CLOSURE SYSTEMS AND CLOSURE HYPERGROUPS

Domenico Lenzi*

SUNTO - Dato un sistema di chiusura (S,\mathfrak{T}) , sull'insieme S si può definire un'iperoperazione · ponendo, per ogni $a,b \in S$, $a \cdot b = \langle a,b \rangle_{\mathfrak{T}}$, dove $\langle a,b \rangle_{\mathfrak{T}}$ è il minimo elemento di \mathfrak{T} a cui appartengono sia a che b. In questo lavoro noi studiamo questo tipo di iperoperazione, evidenziando diverse proprietà significative. Nei casi in cui l'iperoperazione in questione è associativa essa attribuisce ad S una struttura di ipergruppo, che noi chiamiamo ipergruppo chiusura.

ABSTRACT - If (S,\mathfrak{C}) is a closure system, then one can define on the set S a hyperoperation \cdot by setting, for any $a,b \in S$, $a \cdot b := \langle a,b \rangle_{\mathfrak{C}}$, where $\langle a,b \rangle_{\mathfrak{C}}$ is the minimum element of \mathfrak{C} containing a and b. In this paper we study such a type of hyperoperations and prove several interesting properties. Whenever the above hyperoperation is associative, then it gives S a hypergroup structure that we shall call closure hypergroup.

1. PRELIMINARIES AND RECALLS

A function $\cdot: SxS \to \mathcal{P}(S)$ is said a partial (binary) hyperoperation on S. If $x\cdot y \neq \emptyset$ ($x\cdot y := \cdot (x,y)$) for any $x,y \in S$, then one speaks of hyperoperation. For any $X,Y \subseteq S$ one can set $X\cdot Y := \bigcup_{x\in X,y\in Y} x\cdot y$ (hence $\emptyset\cdot Y = \emptyset = X\cdot \emptyset$). Thus one has also a binary operation on $\mathcal{P}(S)$.

If $a \in S$ and $B \subseteq S$, then one usually writes respectively $a \cdot B$ and $B \cdot a$ instead of $\{a\} \cdot B$ and $B \cdot \{a\}$. It is obvious that $\bigcup_{x \in X} x \cdot Y = X \cdot Y = \bigcup_{y \in Y} X \cdot y$.

It is easy to verify that a partial hyperoperation on S is associative or commutative - with an obvious meaning of these terms - if and only if the corresponding operation on P(S) is associative or commutative.

^{*} Dipartimento di Matematica dell'Università. 73100 Lecce (Italy).

Now we recall that a closure system on a set S is a subset C of the power set P(S) which is closed under the arbitrary set intersection (in particular, $S = \cap \emptyset \in C$). One says also that (S,C) is a closure system.

For any $X \subseteq S$ one can consider the so called closure of X under \mathbb{C} , given by the intersection of the elements of \mathbb{C} including X, and represented by $\langle X \rangle_{\mathbb{C}}$. If x_1, x_2, \ldots, x_n are elements of S, then one writes $\langle x_1, x_2, \ldots, x_n \rangle_{\mathbb{C}}$ instead of $\langle \{x_1, x_2, \ldots, x_n\} \rangle_{\mathbb{C}}$ and says that $\langle x_1, x_2, \ldots, x_n \rangle_{\mathbb{C}}$ is finitely generated. The elements of \mathbb{C} of the type $\langle x \rangle_{\mathbb{C}}$ are said principal; moreover, if every element of \mathbb{C} is principal, then (S, \mathbb{C}) is said principal.

2. BINARY CLOSURE SYSTEMS

Through a closure system (S,\mathfrak{T}) one can define a commutative (binary) hyperoperation \cdot on S by setting, for any $a,b \in S$, $a \cdot b := \langle a,b \rangle_{\mathfrak{T}}$. We shall say that \cdot is a (binary) closure hyperoperation.

Remark 1. If • is the above hyperoperation, since $a \cdot b = \langle a,b \rangle_{\mathbb{C}}$ and $a \cdot b \subseteq \langle a \rangle_{\mathbb{C}} \cdot b \subseteq \langle a \rangle_{\mathbb{C}} \cdot \langle b \rangle_{\mathbb{C}} \subseteq \langle a,b \rangle_{\mathbb{C}}$ for any $a,b \in S$, then one has:

1) $a \cdot b = \langle a \rangle_{c} \cdot b = a \cdot \langle b \rangle_{c} = \langle a \rangle_{c} \cdot \langle b \rangle_{c}$.

