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CLOSURE SYSTEMS AND
CLOSURE HYPERGROUPS

Domenico Lenzi*

SUNTO - Dato un sistema di chiusura (S,G), sull'insieme S si pud defi-
nire un'iperoperazione + ponendo, per ogni a,b € S, ab=<a,b>g, dove
<a,b> & il minimo elemento di T a cui appartengono sia a che b.

In questo lavoro noi studiamo questo tipo di iperoperazione, evidenziando
diverse proprieta significative. Nei casi in cui l'iperoperazione in questione e
associativa essa attribuisce ad S una struttura di ipergruppo, che noi chia-
miamo ipergruppo chiusura.

ABSTRACT - If (S,©) is a closure system, then one can define on the set
S a hyperoperation * by setting, for any a,beS, ab:=<ab>y, where

<a,b> is the minimum element of T containig @ and b.

In this paper we study such a type of hyperoperations and prove several inte-
resting properties. Whenever the above hyperoperation is associative, then it
gives S a hypergroup structure that we shall call closure hypergroup.

1. PRELIMINARIES AND RECALLS

A function - : SxS — ®(S) is said a partial (binary) hyperoperation on S. If
Xy # @ (X := +(X,y)) for any x,y € S, then one speaks of hyperoperation.
For any X,Y C S one can set XY := Uxex,yﬂmy (hence @-Y = & = X-@).
Thus one has also a binary operation on % (S).

IfaeS and B C S, then one usually writes respectively a-B and B-a instead
of {a}'B and B-{a}. It is obvious that Uxe xY=XY = Uyev)(-y.

It is easy to verify that a partial hyperoperation on S is associative or com-
mutative - with an obvious meaning of these terms - if and only if the corre-

sponding operation on ¥ (S) is associative or commutative.
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Now we recall that a closure system on a set S is a subset T of the power
set ®(8) which is closed under the arbitrary set intersection (in particular,
S =N@ e B). One says also that (S,G) is a closure system.

For any X C S one can consider the so called closure of X under . given by
the intersection of the elements of & including X, and represented by <X >
If X4, Xz, ..., Xy are elements of S, then one writes <X, , X, , ... Xp>p
instead of <{Xy, X5, ..., Xn}>p and says that <X, X,, ..., Xn >z is fi-
nitely generated. The elements of & of the type <X>p are said principal;
moreover, if every element of % is principal, then (S,T ) is said principal.

2. BINARY CLOSURE SYSTEMS

Through a closure system (S,%) one can define a commutative (binary) hy-
peroperation * on S by setting, for any ab € S, a'b :=<ab>,. We

shall say that * is a (binary) closure hyperoperation.

Remark 1. If - is the above hyperoperation, since a-b = <a,b>; and
ab C<a>gz-bC<a>.-<b >z € <a,b>, forany a,b<=S. then one
has:

1) ab=<a>zb=a<bh>, =<a>,<b>;.

Consequently, ifa € S and B C S, then one has:

ticular, if * is an associative hyperoperation and X;, X, ... , X~ £S. with
N> 2, then Xy*Xp® ... *Xp, = <Xy > <Xt <Xy >n
Now, if T is a closure system on S, let G ; be the set of the parts X of S
which are closed under the hyperoperation * associated to G (i.e.: X*X = X).
Thus we shall say that the set B2 is a binary (or linear) closure svstem on S
and call binary subspace (or pseudo-linear subspace) of (S,T) every element
of 2. Obviously, & is a binary subspace of (S,%); moreover G < B35
Now we recall that a closure system (S, ) is said algebraic if, for any subset
X of S and for any X € <X>, there is a finite subset F of X such that
X e<F>, .Itis known that (8,3) is algebraic if and only if T is closed un-

der the set union of the elements of any subset of &, which is upper directed
(in particular, which is a chain) with respect to C. Therefore one can easily

verify that G is an algebraic closure system.
If + is a partial hyperoperation on S, then it is clear that the set of the parts
of S which are closed under + is a binary closure system on S.
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Remark 2. Let (S,C) and (S,C ) be closure systems. If <X, y>z1 C <X,

y>. forany X,y €S, then G2 €T ». Consequently, if @ C 'C', then
B, C Glz.

Remark 3. 1) If X,y € S, then <X,y>g € <X,y >z . Moreover by defi-
nition of G2, since X,Y €<X,y >y, 0ne has <X,y>gz € <x,y>az. As a
consequence one gets:

(a) <X, ¥y>z =<X,Y>g j (in particular, <X>g = <X >Bz)' Therefore
G and ©, define the same binary closure hyperoperation, and hence G, =
= (B2)2.

