PROPERTIES OF HYPERPRODUCTS AND THE RELATION β IN QUASIHYPERGROUPS

Marin GUTAN *

Abstract: Some properties of the complete parts in hypergroupoids are established. Applying these properties to the case of quasihypergroups H for which $H/_{\beta^*}$ is a quasigroup, a necessary and sufficient condition for the transitivity of the relation β is proved. Consequently, several classes of quasihypergroups in which β is transitive are obtained (for instance, in any finite quasihypergroup with identity β is a transitive relation). Then, in the case of quasihypergroups having underlying groups, the relation β is completely determined.

A.M.S. Subject Classification: 20N20

^{*} Département de Mathématiques, Université Blaise Pascal, 63177 Aubière Cedex, France e-mail: gutan@ucfma.univ-bpclermont.fr

1. INTRODUCTION

Let H be a hypergroupoid, $n \geq 2$ be an integer and x_1, \ldots, x_n be elements of H. If γ is a grouping of the indices $1, 2, \ldots, n$ in this order, then the product of the elements

$$x_i$$
 respecting γ is denoted $\prod_{\substack{i=1 \ (\gamma)}}^n x_i$. Denote by $\Gamma(n)$ all the

groupings of the indices $1, 2, \ldots, n$ in this order. Using these notations consider:

$$P_1(H) = \{\{x\} \mid x \in H\},$$

$$P_n(H) = \{\prod_{\substack{i=1 \ (\gamma)}}^n x_i \mid x_1, \dots, x_n \in H, \ \gamma \in \Gamma \ (n) \ \},$$

$$P_i(H) = \bigcup_{i=1}^\infty P_n(H).$$

By means of hyperproducts of P(H) we define on H a chain of relations $(\beta_n)_{n\geq 1}$ as follows: $z\beta_n y$ if and only if there exists $Q \in P_n(H)$ such that $z, y \in Q$.

It is evident that $\beta_1 = Id(H)$ and β_n are symmetrical.

Consider the relation $\beta = \bigcup_{n=1}^{\infty} \beta_n$ which is reflexive and symmetrical. Its transitive closure $\beta^* = \beta \cup \beta \circ \beta \cup \ldots$ is an equivalence relation on H and $H/_{\beta^*}$ is a groupoid. Hence using the relation β^* we can define functors between categories of hypergroupoids and categories of groupoids which permit to reduce some problems on hyperstructures to easier others on univalent structures.

The relation β^* in hypergroups has been studied by many authors like M. Koskas ([9]), P. Corsini ([1], [2]),

Y. Sureau ([11]), D. Freni ([4], [5], [6]), M. De Salvo ([3]), R. Migliorato ([10]).

There is an interesting problem concerning the relations β and β^* :

PROBLEM 1. When $\beta^* = \beta$? (Find the classes of hypergroupoids for which the corresponding relation β is transitive.)

A first important answer to this problem was obtained in 1991 by D. Freni ([4]). He proved that in hypergroups the relations β and β^* coincide.

The semihypergroups for which the relation β is transitive are characterised in [7].

In connection with Problem 1 we mention the following problem proposed by T. Vougiouklis ([12]).

PROBLEM 2. Do the relations β and β^* coincide in weakly associative quasihypergroups?

In this paper we extend some properties of the complete parts from semihypergroups to hypergroupoids. Using these properties we treat Problem 1 in the particular case of quasihypergroups.

2. COMPLETE PARTS AND THE RELATION β IN HYPERGROUPOIDS

The notion of complete part in hypergroups has been introduced and studied by M. Koskas in [9]. Then P. Corsini

([1], [2]), Y. Sureau ([11]), D. Freni ([4]), M. De Salvo ([3]), R. Migliorato ([10]) have established connections between the complete parts and the heart of a hypergroup.

In the following some properties of the complete parts in (semi) hypergroups (see [1] and [7]) are extended to hypergroupoids. Using complete parts, a characterization of hypergroupoids in which the relation β is transitive, analogues with that for semihypergroups obtained in [7], is given.