Consequently, if $a \in S$ and $B \subseteq S$, then one has:

2) $\mathbf{a} \cdot \mathbf{B} = \bigcup_{\mathbf{b} \in \mathbf{B}} \mathbf{a} \cdot \mathbf{b} = \bigcup_{\mathbf{b} \in \mathbf{B}} \langle \mathbf{a} \rangle_{\mathfrak{T}} \cdot \mathbf{b} = \langle \mathbf{a} \rangle_{\mathfrak{T}} \cdot \mathbf{B} \ (= \mathbf{B} \cdot \langle \mathbf{a} \rangle_{\mathfrak{T}})$. In particular, if \cdot is an associative hyperoperation and $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbf{S}$, with $\mathbf{n} > 2$, then $\mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \dots \cdot \mathbf{x}_n = \langle \mathbf{x}_1 \rangle_{\mathfrak{T}} \cdot \langle \mathbf{x}_2 \rangle_{\mathfrak{T}} \cdot \dots \cdot \langle \mathbf{x}_n \rangle_{\mathfrak{T}}$.

Now, if $\mathfrak C$ is a closure system on S, let $\mathfrak C_2$ be the set of the parts X of S which are closed under the hyperoperation 'associated to $\mathfrak C$ (i.e.: $X \cdot X \subseteq X$). Thus we shall say that the set $\mathfrak C_2$ is a binary (or linear) closure system on S and call binary subspace (or pseudo-linear subspace) of $(S,\mathfrak C)$ every element of $\mathfrak C_2$. Obviously, \emptyset is a binary subspace of $(S,\mathfrak C)$; moreover $\mathfrak C \subseteq \mathfrak C_2$. Now we recall that a closure system $(S,\mathfrak C)$ is said algebraic if, for any subset X of S and for any $X \in \langle X \rangle_{\mathfrak C}$, there is a finite subset F of X such that $X \in \langle F \rangle_{\mathfrak C}$. It is known that $(S,\mathfrak C)$ is algebraic if and only if $\mathfrak C$ is closed under the set union of the elements of any subset of $\mathfrak C$, which is upper directed (in particular, which is a chain) with respect to \subseteq . Therefore one can easily verify that $\mathfrak C_2$ is an algebraic closure system.

If + is a partial hyperoperation on S, then it is clear that the set of the parts of S which are closed under + is a binary closure system on S.

Remark 2. Let (S, \mathbb{C}) and (S, \mathbb{C}') be closure systems. If $\langle x, y \rangle_{\mathbb{C}'} \subseteq \langle x, y \rangle_{\mathbb{C}}$ for any $x, y \in S$, then $\mathbb{C}_2 \subseteq \mathbb{C}'_2$. Consequently, if $\mathbb{C} \subseteq \mathbb{C}'$, then $\mathbb{C}_2 \subseteq \mathbb{C}'_2$.

Remark 3. 1) If $x,y \in S$, then $\langle x,y \rangle_{{}^{\circ}_{2}} \subseteq \langle x,y \rangle_{{}^{\circ}_{3}}$. Moreover by definition of ${}^{\circ}_{2}$, since $x,y \in \langle x,y \rangle_{{}^{\circ}_{2}}$, one has $\langle x,y \rangle_{{}^{\circ}_{3}} \subseteq \langle x,y \rangle_{{}^{\circ}_{2}}$. As a consequence one gets:

- (a) $\langle x, y \rangle_{\mathfrak{T}} = \langle x, y \rangle_{\mathfrak{T}_2}$ (in particular, $\langle x \rangle_{\mathfrak{T}} = \langle x \rangle_{\mathfrak{T}_2}$). Therefore \mathfrak{T} and \mathfrak{T}_2 define the same binary closure hyperoperation, and hence $\mathfrak{T}_2 = (\mathfrak{T}_2)_2$.
- (b) Since $\mathcal{C}_2 = (\mathcal{C}_2)_2$, \mathcal{C} is a binary closure system if and only if $\mathcal{C} = \mathcal{C}_2$.
- 2) \mathcal{C}_2 is the lower binary closure system on S including \mathcal{C} . Indeed, if \mathcal{C} is a binary closure system and $\mathcal{C} \subseteq \mathcal{C}$, then $\mathcal{C}_2 \subseteq \mathcal{C}_2 = \mathcal{C}$.
- 3) If X is an element of \mathfrak{C}_2 , then $X \subseteq X \cdot X$, and hence $X = X \cdot X$.

