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Abstract

The purpose of this paper is to introduce and discuss the concept
of lower and upper approximations. A simple and straightforward way
for interpreting rough sets is to use membership functions, We investi-
gate the similarity between rough membership function and conditional
probability. We also consider the fundamental relation 8* defined on an
H,-group H and interprete the lower and upper approximations as sub-

sets of the group H/8" and give some properties of such subsets.
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1 Introduction

The notion of rough sets has been introduced by Pawlak [11] in 1982 and
subsequently the algebraic approach of rough sets has been studied by some
authors, for example, Bonikowaski (2], Iwinski [8], Pomykala and Pomykala
(12}, Gehrke and Walker (7). Recently, Biswas and Nanda [1] introduced the
notion of rough subgroups. Kuroki and Wang gave some properties of the lower
and upper approximations with respect to the normal subgroups in [9].

The concept of hypergroup was introduced in 1934 by Marty [10] and has
been studied in the following decades and nowadays by many mathematicians
among whom, Krasner, Prenowitz, Mittas, Corsini, Sureou, Comer, Jantosciak,
Vougiouklis.

The last of these, at the fourth A.H.A congress, Xanthi (1990), introduced
the definitions of H,-group.

The principal notions of hypergroup theory can be found in [3]. The basic
results of H,-groups are in [13].

In this paper we apply the concept of rough sets theory in the theory of
algebraic hyperstructures. We consider the fundamental relation 3* defined on
an H,-group H and interprete the lower and upper appraximations as subsets
of the fundamentsl group H/B* and obtain some results in this connection. In
particular, we show that if X is an H,-subgroup of H then upper approximation
of X is a subgroup of H/B*

2 Interval sets

Given two subsets A;, A2 C U with A; C A3, we define the following closed

interval set:
[A1, 42] = {X € P(U)| A1 € X C 45}
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which is a subset of P(U). The set A; is called the lower bound, and A the
upper bound. That is, members of an interval set are subsets of the universe IJ.
An interval set consists of all those subsets that are bounded by two particular
zlements of the Boolean algebra P(U). Let I(P(U)) denote the set of all closed
mterval sets.

Set-theoretic operators on interval sets can be defined based on set operators
on their members. For two interval sets A = [A}, A9] and B = [By, By, interval

set intersection, union, and difference are defined by
ANB={XNnY|X € A Y € B},

AUB={XUY|X €AY € B},
AB={X-Y|X €AY €B}.

The above defined operators are closed on J(P(U)), namely, AN B, AU B, and
A\B are interval sets. They can be explicitly computed by

ANB =[A;NBy, Ap N By),

AUB =[A; UB,, 4;U By,
A\B = [A; ~ By, Az — By].

The interval set complement ~ is defined by [U, U]\[4;, A3). This is equivalent
to [U— Ag,U — Ay) = [~ Ag,~ Ay]. Clearly, we have -{§,0] = [U,U] and
-[U, U] = 10,0].

Degenerate interval sets of the form [A, A] are equivalent to ordinary sets.
For degenerate interval sets, the proposed operators M,L,\, and - reduce to
set operators. Interval set operators obey most properties of set operators. For
example, idempotence, commutativity, associativity, and distributivity laws
hold for M and L; De Morgan's and double negation laws hold for —. Thus,
the system (I(P(U)),N,U) is & complete distributive lattice, with zero element
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[0,0] and unit element [U,U]. The associated order relation is called interval

set inclusion. It can be defined using the set inclusion relation:
AC B+ A; C B and A3 C Bs.

The system (I(P(U)),N,U, =, [@,0], [U,U]) is called an interval set algebra.

3 Lower and upper approximations

Let p be an equivalence relation defined on the set U and [z], equivalence class
of the relation p generated by an element z € U.

Any finite union of equivalence classes of U is called a definable set in U.
Let A be any subset of U. In general, A is not a definable set in U. However,
the set A may be approximated by two definable set in U/. The first one is called
a p-lower approximation of A in U, denoted by p(A) and defined as follows:

p(A) ={z € U| [z], € A}.

