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1. INTRODUCTION

Let H be a hypergroupoid. n > 2 be an integer and
T1,...,Tn be elements of H. If 4 is a grouping of the indices
1,2,...,n in this order, then the product of the elements

x; respecting v is denoted H z;. Denote by I'(n) all the

=1

(=)
groupings of the indices 1,2.. ... n in this order. Using these
notations consider :

P(H) = {{z} | 2 € H),

B(H)= U Pu(H).

By means of hyperproducts of P{H) we define on H a
chain of relations (8,)n>; as follows : z3.y if and only if
there exists Q) € P,(H) such that .y = Q.

It is evident that 3; = Id( H) and 3. are symmetrical.

: . - x - - - .
Consider the relation 3 = U 3. which is reflexive and

a=1

symmetrical. Its transitive closure 3* =3 U 303U...isan
equivalence relation on H and H/ s 1= 2 groupoid. Hence
using the relation * we can define functors between cate-
gories of hypergroupoids and categories of groupoids which
permit to reduce some problems on hyperstructures to easier
others on univalent structures.

The relation 3~ in hypergroups has been studied by
many authors like M. Koskas ([9]). P. Corsini ( [1], [2]),
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Y . Sureau ([11]), D. Freni ([4], [5], [6]), M. De Salvo ([3]),
R. Migliorato ([10]).

There is an interesting problem concerning the relations

3 and 8* .

PROBLEM 1. When 3* = § ? (Find the classes of hy-
pergroupoids for which the corresponding relation f is tran-

sitive.)

A first important answer to this problem was obtained
in 1991 by D. Freni ([4]). He proved that in hypergroups the
relations § and 3* coincide.

The semihypergroups for which the relation f is transi-
tive are characterised in [7].

In connection with Problem 1 we mention the following
problem proposed by T. Vougiouklis ([12]).

PROBLEM 2. Do the relations § and 3* coincide in
weakly associative quasihypergroups?

In this paper we extend some properties of the com-
plete parts from semihypergroups to hypergroupoids. Using
these properties we treat Problem 1 in the particular case of

quasihypergroups.

2. COMPLETE PARTS AND THE RELATION g
IN HYPERGROUPOIDS

The notion of complete part in hypergroups has been
introduced and studied by M. Koskas in [9]. Then P. Corsini
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([1], [2]), Y. Sureau ([11]), D. Freni ([4]). M. De Salvo ([3]),
R . Migliorato ([10]) have established connections between
the complete parts and the heart of a hypergroup.

In the folllowing some properties of the complete parts
in (semi) hypergroups (see [1] and [7]) are extended to hyper-
groupoids. Using complete parts, a characterization of hy-
pergroupoids in which the relation 3 is transitive, analogues
with that for semihypergroups obtained in [7]. is given.

Let H be a hypergroupoid. A subset 4 of H is a com-
plete part if for every Q € P(H) such that QN 4 # 0 we
have () C A.

Remark that §} and H are complete parts of H. Also,
the intersection of any family of complete parts of H is a
complete part in H.

For a subset X of H denote by C(X) the intersection
of all complete parts of H containing X. It is easy to verify
that C(X) is the smallest complete part of H containing X

(called the complete closure of X).

The following properties hold :
(1) X cce(X).
(2) X cCX'thenC(X)CC(X').
(8) C(C(X)) =C(X).
(4) C(X)= ngC(x}, where C(z) = C{{z}).
As for an associative hyperoperation. we can as-

sociate to any subset X of H an ascending chain of

subsets (Cn(X))new defined by the following two relations :

)
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1) GC(X)=X
i) Cppa(X)=U{Q € P(H) | QNCn(X) # 0}.
Using the chain (C,(X))nen we can obtain the complete

closure of X, as it is shown in the next result.

2.1. PROPOSITION. Let X be a subset in a hyper-
groupoid H. Then the following properties hold :

(5) Cu(X)= ngcn(x), where C,(z) = C,({z}).

(6) Cn(cm(X)) = Cn+m(X)'
() C(X)= Y Ca(X).

PROOF:
(5) As Cp(z) C Cn(X) whenever z € X , it follows that

( gX Cn(x}) C Cn(X). We prove the converse inclusion by

induction on n. If n = 0 then the equality (5) holds. Assume
that C,—1(X) C LEJXC,,__I(Q:), for n € IN*, and consider y €
x

Cn(X). This means that there exists @ € P(H) such that
y € @ and @ NCpr_1(X) # 0. Then, by hypothesis, Q N
Cn—1(z) # 0, for some z € X. Therefore Q C C,(z), that is

y € ( Ux Cn(m)), which proves that the converse inclusion
zE

holds.