Theorem 4. If (S, \mathfrak{T}) is a binary closure system, let C be a fixed element of \mathfrak{T} , and let $\mathfrak{T}' = \{Y \in \mathfrak{T} \mid Y = \emptyset \text{ or } C \subseteq Y\}$. Then (S, \mathfrak{T}') is a binary closure system.

Proof. It is obvious that (S, \mathfrak{T}') is a closure system. Thus, by Remark 3 (see (b) of property 1)), it is sufficient to prove that $\mathfrak{T}'_2 \subseteq \mathfrak{T}'$. To this end, let X be a non empty element of \mathfrak{T}'_2 . Thus, for every $x, y \in X$, one has $C \subseteq \langle x, y \rangle_{\mathfrak{T}'} \subseteq X$ and $\langle x, y \rangle_{\mathfrak{T}} \subseteq \langle x, y \rangle_{\mathfrak{T}'} \subseteq X$. Therefore $X \in \mathfrak{T}'$.

2. PARA-NORMAL CLOSURE SYSTEMS

Now, in order to extend some interesting properties of the normal subgroups of a group, in this paragraph let us assume that $\mathfrak N$ is a binary closure system on S, + is a hyperoperation on S and $\mathfrak T$ is the closure system of the subsets of S closed under +. Thus we shall indicate respectively with $\bullet_{\mathfrak N}$ and $\bullet_{\mathfrak T}$ the closure hyperoperations associated to $\mathfrak N$, and to $\mathfrak T$.

We shall say that (S, \mathbb{N}) is para-normal with respect to + whenever the following condition holds:

(°)
$$\forall x,y \in S: \langle x \rangle_{\eta} + \langle y \rangle_{\eta} = \langle x,y \rangle_{\eta}$$
.

Hence, since if $x,y \in S$ we have $x+y \subseteq \langle x \rangle_{\eta} + \langle y \rangle_{\eta} = \langle x, y \rangle_{\eta} = x_{\eta}^*y$, then the following property holds:

(°°)
$$\forall x,y \in S: x+y \subseteq x \cdot_{\pi} y.$$

And now let us assume that the binary closure system (S, \mathbb{R}) is para-normal with respect to the hyperoperation +. Then we have the following theorems.

Theorem 5. for any $A, B \in \mathbb{N}$ one has:

(*)
$$A+B = A \cdot_{\alpha} B = A \cdot_{\alpha} B.$$

Furthermore N is included in C.

Proof. Preliminarily let us remark that $A+B = A \cdot_{s_i} B$. In fact the following equalities are trivial:

$$A+B=U_{a\in A,b\in B}_{\mathfrak{N}}+_{\mathfrak{N}}=U_{a\in A,b\in B}_{\mathfrak{N}}=$$

$$=U_{a\in A,b\in B}a\cdot_{\mathfrak{N}}b=A\cdot_{\mathfrak{N}}B.$$

In particular, one has $A+A=A_{\mathfrak{R}}^{\bullet}A=A$. Thus \mathfrak{R} is included in \mathfrak{T} and hence $A_{\mathfrak{T}}^{\bullet}B\subseteq A_{\mathfrak{R}}^{\bullet}B$. As a consequence - since it is obvious that $A+B\subseteq A_{\mathfrak{T}}^{\bullet}B$ - we get $A+B=A_{\mathfrak{T}}^{\bullet}B=A_{\mathfrak{R}}^{\bullet}B$.

Theorem 6. Let $A \in \mathfrak{T}$ be a union of elements of \mathfrak{N} . Then $A \in \mathfrak{N}^{-1}$.