The second set is called a p-upper approximation of A in U, denoted by 5(4)
and defined as follows:

P(A) ={z € U] [al,n A #0}.

The p-lower approximation of A in U is the greatest definable set in U contained
in A. The p-upper approximation of A in U is the least definable set in U
containing A. The difference p'.(:‘i_) = P(A) — p(A) is called the p-boundary
region of A. In the case when p@) = 0 the set A is said to be p-exact.

Using p-lower and p-upper approximations, we define a binary relation on

subsets of U:
X~Y <= p(X) = p(Y) and 5(X) = 5(Y).
It is an equivalence relation which induces a partition P(U)/ = of P(U). An

equivalence class of ~ is called a p-rough set. Therefore a p-rough set of X is
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the family of all subsets of U having the same p-lower and the same p-upper
approximations of X. More specifically, & p-rough set is the following family
of subsets of U:

< A1, Az >={X € P(U)| p(X) = A1, B(X) = Aa}.

A set X €< Ay, Az > is said to be a member of the p-rough set.
Rough set intersection M, union U, and complement — are defined by set
operators as follows: for two p-rough sets < A4;, 42 > and < By, By >,

<A, Ay >N< By, By > ={XGP(U)] E(X) = A;NB, 5(}{):.42“32}
=< A1 N By, AN By >,

<AL A;>U< BBy > =({XeP({U)| p(X)=A1UB1, 5(X) = Az U By}
=< A U By, As U By >,

~<AyAy > ={X €P(U)| p(X) =~ A, B(X) =~ A1}
=<~ Ag,~v A >
The results are also p-rough sets. The induced system (P(U)/ =, N, U, =, [@]x, [U]x)
is called a p-rough set algebra.
The corresponding order is called p-rough set inclusion and is given by

< Al,Ag >C< By, B; ><= A; C B, and Az C Bs.

The proof of the following theorem is similar to the Proposition 2.2 of
Pawlak {11] and Theorem 2.1 of Kuroki [9]. We shall give a proof for complete-

ness.

Theorem 1. Let p be an equivalence relation on a set . If A and B are
non-empty subsets of U/, then the following hold: |

1) p(4) C A C (A,
2) H(AU B) = 5(4) UP(B)
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3) p(AN B) = p(4) N p(B);
4) AC B implies p(A) C p(B);
5) AC B implies 5(4) C 7(B);
6) p(AUB) 2 p(4) U p(B);
7) p(ANnB) < A(4) nA(B);

Proof. (1) Ifa € p(A), then a € [a], C A. Hence p(4) C A. Next, if a € A,
then, since a € [a],, we have [a], C A # 0, and a € p(A). Thus A C 5(A).

(2) a€P(AUB) <= [al, N (AUB) £0=> ([al, 1 A) U((a], " B) £ 0
<= [a],NA#Dor[a],NB) # 0 +=>a € 5(A) or a € 5(B)
<= a € p(A)UP(B)

Thus 5(AU B) = 5(A) UB(B).

(3) aep(ANB) <=>(a), CANB<=|a), C Aand[a),C B
<=>a € p(A) and a € p(B) <> a € p(4) N p(B).

Thus p(A N B) = p(A) N p(B).
(4) Since AC Biff ANB = 4, by (3) we have

p(A4) = p(AN B) = p(4) N p(B).

This implies that p(4) C p(B).
(5) Since AC B iff AUB = B, by (2) we have

P(B) = P(AU B) = 5(4) Up(B).

This implies that p(A) C 5(B).
(6) Since A C AUB and B C AU B, by (4) we have

p(A) S p(AUB) and p(B) C p(AU B),
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which yields
p(4) U p(B) € p(AU B).

(7) Since ANB C Aand ANB C B, by (5) we have
P(ANB) Cp(A) and 7(ANB)C (B),

which yields
A(ANB) C A(4) N7(B).0

4 Probabilistic rough sets

The notion of conditional probability is a basic tool of probability thery, and
it is unfortunate that its great simplicity is somewhat obscured by a singularly
clumsy terminology.

