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Abstract

A mathematical model is investigated to analyze the biological inter-
actions between the immune system and SARS-CoV (within host).
Homotopy Perturbation Method is executed to obtain an analytical
solution to the non-linear system of ordinary differential equations.
Graphical illustration to these solutions is also presented. The reli-
ability and the simplicity of the aforementioned method is studied
through the comparison between the numerical and graphical results.
This comparison aids the better understanding of the disease dynam-
ics and also the establishment of probable strategies for the treatment
of COVID-19.
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1 Introduction

The World Health Organization declared the SARS-CoV as a potential threat
to the human society Sharma et al. [2020]Ramadan and Shaib [2019]Ouassou
et al. [2020]. Since then, researchers have been working really hard on various
strategies to control the disease Ahmed et al. [2020]Nie et al. [2020]. A key factor
to control the disease is by studying the disease severity and progression in the
host. However, the quantitative analysis of the growth kinetics of the virus has not
been able to study the severity in the host. It is therefore important to analyze the
interactions within the host between SARS-CoV and the immune system Du and
Yuan [2020]Hernandez-Vargas and Velasco-Hernandez [2020]Wang et al. [2020].
And this can be achieved by developing a mathematical model as they serve as a
tool for characterizing the disease dynamics and in the forecast of severity of the
disease. A mathematical model is therefore developed by S.M.E.K Chowdhury
et.al Chowdhury et al. [2022]in the context of immune surveillance. We study
this model analytically. The goal of our work is to derive a closed form analyti-
cal solution for the COVID-19 model for the susceptible, infected, recovered and
exposed. This is done by implementing the technique of Homotopy Perturbation
Method [HPM] He [1999]He [2004a]He [2004b]He [2004c] which is the cou-
pling of homotopy and perturbation technique. The derived analytical results are
beneficial in two fronts: first, it would contribute to a better comprehension of the
disease dynamics which assist in designing effective treatment strategies and sec-
ondly, would enable the scientist in modifying the COVID-19 model to study the
correlation between various model parameters and their impacts. This approach
in its implementation is novel to this non-linear system of COVID-19 model.

2 Model formulation

The mathematical framework of the developed model is built on the interplay
between the lymphocytes and virus particles within the host. Taking into account
this interaction the model is proposed as Chowdhury et al. [2022]

dE
E = ay — GQE - agEV (1)
dE! 4
dt = CL3EV — blE’Z (2)
d .
VB eV - —eVL (3)
dt
dN
— =d, — dyN 4
” 11— da 4)
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Parameters Physical Meaning
ay Regenration rate of epithelial cells
as Rate at which epithelial cells die
as Rate of infection of epithelial cells
by Rate at which the infected epithelial cells die
1 Production rate of virus from infected epithelial cells
Co Rate at which the virus dies
el Rate of proliferation of T-lymphocytes
€2 Rate at which the T-lymphocytes die
€3 Regeneration rate of T-lymphocytes
C3 Rate at which the Natural Killer cells kills the virus
dy External influx rate of Natural Killer cells
do Rate at which the Natural Killer cells die
Cy Rate at which the T-lymphocytes kills the virus
n Half saturation constant of T-lymphocytes

Table 1: Nomenclature

i—f:%—eﬂ/—l—eg ®)
Where denotes the count of susceptible epithelial cells E(t) , infected epithelial
cells E*(t), viral load V' (¢) , natural killer cells N (¢) and T-lymphocytes L(t) re-
spectively. The production rate of the virus is c¢; where as the infection rate is
denoted by a3 . the natural death rate of susceptible epithelial cells, infected ep-
ithelial cells, viral load , natural killer cells and T-lymphocytes are as, by1,c2,ds,e—2
respectively. a; denotes the regeneration rate of the epithelial cells. The degener-
ation of virus particles occur when they are interacted with natural killer cells and
T-lymphocytes at the rate d; and 43 respectively. The NK cell’s constant external
source is denoted as as . refers to the T-lymphocytes natural recruitment rate c, .
In the presence of virus particles, the T-lymphocytes proliferate at a rate n.