Proof. It is sufficient to prove that $A \cdot \eta$, $A \subseteq A$. Indeed one has:

$$\begin{aligned} \mathsf{A} \cdot_{\mathfrak{N}} \mathsf{A} &\subseteq \mathsf{U}_{\mathsf{a}, \mathsf{a}' \in \mathsf{A}} < \mathsf{a} >_{\mathfrak{N}} \cdot_{\mathfrak{n}} < \mathsf{a}' >_{\mathfrak{N}} = \mathsf{U}_{\mathsf{a}, \mathsf{a}' \in \mathsf{A}} < \mathsf{a}, \mathsf{a}' >_{\mathfrak{T}} = \\ &= \mathsf{U}_{\mathsf{a}, \mathsf{a}' \in \mathsf{A}} < \mathsf{a} >_{\mathfrak{N}} + < \mathsf{a}' >_{\mathfrak{N}} \subseteq \mathsf{A} + \mathsf{A} \subseteq \mathsf{A}. \end{aligned}$$

¹ See the case of a subgroup which is a union of normal subgroups.

Remark 7. Let us point out that if the binary closure system (S, \mathfrak{N}) is para-normal with respect to an associative hyperoperation + then, as in the case of normal subgroups of a group, also $_{\mathfrak{N}}$ is associative. Indeed, by Remark 1 and by Theorem 5, for any a, b, c \in S we have:

$$\begin{aligned} &a^{\bullet}{}_{\mathfrak{N}}(b^{\bullet}{}_{\mathfrak{N}}c) = < a>_{\mathfrak{N}}{}^{\bullet}{}_{\mathfrak{N}}(< b, c>_{\mathfrak{N}}) = < a>_{\mathfrak{N}}{}^{\bullet}{}_{\mathfrak{N}}(< b>_{\mathfrak{N}}{}^{\bullet}{}_{\mathfrak{N}}) = \\ &= (< a>_{\mathfrak{N}}{}^{\bullet}{}_{\mathfrak{N}}(< b>_{\mathfrak{N}}{}^{\bullet}{}_{\mathfrak{N}}(< c>_{\mathfrak{N}}{}^{\bullet}{}_{\mathfrak{N}}(< c>_{\mathfrak{N}}{}_{\mathfrak{N}}(< c>_{\mathfrak{N}}(< c>_{\mathfrak{N}}{}_{\mathfrak{N}}(< c>_{\mathfrak{N}}(< c)_{\mathfrak{N}}(< c>_{\mathfrak{N}}(< c>_{\mathfrak{N}}(< c)_{\mathfrak{N}(< c>_{\mathfrak{N}}(< c)_{\mathfrak{N}}(< c)_{\mathfrak{N}}(< c)_{\mathfrak{N}}(< c)_{\mathfrak{N}}(< c)_{\mathfrak{N}}(< c)_{\mathfrak{N}(< c)_{\mathfrak{N}}(< c)_{\mathfrak{N}(< c)}(< c)_{\mathfrak{N}(< c)_{\mathfrak{N}(< c)_{\mathfrak{N}(< c)}(< c)_{\mathfrak{N}(< c)_{\mathfrak{N}(< c)_{\mathfrak{N}(< c)_{\mathfrak{N}(< c)}(< c)_{\mathfrak{N}(< c)_{\mathfrak{N}(< c)_{$$

In the meantime \cdot_{g} can be not associative, as in most groups (S, +) in which + is a non commutative operation.

3. ASSOCIATIVE CLOSURE SYSTEMS

Now let • be the hyperoperation associated to a given closure system (S, \mathcal{C}) ; hence, for any $x, y \in S$, x and y belong to the hyperproduct $x \cdot y$. As a consequence, if • is associative, then • gives S a structure of commutative hypergroup (in the sense of [1], p. 8). Therefore we shall say that (S, \mathcal{C}) is associative and (S, \cdot) is a closure hypergroup.

Furthermore, we shall say that (S,\mathfrak{C}) is 3-strong associative if, for any X, Y, $z \in S$, $x \cdot (y \cdot z) = \langle x, y, z \rangle_{\mathfrak{C}} (= z \cdot (x \cdot y) = (x \cdot y) \cdot z)$. In such a case, since $x \cdot (y \cdot z) \subseteq \langle x, y, z \rangle_{\mathfrak{C}_2} \subseteq \langle x, y, z \rangle_{\mathfrak{C}}$, then one has $\langle x, y, z \rangle_{\mathfrak{C}} = \langle x, y, z \rangle_{\mathfrak{C}_2}$.

