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KALMAN FILTERS AND ARMA MODELS 
 

Aniello FEDULLO1 
 

 
Abstract. The Kalman filter is the celebrated algorithm giving a recursive 
solution of the prediction problem for time series. After a quite general 
formulation of the prediction problem, the contributions of its solution by the 
great mathematicians Kolmogorov and Wiener are shorthly recalled and it is 
showed as Kalman filter furnishes the optimal predictor, in the sense of least 
squares, for processes which satisfy the linear models with a finite number of 
parameters, that are the ARMA models.      
 
 
1. Introduction: Time Series 
 
A time series, in our study, is considered like a finite part (a sample) of a 
single realization of a stochastic process. The fundamental problem of the 
anaysis of the time series is the following: given a time series, infer, al least 
in part, the characteristics of the process. Remember that, in general, a 
stochastic process is characterized by the joint distributions of all the finite 
sub-families of its random variables. If there is no other information known 
on the process, or if no other hypothesis is made about it, the problem is 
unsolvable or perhaps hill-posed. Conversely, if we limit ourselves to 
particular families of processes, the above-mentioned statistical inference is 
possible. In particular this happens for weak (second order) stationary, 
ergodic, invertible and with a Gaussian residual processes (see Papoulis 
1965). In the following, unless otherwise indicated, we will consider only 
such processes. 
 
 
2. The prediction problem 
 
The information on the process inferred from the time series allows to 
resolve problems particularly important for applications, such as those of 
prediction, filtration and control. In the present work we will concentrate our 
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attention on the first of the three. The problem of prediction is to estimate a 
future value X(t+m) (m>0) of a time series whose past values X(t), X(t-1) , 

…, X(t-n) are known. The estimation )(ˆ mtX + of X(t+m) will be a suitable 
function of these latter values which minimizes 
 

M(m):=E[( X̂ (t+m)-X(t+m))2]. 
 
It can be shown that in the absence of imposed constraints on the form of the 
aforementioned function, the preceding minimum problem has the solution 
given by the conditional expectation 
 

E[X(t+m)X(t),X(t-1),…,X(t-n)]. 
 
The calculation of the latter, in general, requires the knowledge of the joint 
distribution of the random variables involved, that is a very detailed 
knowledge of the process, one rather difficult to arrive at. Observe that if the 
joint distributions are normal then the conditional expectation is linear, for 
which the so called predictor is written  
 

X̂ (t+m)=a0X(t) + a1X(t-1)+ … + anX(t-n) 
 
where a0, …, an are constants (dependent only on m and n) to determine. 
This is done in such a way to minimize M and in order to do so it suffices to 
know the autocovariance. If the process is Gaussian then the linear predictor 
(2) is optimal, in the sense of least squares. Otherwise the conditional 
expectation is not in general linear and, as said, we could not know how to 
calculate it easily. Nevertheless, in such a case, we can restrict to the afore 
mentioned linear predictors and search among them for those which are 
optimal. The originators of the researches on linear predictors were 
Kolmogorov and Wiener in the early '40s. The publication of their works, 
however, was held up until 1949 because of military concerns (automatic 
poynting of anti-aircraft weapons and fire control). It became clear then that 
Kolmogorov and Wiener had resolved independently the same problem, 
using different techniques. They, as it was understood afterwards, related to 
different choises of the coordinates related up to the same geometric problem 
in Hilbert space. Furthemore, both the authors also studied the semi-infinite 
version of the problem (n → ∞), for the major simplicity of the mathematical 
treatment. That, nevertheless, can be used as a good approximation of the 
real case where n is large but finite. 
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3. Recursive Algorithms 
 
Kolmogorov's and Wiener's approaches to the problem of prediction has the 
advantage of furnishing an explicit expression of X(t+m), but a notable 
disadvantage is that it must be recalculated ex novo for different values, also 
consecutive, of m. This carries enormous complications in the computations, 
especially for real time applications. Such problems were overcome by the 
development of recursive algorithms. These calculate the estimation at time 
n+1 by means of a simple correction of that at time n, with a notable saving 
of memory and of computation time. The two most famous recursive 
approaches are the one by Box and Jenkins and the one by Kalman. Both 
conducted to the optimal linear predictor in the sense of least squares, and 
both are applied only to the processes which satisfy the linear models with a 
finite number of parameters. 
 