Let H be a hypergroupoid. A subset A of H is a complete part if for every $Q \in P(H)$ such that $Q \cap A \neq \emptyset$ we have $Q \subset A$.

Remark that \emptyset and H are complete parts of H. Also, the intersection of any family of complete parts of H is a complete part in H.

For a subset X of H denote by C(X) the intersection of all complete parts of H containing X. It is easy to verify that C(X) is the smallest complete part of H containing X (called the *complete closure* of X).

The following properties hold:

- (1) $X \subset \mathcal{C}(X)$.
- (2) If $X \subset X'$ then $C(X) \subset C(X')$.
- (3) C(C(X)) = C(X).
- (4) $C(X) = \bigcup_{x \in X} C(x)$, where $C(x) = C(\{x\})$.

As for an associative hyperoperation, we can associate to any subset X of H an ascending chain of subsets $(\mathcal{C}_n(X))_{n\in\mathbb{N}}$ defined by the following two relations:

- i) $C_0(X) = X$
- ii) $C_{n+1}(X) = \bigcup \{Q \in P(H) \mid Q \cap C_n(X) \neq \emptyset\}.$

Using the chain $(C_n(X))_{n\in\mathbb{N}}$ we can obtain the complete closure of X, as it is shown in the next result.

- **2.1. PROPOSITION.** Let X be a subset in a hypergroupoid H. Then the following properties hold:
- (5) $C_n(X) = \bigcup_{x \in X} C_n(x)$, where $C_n(x) = C_n(\{x\})$.
- (6) $C_n(C_m(X)) = C_{n+m}(X)$.
- (7) $C(X) = \bigcup_{n \in \mathbb{N}} C_n(X).$

PROOF:

- (5) As $C_n(x) \subset C_n(X)$ whenever $x \in X$, it follows that $\left(\bigcup_{x \in X} C_n(x)\right) \subset C_n(X)$. We prove the converse inclusion by induction on n. If n = 0 then the equality (5) holds. Assume that $C_{n-1}(X) \subset \bigcup_{x \in X} C_{n-1}(x)$, for $n \in \mathbb{N}^*$, and consider $y \in C_n(X)$. This means that there exists $Q \in P(H)$ such that $Q \in Q$ and $Q \cap C_{n-1}(X) \neq \emptyset$. Then, by hypothesis, $Q \cap C_{n-1}(X) \neq \emptyset$, for some $Q \in C_n(X)$, that is $Q \in C_n(X)$, which proves that the converse inclusion holds.
- (6) We proceed once again by induction on $n \in \mathbb{N}$. For n = 0 the relation (6) is valid because $C_0(\mathcal{C}_m(X)) = C_m(X)$.

Suppose now that $C_{n-1}(C_m(X)) = C_{m+n-1}(X)$, where $n \in \mathbb{N}^*$. Then

 $\mathcal{C}_n(\mathcal{C}_m(X)) = \cup \{Q \in P(H) \mid Q \cap \mathcal{C}_{n-1}(\mathcal{C}_m(X)) \neq \emptyset\} =$ $\cup \{Q \in P(H) \mid Q \cap \mathcal{C}_{m+n-1}(X) \neq \emptyset\} = \mathcal{C}_{n+m}(X).$

(7) In order to prove that $\mathcal{C}(X) \subset \bigcup_{n \in \mathbb{N}} \mathcal{C}_n(X)$ it is sufficient to establish that $A = \bigcup_{n \in \mathbb{N}} \mathcal{C}_n(X)$ is a complete part of H. Let $Q \in P(H)$ such that $Q \cap A \neq \emptyset$. Then $Q \cap \mathcal{C}_n(X) \neq \emptyset$, for some $n \in \mathbb{N}$. Consequently $Q \subset \mathcal{C}_{n+1}(X) \subset A$ and thus $\mathcal{C}(X) \subset \bigcup_{n \in \mathbb{N}} \mathcal{C}_n(X)$. On the orther hand, from i) and ii), by induction on n, we get that $\mathcal{C}_n(X) \subset \mathcal{C}(X)$, for every $n \in \mathbb{N}$. Hence $\bigcup_{n \in \mathbb{N}} \mathcal{C}_n(X) \subset \mathcal{C}(X)$.

