4(r) ={1, 2} and F4(s)  = {1, 3} then  F4
−({1})= {r, s} is 

b#-open  that implies F4 is l.b#-c.  

 

(v) If  F5(p) = {1, 2}, F5(q)={1, 3}, F5(r) = {2} and F5(s)  = {3}  then  F5
−({1})={p, q} 

is *b-open and hence F5 is l.*b-c. 

 

(vi) If F6(p) ={2}, F6(q)={1, 2}, F6(r) = {3} and F6(s)  = {1, 3} then  F6
−({1})={q, s}is 

b-open and -open so that F6 is l.b-c and l.-c. However F6 is not l.-c as F6
−({1})= {q, 

s} is  not -open.   

 

(vii) If  F7(p) = Y, F7(q)={1, 3}, F7(r) = {1} and F7(s)={1}  then  F7
+({1})={r, s} and 

F7
−({1})= X are b#-open  we see that F7 is  u.b#-c and l.b#-c and hence b#-c. 

 

(viii) If G1(p) = {2}, G1(q)={1}, G1(r) = {1, 2} and G1(s)  = {3} then  G1
+({1})= {q} 

and G1
−({1})= {q, r} are *b-open  so  that G1 is u.*b-c and l.*b-c and hence *b-c. 

 

(ix) If  G2(p) = {1, 3}, G2(q)={1}, G2(r) = {2} and G2(s)  = {1}  then G2
+({1})= {q, s} 

and G2
−({1})= {p, q, s} are b-open and -open we see that G2 is b-c and -c. However 

G2 is not -c as G2
+({1})={q, s} and G2

−({1})={p, q, s} are not -open . 

 

(x) If G3(p) = {2, 3}, G3(q)={1}, G3(r) ={1} and G3(s)  = {1} then G3({1})= {q, r, s}is 

open that implies G3 is u.c. However G3 is not u.b#-c as G3
+({1})= {q, r, s} is not  b#-

open. If  G4(p)={2, 3}, G4(q)={1, 2}, G4(r)={1} and G4(s) ={1} then   G4
+({1})={r, s} 

is b#-open so that G4 is u.b#.c. However G4 is not u.c as G4
+({1})={r, s} is not open. 

 

(xi) If G5(p) = {2, 3}, G5(q)={1, 2}, G5(r) = {1, 3} and G5(s)  = {1} then  G5
−({1})= {q, 

r, s} is open we see that G5 is l.c . However G5 is not l.b#-c as G5
+ ({1}) = {q, r, s} is 

not b#-open. If G6 (p) = {3}, G6 (q) = {2}, G6(r) = Y and G6(s) = {1, 3} then 

G6
−({1})={r, s} is b#-open we see that G6 is l.b#-c. However G6 is not l.c as G6

− ({1}) 

={r, s} is not open.  

 

(xii) If  F(p) = {2, 3}, F(q)={1}, F(r) = {1, 3} and F(s)  = {1, 2} then  F+({1})={q}  and 

F−({1})={q, r, s} are open we see that F is u.c and l.c so that it is c. However F is 

neither u.b#-c nor l.b#-c as F+ ({1}) = {q} and F− ({1}) = {q, r, s} are not b#-open. If 

G(p) = {3}, G(q)={2, 3}, G(r) ={1} and G(s) = {1}then  G+({1})={r, s}= G−({1}) is b#-

open  we see that G is u.b#-c and l.b#-c so that it is b#-c. However G is not c as G+ ({1}) 

= {r, s} = G− ({1}) is not open. 
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4. Conclusions 

The concepts of strong forms of b-continuous multifunctions namely b#-

multicontinuous and *b-multicontinuous functions are suitable for future extension 

research. 
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