Let X be an event with positive probability. For an arbitrary event A we

shall write
P(ANX)

P(X)

The quantity so defined will be called the conditional probability of A on the
hypothesis X (or for given X'). When all sample points have equal probabilities,
P(A|X) is the ratio Ji,‘%x‘-l of the number of sample points common to A and
X, to the number of points in X. All theorems on probabilities are valid also
for conditional probabilities with respect to any particular hypothesis X. For
example, the fundamental relation for probability of the occurrence of either A

or B or both takes on the form

P(A|X) =

P(AUB|X) = P(AlX) + P(B|X) — P(AN B|X).
For any A C U, a rough membership function is defined by

- iAﬂ [319!
kale) = T
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By definition, elements in the same equivalence class have the same degree of
membership. One can see the similarity between rough memberghip function
and conditional probability. The rough membership value p4(2) may be in-
terpreted as the probability of z belonging to A given that z belongs to an
equivalence class, Under this interpretation, one obtains the notion of prob-
abilistic rough sets. By the laws of probability, the intersection and union of
probabilistic rough sets are not truth-functional. Nevertheless, we have

1) pa(z) =1+=z € p(4),

2) pa(z) =0z € p(4°),

3) 0< pa(z) <1<z € p(d),

4) pa(z) =1~ pae(a),

5) paus(z) = pa(z) + pa(z) = pans(z),

6) maz{pa(z), pa(z)} < pave(e) < min{l, pa(z) + ps(z)},

7) pans < min{ua(z), pa(z)},

8) for any pairwise disjoint collection P of subsets
pop(®) =Y {uy(z)| Y € P}.

They follow from the properties of probabability.

With the rough membership function, One may view a probabilistic rough
set as a special type of fuzzy set. By drawing such a link between these two
theories, the non-truth-functionality of the operators on probabilistic rough
sets may provide more insights into the definition of fuzzy set operators.

The notion of probabilistic rough sets may be related to p-rough set alge-
bra (P(U/ =,N,U,~, [0]x, [U]~). For two members of the same membership
function, i.e., A & B, they may not be characterized by the same membership
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function, i.e., pa # up. Let c(ia) and s(uua) denote the core and support of
p4 defined by
e(ua) = {z| pa(z) =1},

3(ua) = {z| pa(z) > 0}.

By properties (1) and (2), one can verify that if A ~ B, then ¢(u4) = c(up),
end s(ua) = s(up). In other words, & p-rough set is a family of probabilistic

rough sets with the same core and support.

5 Algebraic hyperstructures

A hyperstructure is a set H together with a function - : Hx H — P*(H) called
hyperoperation, where P*(H) denotes the set of all the non-empty subsets of
H. According to [10] Marty defined & hypergroup as a hyperstructure (H, )
such that the following axioms hold: (i) (z-y) 2 =z-(y-2) for all 2, y,zin H,
(i) a-H=H:a=H for all ¢ in H. The second axiom is called reproduction
axiom. In the above definition if A, B C H and z € H then we define

A-B= U a'b, z-B={z}-B, A-z=A.{z}.
acAbeR

An H,-group (cf. [4,5,13,14,15]) is a hyperstructure (H,-) such that (i)
(-y) zNz-(y-2z) #0 for all z,y,2 in H, (li)a-H=H-a=Hforala
in H. The first axiom is called weak associativity. If (H,-) satisfies only the
first axiom, then it is called an H,-semigroup. A subset K of H is called an
H,-subgroup if (K, ) is itself an H,-group.

Let (H,:) be an Hy-group. The relation 8* is the smallest equivalence
relation on H such that the quotient H/f", the set of all equivalence classes, is
a group. 8" is called the fundamental equivalence relation on H. This relation
is studied by Corsini (3] concerning hypergroups, see also [6], [13] and [16].

According to [13] if Z{ denotes the set of all the finite products of elements
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of H, then a relation § can be defined on H whose transitive closure is the
fundamental relation §*. The relation § is as follows: for z and y in H we
write z0y if and only if {z,y} C u, for some u € Y. We can rewrite the
definition of #* on H as follows:

af3*b iff there exist 21,...,2n41 € H with 2; =@, 2,41 =band uy,...,us el
such that

{z,zi1} Cw (i=1,...,n).