 
4. Linear Models with a Finite Numbers of Parameters 
 

a) ARMA models 
 
Let X(t) be a stochastic process which satisfies the properties indicated at the 
end of section 3 and which we assume, without loss of generality, has mean 
0. Let h(ω) be the spectral density of X(t); that is a non negative real function 
of ω which we will also assume to be a rational function of exp (i ω ). For 
the spectral factorization theorem there exist the polynomials A e C  such 
that 
 

h(ω) = cost 
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We observe that A(w) = 0 if and only if  A(1/w)=0 , by which, in virtue of 
the fundamental theorem of algebra, we can choose  A  and  C  in such a way 
that their zeros are all in modulus greater than 1. 
Then the process  X(t)  can be written as 
 

X(t)=
)(
)(

β
β

C
A

e(t) 

 
where  β  is the shift operator defined as 
 

βX(t):= X(t-1)     for every  t 
 
and  e(t)  is a white noise, that is a noise made up of random variables with 
mean 0, variance  σ2  and pairwise uncorrelated. In fact it is easy to verify 
that the right hand of (4) has the spectrum (3). Multiplying both sides of (4) 
by  C  one has 
 

C(β)X(t)=A(β)e(t) 
 
called autoregressive moving average or ARMA model. 
 
 

b) Models with State Space 
 
They are described by equations of the type 
 

s(t+1)=Fs(t)+Gu(t)+w(t),                                        X(t)=Hs(t)+e(t) 
 
where  s(t)  is a  n  dimensional vector called state, and  F, G, H  are matrices 
of adequate dimensions,  u(t)  is the input (which is considered relevant in 
the problems of control; here we may assume to be 0),  w(t)  is the so-called 
noise of process,  made up of random variables pairwise uncorrelated with 
covariance matrix  E[w(t) w~ ( s) ]= δts R1, e(t)  is the so-called noise of 
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mausure, also made up of random variables pairwise uncorrelated, with 
covariance matrix  E[e(t) e~ (s)] = δts R2 ;  between the two noises there is in 
general some correlation given by  E[w(t) e~ (s)] = δts R12 . Beyond this, one 
assumes that  s(0) , the initial state, is a random vector independent of the 
future terms of noise, with mean  s  and covariance matrix  ∏0 . Observe that 
the model described above is general enough to include the multivariate case 
in which  X(t)  has a dimension greater than 1. Even if it is possible to 
associate such a model to an ARMA model (eventually vectorial) and vice 
versa, the use of the state space is revealed more versatile and powerfull.  
 
 
 5. The Kalman Filter Algorithm 
 
Let return to the recursive algorithms of the preceeding section 3. Box and 
Jenkins approach can be regarded as a special case of the most general and 
most powerfull algorithm of the Kalman filter(cfr. Caines 1972). Kalman's 
algorithm, based on the description of the linear model by means of the state 
space, lends itself to be extended to multivariate processes, with little 
additional strength, differently from Box and Jenkins approach. 
Consequently in the following we only illustrate Kalman's algorithm. We are 
considering for the model (6) the problem of estimating the state vector, 
given  X(t)  (and possibly  u(t) ). Let 
 

ŝ (t):=E[s(t)X(0),u(0), …,X(t-1), u(t-1)]. 
 
In the case the initial state and the involved noises are Gaussian, the 
preceding estimation is obtained by the following recursive procedure 
(Kalman filter):  
 

ŝ  (0):=s(0) 
ŝ  (t+1) = F ŝ  (t)+Gu(t)+K(t)[X(t)-H ŝ (t)]. 
 

The matrix  K(t)  is called Kalman gain and is given by 
 

K(t):=[FP(t) H~ + 12
~R ][ HP(t) H~ +R2]-1 

 
where the matrix  P(t)  is a solution of the Riccati equation 
 

P(0):=Π0 
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P(t+1)=FP(t) F~ +R1-[FP(t) H~ + 12
~R ][HP(t) H~ +R2]-1[FP(t) H~ + 12

~R ]. 
 

In general the algorithm, when the disturbances are not Gaussian, does not 
furnish an estimation coinciding with the conditional expectation (7); but a 
minimum covariance estimation among those which are linear in  X  and  u . 
Finally we can note that Kalman filter works also in the most general cases 
where all matrices are time-dependent; but a detailed study of this would be 
beyond the imposed limits of the present paper. 
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