(6) We proceed once again by induction on n € IN.
For n = 0 the relation (6) is valid because Cy(Crr(X)) =
Cu(X).
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Suppose now that C,,_1(Cn(X)) = Crnen—1(X). where

n € IN*. Then
Ca(Cn(X)) =U{Q € P(H) | QNCns(Cr(X)) # 8} =

U{Q € P(H) | Q N Crpnt(X) £ 8} = Crsm(X).
(7) In order to prove that C(X) C 8 Ca(X) it is sufficient
to establish that A = g]N Cn(X) is a complete part of H.

Let Q € P(H) such that QN A # 0. Then QN C.(X) # 0,
for some n € IN. Consequently @ C Cr+1(X) C A and thus
ELX) & léJNCn(X). On the orther hand. from 1) and i) |

by induction on n , we get that C,(X) C C(X ). for every
n € IN. Hence g]NC“(X) e e(X). .

Note that we also have the properties below -
(8) If Q € P(H) then C(Q) = C(z), for any z £ Q.
(9) Cn(z)y C Cp(zy) D xCpr(y), for any z and yin H.
(10) C(z)y C C(xy) D zC(y), for any r and y m H.

The connexion between the relation 3% and the complete
parts of a hypergroupoid is given by the following result.

2.2. PROPOSITION. Let zr and y be two elements of o
hypergroupoid H. Then z3%y if and only 57Ciz) =Cly).
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PROOF :
In order to prove the required equivalence suppose first

that z8*y and show that C(z) = C(y). It suffices to establish
that for the couples (z,y) of elements of H satisfying zSy.
If 2By then there exists ) € P(H) which contains both z
and y. Therefore, according to (8), C(z) = C(Q) = C(y).
Consequently, if z3*y then C(z) = C(y).

Assume now that C(z) = C(y). Then z € Cn(y), for
some n € IN. We prove by induction on n that z3*y. For
n = 0 this is true because ¢ = y. Assume this is also true for
any integer k < n and prove that the corresponding assertion
for n is true, too. As z € C,(y) there exists Q € P(H) such
that z € Q and QNCpr_1(y) # 0. Let z € QNCp—1(y). From

T € ) we get {x}ESQ, whence z3*z. On the other hand, as
z € Cp—1(y), by inductive hypothesis, z6*y. Hence z3*y. =

If R is a relation on the hypergroupoid H we define on

P*(H) = {X C H| X # 0} two others relations R and R
by :
VYa € A,3b € B such that aRb

ARE {Vb € B,Ja € A such that aRb

ARB iff (Vac AVbe B we have aRb).
The relation E which intervine in the previous proof is
obtained in this manner.

Using the previous results we obtain the following char-
acterization of the transitivity of the realtion # in hyper-

groupoids.
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2.3. THEOREM. The relation J is trensifive n s Ayper-
groupoid H if and only if
(*¥) C(z) =Cy(z), forany z € H.

PROOF :

Suppose f is transitive. In order to prowe tha: ((z) =
Ci(z), for any z € H, it suffices to establish that C;(r) is a
complete part of H. Let Q € P(H) such that QN :(z)# 0
and let y € @ NCy(z). We have to show that Q C C:(z).

It is obvious that zfy. As y3z. for = € @ . == obtain
that z8z. Consequently there exists Q' im P{H) containing
both z and z, whence z € C;(z).

Conversely, suppose that (=) holds. Consader z.y.: el-
ements of H such that z8y and y3z. Them 3" and thus
C(z) = C(z). It follows that z € C;(z). Hemce. there exists
@ in P(H) which contains both z and =. thas: s z3:. .

Several examples of semihypergroups for which the re-
lation 3 is not transitive are presented in (7. However there
is no known example of quasihypergroup for which the ass-
sociated relation f is not transitive.

Conjecture. If H is a quasihypergroup then 7 is transi-
tive on H.

If we deal with quasihypergroups H such that H/;- is
a quasigroup we can give a necessary and sufhcent condi-
tion for the transitivity of 3, more simple than the previous

condition ().
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2.4. THEOREM. Let H be o quasthypergroup such that
H/ g« i3 a quasigroup. Then the relation f 1s transitive in H
if and only if

(#x)  there ezists x in H for which C(z) = Cy(z).