Suppose 4 (a) is the equivalence class containing @ € H. Then the product
© on H/B" is defined as follows: §*(a) @ A*(b) = {8"(c)| ¢ € B7(a): B*(b)} for
all g,b in H. It is proved in [13] that 3*(a) ® B°(b) is the singleton {5*(c)}
for all ¢ € B*(a) - 8*(b). In this way H/G* becomes & hypergroup. If we put
() ® B*(b) = B*(c), then H/B* becomes a group.

Let p be an equivalence relation on an Hy-group H. If {4, B} C P*(H),
we write AGB to denote that for every a € A, there exists b € B such that apb
and for every b € B, there exists a € A such that apb.

We write ABB if for every a € A and for every b € B, one has apb.

Definition 2.(cf. [3]). An equivalence relation p on an Hy-group H is called
regular to the right if for every (z,y) € H x H, one has

zpy =>z-apy-aforallac H

‘We say that p is strongly regular to the right if for every (z,y) € H x H,
the implication
zpy=>z-apy-a tmforalla€e H
is valid.
Analogously we define the regularity (strong regularity) of an equivalence
relation to the left. A regular equivalence (strongly regular) relation to the
right and to the left is called regular (strongly regular). -
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The following corollary is exactly obtained from above definitions.
Corollary 3. §* is a strongly regular relation.

Definition 4. Let (H;,-) and (Hp,*) be H,-groups. A mapping T' from
Hy into Hj is called a strong homomorphism if

| T(c) =T(a) » T(%)

cEa-b
for all a,b € H. The set K = {(a,b) € Hy x Hi| T(a) = T(b)} is called the
kernel of T

Proposition 6. Let T : H; — Hp be a strong homomorphism of the H,-
groups (Hi,-) and (Ha, ). Then K is a regular relation on Hj.

Proof, The proof is straightforward and omitted.O

6 On the fundamental relation 3*

Throughout this section we let H be an H,-group.
The lower and upper approximations can be presented in an equivalent form
as shown below. Let X be a non-empty subsets of H. Then

B1(X) = {#"(=) € H/B"| B*(=) € X}

and

B(X) ={B"(z) € H/B*| B*(z) N X # B}.
Now, we discuss these sets as subsets of the fundamental group H/3*.

Proposition 6. Let X and Y are non-empty subsets of H, then the following
hold:
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1) B(XUY)=p(X)up(Y);
2) pr(XNY)=p(X)NB(¥)

3) X CY implies 8*(X) C &Y);
4) X C Y implies B(X) C F(V);

5) fr(XUY) 2 B1(X)UBHY);

6) B*(X NY) C B(X)nB(Y).
Proof. (1)

£*(z) € (X UY) <= B*(z)N(XUY)#0

No 13 - 1999

= (B*(z)NX)U(B*(z)NY) #0
S E)NX#0 or B(r)NY)#0
= f*(z) € B*(X) or §*(z) € B*(Y)

= B(z) € B* (X UB*(Y).

Thus B*(X UY) = g*(X) U g*(Y).
(2)

f(z) € 7 (XNY) <= B*(z
<= 3%

s-z
m m N N

5]

<= f*(

LB, o 2

)
)
)
= B7(z) € g1(X) N B(Y)

Thus g*(X NY) =g(X)Np*(Y).

(3) Since X C Y iff X NY = X, by (2) we have

F(X)=8(XNY)=p5(X)nF(Y).

This implies that 8*(X) C g*(Y).
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(4) Since X CY if XUY =Y, by (1) we have

Bx(Y) = B(X UY) = B*(X) UB*(Y).

This implies that 8*(X) C g*(Y).

(5) Since X C X UY and Y C X UY, by (3) we have

F1X) CA(XUY) and g7(Y) C B*(X UY),

which yields
FXxjugy) c (X uy).