(b) Since G2 =(B2)2, B is a binary closure system if and only if T = Ca.
2) G, is the lower binary closure system on S including G. Indeed, if G ‘isa
binary closure system and G C %, then G, C TL=0.

3) If X is an element of B2, then X € X-X, and hence X = X*X.

Theorem 4. If (S,%) is a binary closure system, let C be a fixed element
of G, andletG' = {Ye G | Y=2 or C S Y}. Then (S,G) is a binary
closure system.

Proof. It is obvious that (S,%) is a closure system. Thus, by Remark 3
(see (b) of property 1)), it is sufficient to prove that B8,C8.

To this end, let X be a non empty element of ©',. Thus, for every X, Y€X,
one has C S <X,y>g+ € X and <X,y>g € <X,y >5+ © X. Therefore

Xel. .

2. PARA-NORMAL CLOSURE SYSTEMS

Now, in order to extend some interesting properties of the normal subgroups
of a group, in this paragraph let us assume that 7\, is a binary closure system
on S, + is a hyperoperation on S and © is the closure system of the subsets

of S closed under +. Thus we shall indicate respectively with g and *; the

closure hyperoperations associated to 7, and to G.
We shall say that (S,9, ) is para-normal with respect to + whenever the follo-
wing condition holds:

® VXY € S: <X>q+<y>q =<XY>q .
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Hence, since if X,y € S we have X4y C <X>q +<y>; = <X, y>q =

= X', Y, then the following property holds:
(°9) VXY € S X+y C X Y.

And now let us assume that the binary closure system (S. 9. ) is para-normal
with respect to the hyperoperation +. Then we have the following theorems.

Theorem 5. for any A,B € . one has:
*) A+B = A-,B = A-B.
Furthermore 9\, is included in G.

Proof. Preliminarily let us remark that A+B = A+, B. In fact the follo-
wing equalities are trivial:

A'l'B = UaeA bEB<a>%+<b>% = UaEA.EB<a. b>?. =
=Vacapepd ab =A:B.

In particular, one has A+A = A+g A = A, Thus T\, is included in T and hence
A+,B C A+ B. As a consequence - since it is obvious that A+B S A-.B -

we get A+B=A-.B=A- B. i

Theorem 6. Let A € € be a union of elements of 7, . Then A=, '

Proof. It is sufficient to prove that A, A C A. Indeed one has:

A'TLA c U A<a>¢n’.ﬂ<a‘>% = Ua.ai‘:—A(a;a‘ >:= -

aa'e

= U, gea<a>q+<a’>y CA+ACA

! See the case of a subgroup which is a union of normal subgroups.
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Remark 7. Let us point out that if the binary closure system (S, 9, ) is pa-
ra-normal with respect to an associative hyperoperation + then, as in the case
of normal subgroups of a group, also *; is associative. Indeed, by Remark 1
and by Theorem 5, for any &, b, ¢ €S we have:

a+, (beyC) = <a>q +(<b,c>q) = <a>g +(< b>g #<c>q) =
= (€a>q +<b>g J#<C>y =(<a,b>q )y <C>q = (@, b) g c.

In the meantime *. can be not associative, as in most groups (S,+) in
which + is a non commutative operation.

3. ASSOCIATIVE CLOSURE SYSTEMS

Now let * be the hyperoperation associated to a given closure system (S,8);
hence, for any X,y €S, X and Y belong to the hyperproduct X*y. As a conse-
quence, if * is associative, then * gives S a structure of commutative hyper-
group (in the sense of [1], p. 8). Therefore we shall say that (8,T) is associa-
tive and (S, *) is a closure hypergroup.

Furthermore, we shall say that (S,%) is 3-strong associative if, for any X, Y,
zeS, x(y2) =<X,Y,2>5 (= z(xy) = (x*y)z). In such a case, sin-
ce X(y'z) € <X,Y, Z>c,§ <X,y,Z>p , then one has <X, Y,Z>g =
= <X, ¥, 2>, -

More generally, given a natural numbers N = 2, we shall say that (S,G) is
n-strong associative if it is associative and X1 Xg" ... *Xp = <Xy, Xz, «v0 s

Xn>g for any X, Xz, .- s Xn €S. Furthermore, we shall say that (S,G)

is finitely strong associative if it is N-strong associative for any natural num-

bers N 2 2.