Note that we also have the properties below :

- (8) If $Q \in P(H)$ then C(Q) = C(x), for any $x \in Q$.
- (9) $C_n(x)y \subset C_n(xy) \supset xC_n(y)$, for any x and y in H.
- (10) $C(x)y \subset C(xy) \supset xC(y)$, for any x and y in H.

The connexion between the relation β^* and the complete parts of a hypergroupoid is given by the following result.

2.2. PROPOSITION. Let x and y be two elements of a hypergroupoid H. Then $x\beta^*y$ if and only if C(x) = C(y).

PROOF:

In order to prove the required equivalence suppose first that $x\beta^*y$ and show that $\mathcal{C}(x) = \mathcal{C}(y)$. It suffices to establish that for the couples (x,y) of elements of H satisfying $x\beta y$. If $x\beta y$ then there exists $Q \in P(H)$ which contains both x and y. Therefore, according to (8), $\mathcal{C}(x) = \mathcal{C}(Q) = \mathcal{C}(y)$. Consequently, if $x\beta^*y$ then $\mathcal{C}(x) = \mathcal{C}(y)$.

Assume now that C(x) = C(y). Then $x \in C_n(y)$, for some $n \in \mathbb{N}$. We prove by induction on n that $x\beta^*y$. For n = 0 this is true because x = y. Assume this is also true for any integer k < n and prove that the corresponding assertion for n is true, too. As $x \in C_n(y)$ there exists $Q \in P(H)$ such that $x \in Q$ and $Q \cap C_{n-1}(y) \neq \emptyset$. Let $z \in Q \cap C_{n-1}(y)$. From $x \in Q$ we get $\{x\} \beta_*^*Q$, whence $x\beta^*z$. On the other hand, as $z \in C_{n-1}(y)$, by inductive hypothesis, $z\beta^*y$. Hence $x\beta^*y$.

If R is a relation on the hypergroupoid H we define on $\mathcal{P}^*(H) = \{X \subset H \mid X \neq \emptyset\}$ two others relations R and R by:

$$A\overline{R}B$$
 iff $\begin{cases} \forall a \in A, \exists b \in B \text{ such that } aRb \\ \forall b \in B, \exists a \in A \text{ such that } aRb \end{cases}$

$$A \stackrel{\equiv}{R} B$$
 iff $(\forall a \in A, \forall b \in B \text{ we have } aRb)$.

The relation $\overline{\beta}$ which intervine in the previous proof is obtained in this manner.

Using the previous results we obtain the following characterization of the transitivity of the realtion β in hypergroupoids.

2.3. THEOREM. The relation β is transitive in a hypergroupoid H if and only if

(*)
$$C(x) = C_1(x)$$
, for any $x \in H$.

PROOF:

Suppose β is transitive. In order to prove that $C(x) = C_1(x)$, for any $x \in H$, it suffices to establish that $C_1(x)$ is a complete part of H. Let $Q \in P(H)$ such that $Q \cap C_1(x) \neq \emptyset$ and let $y \in Q \cap C_1(x)$. We have to show that $Q \subset C_1(x)$.

It is obvious that $x\beta y$. As $y\beta z$, for $z\in Q$, we obtain that $x\beta z$. Consequently there exists Q' in P(H) containing both x and z, whence $z\in C_1(x)$.

Conversely, suppose that (*) holds. Consider x, y, z elements of H such that $x\beta y$ and $y\beta z$. Then $x\beta^*z$ and thus C(x) = C(z). It follows that $z \in C_1(x)$. Hence, there exists Q in P(H) which contains both x and z, that is $x\beta z$.

Several examples of semihypergroups for which the relation β is not transitive are presented in [7]. However there is no known example of quasihypergroup for which the associated relation β is not transitive.

Conjecture. If H is a quasihypergroup then β is transitive on H.

If we deal with quasihypergroups H such that $H/_{\beta}$ is a quasigroup we can give a necessary and sufficient condition for the transitivity of β , more simple than the previous condition (*).