3 Homotopy perturbation method

Epidemiological modeling of the diseases using nonlinear dynamical equa-
tions gives deeper insights into the behavioral patterns and the transmission dy-
namics of the disease. As solutions to these non-linear problems are a bit more
complex, a substantial amount of work has been dedicated by researchers in de-
veloping a solution method to these models. Such methods include ADM , VIM ,
HAM , HPM He [1999]He [2004c]He [2005]Abbasbandy [2006]Rafei and Ganji
[2006]Y1ldirim and Ozis [2007]Sivasamy and Kumar [2021] etc. In this paper,
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we execute HPM in finding an analytical solution to the COVID-19 model. The
advantage of HPM over other method is its ability to reduce a complex non-linear
problem into a serious of linear equation and finding the solution the same.

3.1 Basic idea of homotopy perturbtion method [HPM]

Consider the following function
Do(u) — f(r) = 0,reQ (6)
with the boundary conditions as

ou
B,(u, %) =0,rel’ (7)

Where Dy is a general differential operator, By is a boundary operator, f(r) is a
known analytical function and I" is the boundary of the domain €2 . In general, the
operator [y can be divided into a linear part L and a non-linear part N. We can
rewrite the eqn (6) as

L(u) + N(u) = f(r) = 0 ®)

We now construct a homotopy as v(r,p) :— Q x [0,1] x R by the homotopy
technique which statisfies

H(v,p) = (1 = p)[L(v) — L(vo)] + p[Do — f(r)] = 0 )
H(v,p) = L(v) = L(vo) + p[N(v) — f(r)] = 0 (10)

Here p is the embedding parameter and belongs to the interval [0, 1] and the initial
approximation of eqn.(6) is uy which satisfies the boundary condition. Now,eqn
(9) and (10) leads to

H(v,0) = L(v) — L(ug) =0 (11)

H(v,1) =Dy — f(r)=0 (12)

Setting p=0 makes the eqns. (9) and (10) as linear and seeting p=1 makes them
non-linear.. This process is presented as L(v) — L(ug) = 0to Dy — f(r) = 0.
We use p, the embedding parameter as a small parameter and assume that the
solutions of eqns. (9) and (10) can be written as a power series in p:

v =1y + puy —l—p2112+... (13)
Fixing p=1 leads to the approximation of eqn (6) as
v = vy + pvy + pPug + ... (14)

This is the basic idea of the HPM.
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4 Analytical solution to the COVID-19 model using
homotopy perturbation method

dF dE
(1—p) <E:a1—a2E>—|—p(E:a1—a2E—a3EV> =0 (15)
dE' 7; dE i
(1_p)<dt +b1E>_p((dt —agEV—blE>— (16)
d d .
(1 — p) _V -+ CQV —|—p (-v = CleZ — CQV — —03VL =0 (17)
dt dt
dL dL e 1 LV
( p)(dt+€2 63)+p(<dt V) €2 +€3) 0 (18)

Supposing the approximate solutions of Eq. (1-5) have the form

E = Ey+ pE, +p*Ey + ... (19)
E'= E\+pEl + p*Es + ... (20)
V =Vo+pVi+pVo+ .. Q1)
L=1Ly+pLi +p?Ly+ ... (22)

Substituting the Eq. (15-18) respectively into Eq. (1-5)

1—p) (d(Eo +pE1d~tF P*Ey + ...)
(d(E0 +pEy + p?Ey + ...)

b dt
+as(Ey + pEL + p*Ey +..) Vo +pVi +p*Va +...) =0 (23)

—ay + ay(Ey + pEy + p*Ey + )) +

— a + CLQ(EO —I—pEl +p2E2 —f- )

d(ES + pE! 4+ p?E% + ...
(1 _p) ( ( 0 1dt 2 )
d(Ey + pE} + p*Ey + ...)

b dt

+ by (B + pE} + p*EYy + )) +

—a3(Ey + pEr + p* By + .. ) (Vo + pVi + p*Va + ...