More generally, given a natural numbers $n \ge 2$, we shall say that (S, \mathbb{G}) is n-strong associative if it is associative and $x_1 \cdot x_2 \cdot ... \cdot x_n = \langle x_1, x_2, ..., x_n \rangle$ for any $x_1, x_2, ..., x_n \in S$. Furthermore, we shall say that (S, \mathbb{G}) is finitely strong associative if it is n-strong associative for any natural numbers $n \ge 2$

Obviously, a closure system (S,\mathfrak{T}) is 2-strong associative if and only if it is associative. Furthermore, if m and n are natural numbers such that $2 \le m < n$ and (S,\mathfrak{T}) is n-strong associative, then (S,\mathfrak{T}) is m-strong associative. In fact, if one set $x_m = x_{m+1} = ... = x_n$, then (see 1) of Remark 1) one gets 2 :

$$x_1 \cdot x_2 \cdot ... \cdot x_{m-1} \cdot x_m = x_1 \cdot x_2 \cdot ... \cdot x_{m-1} \cdot < x_m >_{\mathfrak{C}} =$$

² We recall that $\langle x \rangle_{\overline{C}} \cdot \langle x \rangle_{\overline{C}} = \langle x \rangle_{\overline{C}}$ for any $x \in S$.

$$= x_{1} \cdot x_{2} \cdot \dots \cdot x_{m-1} \cdot \langle x_{m} \rangle_{\sigma} \cdot \langle x_{m+1} \rangle_{\sigma} \cdot \dots \cdot \langle x_{n} \rangle_{\sigma} =$$

$$= x_{1} \cdot x_{2} \cdot \dots \cdot x_{m} \cdot x_{m+1} \cdot \dots \cdot x_{n} = \langle x_{1}, x_{2}, \dots, x_{n} \rangle_{\sigma} =$$

$$= \langle x_{1}, x_{2}, \dots, x_{m} \rangle_{\sigma}.$$

Theorem 8. Let n be a natural number greather than 1. Then a closure system (S, \mathcal{C}) is n-strong associative if and only if the following property holds ³:

$$(*) \forall x_1, x_2, ..., x_n \in S: \langle x_1, x_2, ..., x_n \rangle_{\mathcal{E}} = x_1 \langle x_2, ..., x_n \rangle_{\mathcal{E}}$$

Proof. The assertion is obvious if n = 2 or n = 3. Thus let n > 3. If (S, \mathfrak{T}) is n-strong associative then, since it is also (n-1)-strong associative, we have:

Conversely, let the condition (*) hold. Then it holds also with n replaced by a natural number m such that 2 < m < n. In fact we can set $x_m = x_{m+1} = ... = x_n$. Thus, by setting m = 3, we have that (S, \mathfrak{T}) is associative.

As an immediate consequence, by induction, we get $\langle x_1, x_2, ..., x_n \rangle_{\mathbb{C}} = x_1 \cdot x_2 \cdot ... \cdot x_n$.

Theorem 9. Let (S,\mathfrak{F}) be a closure system and let $a_1, a_2, ..., a_n, b \in S$. If $(a_2, ..., a_n)_{\mathfrak{F}} = (b)_{\mathfrak{F}}$, then $a_1 \cdot (a_2, ..., a_n)_{\mathfrak{F}} = (a_1, a_2, ..., a_n)_{\mathfrak{F}}$.

Proof. Indeed (see 1) of Remark 1), $a_1 < a_2, ..., a_n >_{\mathbb{C}} = a_1 < b >_{\mathbb{C}} = a_1 \cdot b = \langle a_1, b \rangle_{\mathbb{C}} = \langle a_1, a_2, ..., a_n \rangle_{\mathbb{C}}$; whence the thesis.

Remark 10. If the finitely generated and non empty elements of a closure system $\mathfrak T$ are principal, then (by Theorem 6) the condition (*) of Theorem 8 is true for any natural number n, and hence $(S,\mathfrak T)$ is finitely strong associative. In particular, the closure system $\mathfrak I$ of the ideals of a semilattice $(S,\cup)^4$ is a finitely strong associative closure system. In fact one can immediately verify that, for any $x_1, x_2, \ldots, x_n \in S$, the ideal generated by x_1, x_2, \ldots, x_n is equal to $(S, \cup)^4 \in S$.