- **2.4. THEOREM.** Let H be a quasihypergroup such that $H/_{\beta^*}$ is a quasigroup. Then the relation β is transitive in H if and only if
 - (**) there exists x in H for which $C(x) = C_1(x)$.

PROOF:

The result to prove is a direct consequence of the following.

- **2.5. LEMMA.** Let H be a quasihypergroup such that $H/_{\beta^*}$ is a quasigroup. Then the following assertions are valid:
 - a) C(xy) = C(x)y, for every x and y in H.
- b) If there exist x in H and $n \in \mathbb{N}$ such that $C(x) = C_n(x)$ then $C(y) = C_n(y)$, for every $y \in H$.

PROOF:

- a) According to (10), $C(x)y \subset C(xy)$. In order to prove the converse inclusion let $t \in C(xy)$. As $t \in H = Hy$ we get that $t \in uy$, for some $u \in H$. Therefore $\beta^*(t) = \beta^*(x)\beta^*(y) = \beta^*(u)\beta^*(y)$, whence $\beta^*(t) = \beta^*(u)$. Thus $t \in C(u)y = C(x)y$, that is $C(xy) \subset C(x)y$.
- b) Let $y \in H$. Then there exists $u \in H$ such that $y \in xu$. Hence $C(y) = C(xu) = C(x)u = C_n(x)u \subset C_n(xu) = C_n(y)$.

It follows that $C(y) = C_n(y)$, for every $y \in H$.

2.6. COROLLARY. Let H be a finite quasihypergroup. Then the relation β is transitive in H if and only if H verifies the condition (**).

- **2.7. REMARK.** If H is a infinite quasihypergroup then $H/_{\beta^*}$ is not necessarily a quasigroup. This follows from the example below.
- **2.8. EXAMPLE.** Let G be a groupoid and $(A_x)_{x \in G}$ be a family of nonempty disjoint sets. On $H = \bigcup_{x \in G} A_x$ we define a hyperoperation by $a \cdot b = A_{xy}$, where $a \in A_x$, $b \in A_y$, $x \in G$ and $y \in G$. Then (H, \cdot) is a hypergroupoid for which $\beta^* = \beta = \beta_2$ and $H/\beta^* \simeq G$.

If we take $G = (\mathbb{N}, *)$, where x * y = |x - y|, by the above construction we obtain a quasihypergroup for which $H/_{\beta*} \simeq (\mathbb{N}, *)$ is not a quasigroup.

3. CLASSES OF QUASIHYPERGROUPS IN WHICH THE RELATION β IS TRANSITIVE

In this section, we present some of the most important classes of quasihypergroups in which we can prove that the relation β is transitive. We use Theorems 2.3 and 2.4, established in the previous section.

3.1. THE CASE OF HYPERGROUPS

- 3.1.1. PROPOSITION. Let H be a hypergroup.
 - i) If $a \in H$ and $Q \in P_n(H)$, where $n \in \mathbb{N}^*$, then there exists $Q' \in P_n(H)$ such that $Q \subset Q'a$.
 - ii) If Q and Q' are two elements of P(H) such that

 $Q \cap Q' \neq \emptyset$ and $a \in Q'$ then $(Q \cup \{a\}) \subset Q''$, for some $Q'' \in P(H)$.

iii) $C(x) = C_1(x)$, for any $x \in H$.

PROOF:

- i) Consider x_1, \ldots, x_n in H such that $Q = x_1 \ldots x_n$. As Ha = H there exists $x'_n \in H$ such that $x_n \in x'_n a$. Then, taking $Q' = x_1 \ldots x_{n-1} x'_n$ we get $Q \subset Q'a$.
- ii) Let $b \in Q \cap Q'$. Then, because of the reproductibility, then exists $c \in H$ such that $a \in bc$. According to i) we have $Q \subset Q_1a$, for some $Q_1 \in P(H)$. Therefore $Q \subset Q_1a \subset Q_1bc \subset Q_1Q'c$ and $a \in bc \subset Qc \subset Q_1ac \subset Q_1Q'c$. Hence for $Q'' = Q_1Q'c$ we obtain that $(Q \cup \{a\}) \subset Q''$ and $Q'' \in P(H)$. iii) It suffices to show that $C_1(x)$ is a complete part of H, for every $x \in H$. Let $Q \in P(H)$ such that $Q \cap C_1(x) \neq \emptyset$. According to the definition of $C_1(x)$ there exists $Q' \in P(H)$ such that $x \in Q'$ and $x \in Q' \in P(H)$. From ii), we get $x \in Q \cap Q' \in Q(H)$.