PROOF :
The result to prove is a direct consequence of the fol-

lowing.

2.5. LEMMA. Let H be a quasthypergroup such that H/ g
18 @ quasigroup. Then the following assertions are valid :
a) C(zy)=C(z)y, for every z and y in H.
b) If there ezist z in H and n € IN such that C(z) =
Cn(z) then C(y) = Cnly), for every y € H.

PROOF :
a) According to (10), C(z)y C C(zy). In order to prove

the converse inclusion let t € C(zy). Ast € H = Hy
we get that ¢t € uy, for some u € H. Therefore f*(t) =
B*(z)B*(y) = B*(v)p*(y) , whence B*(t) = *(u). Thus
t € C(u)y = C(z)y, that is C(zy) C C(z)y.

b) Let y € H. Then there exists u € H such that
y € zu. Hence C(y) = C(zu) = C(z)u = Co(z)u C Cp(au) =
Ca(y)-

It folllows that C(y) = Cn(y), for every y € H. .

2.6. COROLLARY. Let H be a finite quasihypergroup.
Then the relation B 1s transitive in H if and only if H verifies

the condition (xx).
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2.7. REMARK. If H is a infinite quasihypergroup then
H /g~ is not necessarily a quasigroup. This follows from the

example below.

2.8. EXAMPLE. Let G be a groupoid and | 4:).cc

be a family of nonempty disjoint sets. On H = A, we

Ay,z € G and y € G. Then (H,-) is a hypergroupoid for
which 8* = =, and H/p ~G.

If we take G = (IN,*), where 7 =y = r — y. by the
above construction we obtain a quasihypergroup for which

H/g ~ (IN, #) is not a quasigroup.

3. CLASSES OF QUASIHYPERGROUPS
IN WHICH THE RELATION 5 IS TRANSITIVE

In this section, we present some of the most important
classes of quasihypergroups in which we can prowve that the
relation f is transitive. We use Theorems 2.3 and 2.4, es-

tablished in the previous section.

3.1. THE CASE OF HYPERGROUPS
3.1.1. PROPOSITION. Let H be a hypergrosp.

i) If a € H and Q € P,(H), where n € IN". then there
ezists Q' € Pn(H) such that Q C Q'a.
i) If Q@ and Q' are two elements of P(H) such that
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QNQ #0 and a€ Q' then (QU{a})C Q", for
some Q" € P(H).
i) C(z) = Ci(z), for any z € H.

PROOF :
i) Consider z1,...,z, in H such that @ = z;...zn. As

Ha = H there exists z}, € H such that ¢, € z,a. Then,
taking Q' = z1...2,-12), we get Q@ C Q'a.

ii) Let b € @ N Q'. Then, because of the reproductibility,
then exists ¢ € H such that a € be. According to i) we have
Q C Q:a, for some Q) € P(H). Therefore @ C Qia C
Q1bc C Q1Q'c and a € be C Qe C Qyac C @1Q'c. Hence for
Q" = Q:Q'c we obtain that (QU{a}) C Q" and Q" € P(H).
iii) It suffices to show that C;(z) is a complete part of H,
for every z € H. Let Q € P(H) such that Q N C(z) # 0.
According to the definition of C;(z) there exists @' € P(H)
such that z € Q' and QNQ' # 0. From i), we get (QU{z}) C
Q" for some Q" € P(H), where Q@ C Q" C Cy(x). .

Using this above proposition and Theorem 2.3 we have :

3.1.2. PROPOSITION. The relation 3 i3 transitive in any
hypergroup. B

3.1.3. REMARK. Another proof for this previous result
have been given by D. Freni in [4] using the notion of heart

of a hypergroup.

We present now an interesting consequence of Proposi-

tion 3.1.1 for finite hypergroups.
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3.1.4. PROPOSITION. Let H be & finsiz Rapergronp and
Q,Q’' be in P(H) such that QN Q" # §. Them fhere ezists
Q" € P(H) such that QU Q' C Q". .

3.2. THE CASE OF QUASIHYPERGROUPS WITH IDEN-
TITY
Recall that an element e of 2 hypergmompoad H 1s

an identity if 2 € (ex N ze), for every z € H.

We get the following result.