³ If n = 2 then, by 1) of Remark 1, property (*) is true even if (S, \mathbb{C}) is non associative.

⁴ A semilattice is a structure (S, \cup) , where \cup is an idempotent, commutative and associative binary operation; an ideal is a subset B of S closed under \cup such that, for any $x \in S$ and $x' \in B$, if $x \le x'$ (i.e.: $x \cup x' = x'$), then $x \in B$.

Theorem 11. Let (S, \mathfrak{T}) be an algebraic and associative closure system. Then \mathfrak{T} is finitely strong associative if and only if $\mathfrak{T} \cup \{\emptyset\} = \mathfrak{T}_2$.

Proof. Let (S, \mathcal{C}) be finitely strong associative. Thus, since $\mathcal{C} \cup \{\emptyset\} \subseteq \mathcal{C}_2$, in order to prove that $\mathcal{C} \cup \{\emptyset\} = \mathcal{C}_2$ it is sufficient to verify that if X is a non empty element of \mathcal{C}_2 , then $\langle X \rangle_{\mathcal{C}} = X$ (hence X is also an element of \mathcal{C}_2).

Since $X \subseteq \langle X \rangle_{\mathfrak{T}}$, we only have to verify that $\langle X \rangle_{\mathfrak{T}} \subseteq X$. Thus let $x' \in \langle X \rangle_{\mathfrak{T}}$ and (by the hypothesis that (S,\mathfrak{T}) is algebraic) let us consider x_1 , ..., $x_n \in X$ such that $x' \in \langle x_1, ..., x_n \rangle_{\mathfrak{T}}$. As \mathfrak{T} is finitely strong associative, $\langle x_1, ..., x_n \rangle_{\mathfrak{T}} = x_1 \cdot ... \cdot x_n \subseteq X$, and hence $x' \in X$.

On the contrary, let $\[mathbb{C}\] U \ \{\varnothing\} = \[mathbb{C}\]_2$. Hence $\[mathbb{C}\]$ and $\[mathbb{C}\]_2$ determine the same hyperoperation $\[mathbb{C}\]$; moreover $\[mathbb{C}\]$ x> $\[mathbb{C}\]_2 = \[mathbb{C}\]$ for any non empty subset X of S, hence $\[mathbb{C}\]$ is finitely strong associative if and only if $\[mathbb{C}\]_2$ is finitely strong associative. Thus let us verify that if $x_1, x_2, \ldots, x_n \in S$, then $x_1 \cdot x_2 \cdot \ldots \cdot x_n = \[mathbb{C}\]$, then $x_1 \cdot x_2 \cdot \ldots \cdot x_n = \[mathbb{C}\]$ and $\[mathbb{C}\]$ is finitely strong associative.

Indeed, since $x_1, x_2, \ldots, x_n \in x_1 \cdot x_2 \cdot \ldots \cdot x_n \subseteq \langle x_1, x_2, \ldots, x_n \rangle_{\mathfrak{T}_2}$ and $\langle x_1, x_2, \ldots, x_n \rangle_{\mathfrak{T}_2}$ is the minimum element of \mathfrak{T}_2 containing $\{x_1, x_2, \ldots, x_n\}$, it is sufficient to point out that, by associativity and by commutativity, one has (cf. Remark 1):

$$(x_1 \cdot x_2 \cdot \dots \cdot x_n) \cdot (x_1 \cdot x_2 \cdot \dots \cdot x_n) = x_1 \cdot x_1 \cdot x_2 \cdot x_2 \cdot \dots \cdot x_n \cdot x_n =$$

$$= \langle x_1 \rangle_{\mathfrak{G}_2} \cdot \langle x_2 \rangle_{\mathfrak{G}_2} \cdot \dots \cdot \langle x_n \rangle_{\mathfrak{G}_2} = x_1 \cdot x_2 \cdot \dots \cdot x_n.$$

BIBLIOGRAPHY

1. P.G. Corsini, *Prolegomena of hypergroup theory*, Aviani, Tricesimo (UD; I), 1992.