— b (B +pEl+p*EL+..) =0 (24)
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_ 2
(1_p)(d(V—%—l—p£+pVg+...)
d(V =Vo+pVi +p*Vo + ...)
P ( i
—o(V=Vo+pVi +p* Vo +..)
—es(V=Vo+pVi +p Va4 . ) Lo+ pLy + p* Lo+ ...) =0 (25)

+co(V=Vy+pV3 +p2V2+...)> +

—c(Ey+ pE + p*FEy + ...)

2
(1-p) (d(LO —I—led—lt—p Lo+ ...)
dL  e(Lo+pLy +p°Lo + ..) (Vo + pVi + p*Va + ...)
p((E_ (n+ (Vo+pVi+p2Va+...))
—ey(Lo+pLy +p*Ly+...) +e3 =0 (26)

+ eo(Lo + pLy +p*Ly + ) = 63) +

Equating the terms of Eq (23-26) with the identical powers of p, we obtain

dE
P =2t aF—a; =0 27)
dt
dE! .
Pt B =0 (28)
AV,
pO:d—;Jrc%:o (29)
dL
po:d—to—i—egLo—e;g:O (30)
dE
_dtl +ay By + askogVy =0 €1y
dEi .
dtl —az3EgVo + b Ef =0 (32)
av; 4
d—tl — B — Vi 4 esVoLo = 0 (33)
dL €1LOVE)
— 00 L e L =0 34
& 1V + el (34)

Number of susceptible epithelial cells are given by

— . a1/ p(—az2tc2)t
aza Vet as(E; ag)Vze( )

Blt)=2 1+ (B, — Dyeoat —

a9 as as(as — ) Co
asa, Vie™®t  az(E; — &) Vet
— (35)
a2(a2 - 62) (&)
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Infected epithelial cells are given by

— a —ag—co)t
aza, Ve~ 2t a3<Ei_é)‘/i€( 2=c2)

Bi(t) = B(t)eh +

ag(bl — CQ) b1 — g — Co
asa; Vie "t a3(E; — §1)Vie™™! 36)
a2(61 — CQ) b1 — a9 — Cy

Viral load cells are given by

Ei —bit
V(t) = Vi(t)e ot + 220
Cgbl
+ (C3d1V¢ 0463‘/1‘)25 —eat | c3(Nj — §-)Viel~ (@areat
- e
do €2 do
e Ee—c2t c3(N; — ;’—;)Vge(*@)t
02(51 - 02) do
C Nz — 4 Lie(_(e2+cz)t C Nz — 4 Lie(_@)t
1 3( d2) _ 3( dg) (37)
€2 €2
Natural killer cells are given by
dy di\ i
Nit)=——|N;,— — 2 38
=3~ (M- @8)
T-lymphocytes cells are given by
- ,—cat e i — €3 ‘/;e(f(Z?Jre?)t
L(t) = & 4 (L, B)een y _Ca1Vic _allim )
€9 €9 es(n+ V) (—ca + €2) ca(n+V;)
‘/; —eat e Lz — 2 ‘/7:6(_32+52)t
B €zev;e i 1( 2) (39)
es(n 4+ Vi)(—co + e2) co(n+V;)