3.2.1. LEMMA. Let H be a quasihypergrony == which there
exists at least one identity e. Then Cle) =Chlel

PROOF : *
It suffices to show that Ci(e) is 2 complete pert of H.

Let Q € P(H) such that @ NCs(e) # . Hence there exists
Q' € P(H) such that ¢ € Q" and QN Q" # I Consider
z € QNQ'. Then e € z'z, for some " £ H. Takng Q" =
(z'Q")Q € P(H) we have e € z'z C (e} C(FQ'1Q = Q"
and Q C eQ C (z'2)Q C (2'Q")Q = Q". Hence Q C Cy(¢). =

Using the previous Lemma and Theorem 2.£ we get :

3.2.2. THEOREM. Let H be a quasihypergrouy such that
H/g 1is a quasigroup. If H conteins af lesst one identily
then the relation 3 is transitive in H. 5

Here are now two remarquable consequences of Theorem

3.2.2.
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3.2.3. PROPOSITION. Let H be a weakly associative
quasihypergroup (i.e., according to [10], ¢ Hy-group). If H
has at least one i1dentity then the relation B is transitive in

H.

PROOF :
It follows from Theorem 3.2.2 and because H/g. 1is

a group whenever H is a Hy-group. "

We mention that another proof of Proposition 3.2.3 has

been given by D.Freni in Corollary 2.4 of [5].

3.3. THE CASE OF QUASIHYPERGROUPS CONTAIN-
ING SINGLE ELEMENTS
An element z of a hypergroupoid H is single if C(z) =

{z} (see [12]). The following result holds.

3.3.1. THEOREM. Let H be a quasihypergroup such that
H/p+ i3 a quasigroup. If there ezists © € H such that C(z) €
P(H) then = g*.

PROOF :
If C(z) = Q@ € P(H) then Ci(z) = @ = C(z) and,
according to Theorem 2.4, § = §*. .

An immediate consequence of Theorem 3.3.1 is :

3.3.2. PROPOSITION. Let H be a quasithypergroup such
that H/ g+ 13 o quasigroup. If H contains a single element
then 0 is transitive. .

A similar result for Hy-groups has been obtained

by T. Vougiouklis (see [12], Theorem 1.3.3).
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3.4. THE CASE OF QUASIHYPERGROUPS HAVING
UNDERLYING GROUPS

Let (H,) be a quasihypergroup which has an underlying
group (H,-), that is z-y C zy, for every z and y in H. Then
(H,) is a weakly associative quasihypergroup. also called a
Hy-group (see T. Vougiouklis, [12] ).

In the following we show how to determine the relation
B* for this kind of quasihypergroups. Notice that according
to Theorem 3.2.2 we have g* = 3.

Consider the set A = U{(z -y) " '{zy) iz.v € H} and
let N be the normal closure of A (i.e. N is the least normal
divisor of the group (H,+) containing the set 4).

Consider the canonical projections ¢ : H — H/N, re-
spectively 7 : H — H/g.

Then g(zy) = {{-N |t € zy} and ¢(z)-aly) = (z-y)- N,
whence g(zy) = ¢(z)-q(y), for every z and y in H. Therefore
the heart wy of H is included in N. On the other hand, as
1=z"1.z C z 7'z, for every r € H, it follows that x(z7}) =
m(z)~!. Using this equality we have that 7" -y £ wy and

l.2.a4 € wy, whenever r and yarein vz anda € H.

also a”
Hence wy is a normal subgroup of H. More than that, as
7((zy) " (zy)) = w(1), it follows that A C =z. Therefore
N C wy. Hence wy = N. It results that H/ 3 coincides
with H/N. We get that 3%y if and only I z3y . that 1s, if
and only if e N = yN.

A direct consequence of these remarks are the following

results.



No. 12 - 1997 Ratio Mathematica M. Gutan

3.4.1. THEOREM. Let (H,) be o quasihypergroup having
an underlying group (H,-). Then the heart wy of (H,) is
the normal closure of the set U{(z -y) '(wy) |z,y € H} and
the relations B and B* coicide in (H,). u

3.4.2. PROPOSITION. Let H be @ Hy-group having only

one proper hyperproduct. Then the relations § and B* coicide
wn H.

PROOF :
According to [8], H is either a hypergroup or a Hy-

group. Hence f§ = f*. .
We mention that in [12] some particular case of Propo-
sition 3.4.1 are studied (see Examples 1.2.3, 1.2.4 and 1.2.5).
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