Using this above proposition and Theorem 2.3 we have:

- **3.1.2. PROPOSITION.** The relation β is transitive in any hypergroup.
- 3.1.3. REMARK. Another proof for this previous result have been given by D. Freni in [4] using the notion of heart of a hypergroup.

We present now an interesting consequence of Proposition 3.1.1 for finite hypergroups.

3.1.4. PROPOSITION. Let H be a finite hypergroup and Q,Q' be in P(H) such that $Q\cap Q'\neq \emptyset$. Then there exists $Q''\in P(H)$ such that $Q\cup Q'\subset Q''$.

3.2. THE CASE OF QUASIHYPERGROUPS WITH IDEN-TITY

Recall that an element e of a hypergroupoid H is an identity if $x \in (ex \cap xe)$, for every $x \in H$.

We get the following result.

3.2.1. LEMMA. Let H be a quasihypergroup in which there exists at least one identity e. Then $C(\epsilon) = C_1(\epsilon)$.

PROOF: '

It suffices to show that $C_1(\epsilon)$ is a complete part of H. Let $Q \in P(H)$ such that $Q \cap C_1(\epsilon) \neq \emptyset$. Hence there exists $Q' \in P(H)$ such that $e \in Q'$ and $Q \cap Q' \neq \emptyset$. Consider $x \in Q \cap Q'$. Then $e \in x'x$, for some $x' \in H$. Taking $Q'' = (x'Q')Q \in P(H)$ we have $e \in x'x \subset (x'e)x \subset (x'Q')Q = Q''$ and $Q \subset eQ \subset (x'x)Q \subset (x'Q')Q = Q''$. Hence $Q \subset C_1(\epsilon)$.

Using the previous Lemma and Theorem 24 we get:

3.2.2. THEOREM. Let H be a quasihypergroup such that $H/_{\beta^*}$ is a quasigroup. If H contains at least one identity then the relation β is transitive in H.

Here are now two remarquable consequences of Theorem 3.2.2.

3.2.3. PROPOSITION. Let H be a weakly associative quasihypergroup (i.e., according to [10], a H_V -group). If H has at least one identity then the relation β is transitive in H.

PROOF:

It follows from Theorem 3.2.2 and because $H/_{\beta^*}$ is a group whenever H is a H_V -group.

We mention that another proof of Proposition 3.2.3 has been given by D.Freni in Corollary 2.4 of [5].

3.3. THE CASE OF QUASIHYPERGROUPS CONTAINING SINGLE ELEMENTS

An element x of a hypergroupoid H is single if $C(x) = \{x\}$ (see [12]). The following result holds.

3.3.1. THEOREM. Let H be a quasihypergroup such that $H/_{\beta^*}$ is a quasigroup. If there exists $x \in H$ such that $C(x) \in P(H)$ then $\beta = \beta^*$.

PROOF:

If $C(x) = Q \in P(H)$ then $C_1(x) = Q = C(x)$ and, according to Theorem 2.4, $\beta = \beta^*$.

An immediate consequence of Theorem 3.3.1 is:

3.3.2. PROPOSITION. Let H be a quasihypergroup such that $H/_{\beta^*}$ is a quasigroup. If H contains a single element then β is transitive.

A similar result for H_V -groups has been obtained by T. Vougiouklis (see [12], Theorem 1.3.3).

3.4. THE CASE OF QUASIHYPERGROUPS HAVING UNDERLYING GROUPS

Let (H,) be a quasihypergroup which has an underlying group (H, \cdot) , that is $x \cdot y \subset xy$, for every x and y in H. Then (H,) is a weakly associative quasihypergroup, also called a H_b -group (see T. Vougiouklis, [12]).