5 Numerical simulation

An analytical expression for the time-dependent non-linear COVID-19 model
is derived by executing the method of Homotopy Perturbation for the equations
(1-6). The numerical solutions to these equations are obtained using MATLAB
software. In order to check the efficiency of HPM in solving the COVID-19
model, comparison between the numerical and analytical results are carried out
which is illustrated in the figures 1-12.
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Figure 1: Illustration of numerical and analytical results for the populations of
susceptible epithelial cells , infected epithelial cells , Viral Load , Natural Killer
Cells and T-lymphocytes against time t.
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Figure 2: Illustration of analytical and graphical results for the population of sus-
ceptible against time t.
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Figure 3: Illustration of analytical and graphical results for the population of sus-

ceptible against time t.
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Figure 4: Illustration of analytical and graphical results for the population of sus-
ceptible against time t.
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Figure 5: Illustration of analytical and graphical results for the population of sus-
ceptible against time t.
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Figure 6: Illustration of analytical and graphical results for the population of in-
fected epithelial against time t.
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Figure 7: Illustration of analytical and graphical results for the population of in-
fected epithelial against time t.
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Figure 8: Illustration of analytical and graphical results for the population of nat-
ural killer cells against time t.
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Figure 9: Illustration of analytical and graphical results for the population of nat-
ural killer cells against time t.
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Figure 10: Illustration of analytical and graphical results for the population of T-
lymphocytes against time t.

189



Theoretical analysis on the growth kinetics of SARS-CoV (within host)

20.2 . . . - . . . . .
€1=0.0047,
20 €:=0.0698,
19.8 €1=0.0041,
€:=0.0796,

19.6 n=0.1
e e1=0.0045,
g %4 e,=0.0840, 1
g
* 92
3
2 19}
g
= g3
H

86 e1=0.0146, 2=0.02,

: c1=5.36, Vi=0.061, SRR
L=20 e
168.4 O
1822 \ \ \ . . . . \ ]
01 €2 03 04 05 06 0T 08 09 1
time t

Figure 11: Illustration of analytical and graphical results for the population of T-

lymphocytes against time t.
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Figure 12: Illustration of analytical and graphical results for the population of T-
lymphocytes against time t.
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5.1 Results and discussion

Figure 1 illustrates the comparison between the analytical and numerical re-
sults for the populations of susceptible epithelial cells , infected epithelial cells
, Viral Load , Natural Killer Cells and T-lymphocytes against time t for the pa-
rameter values n = 0.1,d; = 5,a; = 10,ay = 0.02,a3 = 0.10,b; = 0.10,¢; =
0.24,c9 = 5.36,c3 = 0.231, ¢4 = 0.431,e; = 0.0041, e2 = 0.0796, e5 = 0.0146, dy =
0.02. Figure 2-4 presents the plot of susceptible epithelial cells against time t.
Figure 5-7 presents the plot of infected epithelial cells against time t. Figure 8-9
indicated the plot of Natural Killer Cells against time t. Figure 10-12 represents
the plot of T-lymphocytes against time t. Figure 2 depicts that the ratio of suscep-
tible cells increases with time as the regeneration rate increases. Figure 3 indi-
cates that the growth of epithelial cells is exponential when the rate of infection is
higher. Figure 4 presents that even when the death of the infected cells is higher
the growth of susceptible cells increases as there is an increase in the production
rate of infected cells. Figure 5 depicts that the there is a steady decline in the rate
of infected cells as the death rate of the infected cells increases. Figure 6 presents
that the rate of growth of infected cells decreases when the rate of infection of the
epithelial cells is lower and also a steady decline in the death rate of infected ep-
ithelial cells. Figure 7 indicates that the growth rate of the infected epithelial cells
also depends on the death rate of the virus. Figure 8 and 9 represents that rate of
natural killer cells increases in spite of the infection when there is an increase in
external influx. Figure 10-12 presents that proliferation rate, regeneration are and
the death rate of the T-lymphocytes has an impact on the growth of T-lymphocytes.

6 Conclusions

A theoretical model outling the interactions between the SARS-Cov and the
immune system within the host has been investigated by combining the functions
of NK cells and T-lymphocytes. Homotopy Perturbation method is executed to
solve the non-linear equations and a closed form analytical solution is obtained..
Graphical illustration of the analyical and numerical solution is performed. A
sound agreement between these results is noted. This comparison shows that HPM
is an effective approach for solving such models.
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