(6) Since XNY C X and X NY C Y, by (4) we have

B XNY)CA(X) and FF(XNY) C B (D),

which yields

B (X NY) CFX)NF(Y).0

Theorem 7. If X is an Hy-subgroup of (H,-), then A*(X) is a subgroup of
(H/p",0).

Proof. The kernel of the canonical map ¢ : H — H/S* is called the core
of H and is denoted by wy. Here we also denote by wy the unit element of
H/B.

First we show that wy € W Since X is an H,-subgroup of (H, ), then
for every a € X we have a- X = X. Therefore a € a - X and 8o there exists
b € X such that a € a- b which implies §*(a) = #*(a - b) = B*(a) ® B*(b).
Therefore 3*(b) = wy and s0 b € wy N X which implies wg N X # . Therefore
Wy £ m

Now, suppose §*(z), 3*(y) € *(X), we show that §*(z) © B*(y) € H/B".
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We have B*()N X # @ and §*(y) N X # 0 then there exist a € 8(z) N X and
bef(y)NX. Thusa € f*(z), ac X, be B*(y), b€ X and so

a-bC B*(x)-B"(v) C B*(zy) = B*(z) © B*(y).

For every ¢ € z-y we have §*(c) = #*(z) - 8*(y). Therefore we get a-bC B*(c)
anda-bC X.
Therefore 8*(c)N X # 0 which yields 8*(c) € B*(X) or §*(z) ©5*(y) € B*(X).
Finally, if 5*(z) € B*(X) then we show that §*(z)~! € F*(X). Since
wg N X # 0 then there exists h € wy N X and since *(z) N X # B then there
exists y € §*(z) N X. By reproduction axiom we get h € y- X then there exists
@ € X such that h € y - a which implies §*(k) = 8*(y) © 8*(a). Since h € wy
then 3*(k) = wy. Therefore wy = *(y) © B*(a) or wy = f*(z) @ B*(a) which
yields §3*(a) = 8*(x)~!. Since a € X and a € #*(a) then 8°(a) N X # 0 and so
B*(a) € B*(X). Therefore §*(X) is a subgroup of H/A", ©). O

Proposition 8. If X and Y are non-empty subsets of H, then

B X)op(Y)Sp(X-Y)

Proof. We have
FX)0B(Y) ={B"(a)© B (b)] B(a) € B(X) , B*(b) € B~(¥)}
={8"@)0p () B )NX #0, B*(B)NY #0}.
Therefore (8*(a) - 8*(b)) N (X - Y) # 0. Since £*(a) - 8°(6) C B*(a - b). We
obtain §*(a-5) N (X - Y) # 0. Thus B*(a-b) = 8*(a) @ 4*(6) € A(X - V) and
s0 f*(X) 0 B*(Y) C B*(X - Y). D

Proposition 9. Let X and ¥ be two H,-subgroups of H and let f: X — Y

be a strong homomorphism, then f induces a homomorphism F : 8*(X) —

B*(Y) by setting
F(B*(z)) = 8"(f(z)), VeeX.
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Proof. First we prove that F is well-defined. Suppose that 8*(a) = 8*(b)
then there exist #1,...,%m+1 € H with 2y =@, spmy1 =band uy,...,um €U
such that {z:,zit1} € wi (i = 1,...,m) which implies {f(z:), f(zi+1)} €
f(us) (i=1,...,m). Since f is a strong homomorphism and u; € i we get
f(u;) € U. Therefore f{a)B*f(b) or F(B*(a)) = F(B*(b)). On the other hand
if 8*(a) € f*(X) then 8*(a) N X # @ and so there exists b € §"(a) N X. Thus
b3*a and b € X which yield f(8)5* f(a) and f(b) € ¥. So f(b) € 8*(f(a)) and
f(b) €Y then B*(f(a))NY # 0 and s0 5*(f(a)) € B*(Y) or F(§*(a)) € B*(Y).
Thus F' is well-defined. Now we have

F(B*a) 0 5*(b)) = F(8*(a-?))
=B*(f(a- b))
= f*(f(a) - (b))
= "(f(a)) @ B*(f(b))
= F(6*(a)) © F(B*(2)).

Therefore F is & homomorphism. O
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