In the following we show how to determine the relation β^* for this kind of quasihypergroups. Notice that according to Theorem 3.2.2 we have $\beta^* = \beta$.

Consider the set $A = \bigcup \{(x \cdot y)^{-1}(xy) \mid x, y \in H\}$ and let N be the normal closure of A (i.e. N is the least normal divisor of the group (H, \cdot) containing the set A).

Consider the canonical projections $q: H \to H/N$, respectively $\pi: H \to H/\beta^*$.

Then $q(xy) = \{t \cdot N \mid t \in xy\}$ and $q(x) \cdot q(y) = (x \cdot y) \cdot N$, whence $q(xy) = q(x) \cdot q(y)$, for every x and y in H. Therefore the heart ω_H of H is included in N. On the other hand, as $1 = x^{-1} \cdot x \subset x^{-1}x$, for every $x \in H$, it follows that $\pi(x^{-1}) = \pi(x)^{-1}$. Using this equality we have that $x^{-1} \cdot y \in \omega_H$ and also $a^{-1} \cdot x \cdot a \in \omega_H$, whenever x and y are in ω_H and $a \in H$. Hence ω_H is a normal subgroup of H. More than that, as $\pi((xy)^{-1}(xy)) = \pi(1)$, it follows that $A \subset \omega_H$. Therefore $N \subset \omega_H$. Hence $\omega_H = N$. It results that $H/_{\beta^*}$ coincides with H/N. We get that $x\beta^*y$ if and only if $x\beta y$, that is, if and only if xN = yN.

A direct consequence of these remarks are the following results.

- **3.4.1. THEOREM.** Let (H,) be a quasihypergroup having an underlying group (H,\cdot) . Then the heart ω_H of (H,) is the normal closure of the set $\cup \{(x \cdot y)^{-1}(xy) \mid x, y \in H\}$ and the relations β and β^* coicide in (H,).
- **3.4.2.** PROPOSITION. Let H be a H_V -group having only one proper hyperproduct. Then the relations β and β^* coicide in H.

PROOF:

According to [8], H is either a hypergroup or a H_{b} group. Hence $\beta = \beta^*$.

We mention that in [12] some particular case of Proposition 3.4.1 are studied (see Examples 1.2.3, 1.2.4 and 1.2.5).

REFERENCES

- 1. P. CORSINI, Prolegomena of hypergroup theory, Aviani Editore (1992).
- 2. P. CORSINI and D. FRENI, On the heart of hypergroups, Matematica Montisnigri, 2 (1993).
- M. DE SALVO, Feebly canonical hypergroups, J. of Combinatorics, Information and System Sciences, 15 (1990), 133 - 150.
- D. FRENI, Une note sur le cœur d'un hypergroupe et sur la cloture β* de β, Rivista di Matematica Pura ed Applicata, 8, (1991), 153-156.

- D. FRENI, Ipergruppoidi e relazioni fondamentali, Algebraic Hyperstructures and Applications, Hadronic Press, Palm Harbor, Florida (1994).
- D. FRENI, On a strongly regular relation in hypergroupoids, Pure Mathematics and Applications, Ser. A ,3 (1992), 191-198.
- M. GUTAN, On the transitivity of the relation β in semihypergroups, Rendiconti del Circolo Matematico di Palermo (to appear).
- C. GUTAN, Les hypergroupoides très fins, Bolletino della Unione Matematica Italiana (1996) (to appear).
- M. KOSKAS, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures et Apll. 49 (1970), 155-192.
- R. MIGLIORATO, Semi-ipergruppi e ipergruppi n-completi, Ann. Sci. Univ. Clermont II, ser Math, 23 (1986), 99 - 123.
- Y. SUREAU, Contribution à la théorie des hypergroupes et hypergroupes opérant transitivement sur un ensemble, Thèse de Doctorat, Université Blaise Pascal, Clermont-Ferrand (1980).
- T. VOUGIOUKLIS, Hyperstructures and their representations, Hadronic Press Monographs, Palm Harbor, 1994.