Obviously, a closure system (S,G) is 2-strong associative if and only if it is
associative. Furthermore, if m and N are natural numbers such that 2<m<n
and (S,8) is n-strong associative, then (S,T) is m-strong associative. In
fact, if one set X = Xmyq = -.. = Xp, then (see 1) of Remark 1) one gets L

X1')(2' e ')(m_1 'Xm = X1°XQ’ wes 'Xm_1'<xm >ﬁ =

2 We recall that <X>g*<X>g = <X>g forany X €8S.
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- )(«I'Xg' ain ‘xl'I'I-T ":xm}u'{Xm_'_‘] >G YT ‘<Xn >-c -
- X1‘X2‘ ass 'Xm 'Xm+1 Y 'Xn = <X1, Xg, rae g Xn>a -
= <K1 N Xa, was g xrn)c e

Theorem 8. Let N be a natural number greather than 1. Then a closure
system (S,%) is n-strong associative if and only if the following property
holds 3

N Ry By o o M B BTy My Ky P SNy vy Xy D s
Proof. The assertion is obvious if n = 2 orn = 3. Thus let n > 3, If
(8,%) is n-strong associative then, since it is also (n-1)-strong associative,
we have:

<X1 y Xy owen ,Xn>c = X" Xa2" ... " Xp = X-,'<X2, Vi Xn>c ¥

Conversely, let the condition (*) hold. Then it holds also with n replaced by a
natural number m such that 2 < m < n. In fact we can set X, = Xy = ... =

= Xp, . Thus, by setting m = 3, we have that (S,8) is associative.

As an immediate consequence, by induction, we get <X., Xz, ..., Xp>p =
= X" X5 . *Xp .

1 2 n ]
Theorem 9. Let (S,%) be a closure system and let a,.a,....3,,.beS.

If <@p,..., By>p =<b>u . then 8,°<a3;, ..., 87> =<8y, 820 v, 8n>p -

Proof. Indeed (see 1) of Remark 1), a,'<a;, ... . @,>, = a.'<b>; =

= asb =<a,,b>; =<4a,,a,, ..., 83> ; whence the thesis. i

Remark 10. If the finitely generated and non empty elements of a closure
system G are principal, then (by Theorem 6) the condituon (*) of Theorem 8
is true for any natural number n, and hence (S,T) is finitely strong associati-
ve. In particular, the closure system ¢ of the ideals of a semilattice (S, ) *is
a finitely strong associative closure system. In fact one can immediately veri-
fy that, for any X;, Xz, ... , Xn € S, the ideal generated by X;. X5. ..., Xp i$
equal to <X;+Xot ... +X,>y .

3 If n = 2 then, by 1) of Remark 1, property (*) is true even if (S.T) is non
associative.

4 A semilattice is a structure (S, U), where U is an idempotent, commutative
and associative binary operation; an ideal is a subset B of S closed under u
such that, for any X € S and X' € B, if x<x' (i.e.: XuX' = X'). then x £ B.
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Theorem 11. Let (S,B) be an algebraic and associative closure system.
Then @ is finitely strong associative if and only if G U {@} = G..

Proof. Let (S,B) be finitely strong associative. Thus, since BU{@} C G,,
in order to prove that Bl {@} = ©; it is sufficient to verify that if X is a
non empty element of By, then <X>, = X (hence X is also an element of
G).

Sil)lce X € <X>z , we only have to verify that <X>, C X. Thus let X' €

€ <X>, and (by the hypothesis that (S,B) is algebraic) let us consider X,

-eey Xn € X such that X' €<Xy, ..., Xy > . As G is finitely strong associa-

tive, <Xq, ..., Xp>p = X1* ... *Xy € X, and hence x' € X.

On the contrary, let GU {@} = €,. Hence € and B, determine the same
hyperoperation *; moreover <X >z,=< X> for any non empty subset X of
S, hence © is finitely strong associative if and only if T is finitely strong

associative. Thus let us verify that if Xq, X, ..., Xy €S, then X;"Xo* ... *
'x” = <X1, Xz, nea g Xn>62.
Indeed, since Xq, Xz, ..., Xp €X1*Xp™ ... " Xp © <Xy, X, vy Xn>pg ) and

<X1; Xz, ..., Xn>g  is the minimum element of T containing {X;, X,
...» Xn}, it is sufficient to point out that, by associativity and by commutati-

vity, one has (¢f. Remark 1):

(X" Xpm e X)) (XXt o " Xp) = X" X" X" X" oo "Xy Xy =

= <x$>n 2'<x2>c 2' sea '<Xn>ﬁ 2 = )(1')(2' see 'Xn .
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