FUZZY SUB-F-POLYGROUPS

A. Hasankhani , M.M. Zahedi

چکیده: در این مقاله مفاهیم زیر Fیلی گروه فازی و روابط همارزی فازی یک Fیلی گروه تعریف شدهاند و قضایایی اثبات گردیدهاند.

Abstrace: The concepts of scalars, fuzzy sub-F-polygroups and fuzzy congruence relations of an F-polygroup are defined and some theorems are proved.

Faculty of Mathematics and Computer Sciences, Kerman University, Kerman, IRAN, Email: Zahedi@math.Kerman u.ac.ir., Fax +98-341-263244

1. PRELIMINARIES

A fuzzy subset [3] of a non-empty set A is a function from A to [0,1]. Throughout this paper I is the unit interval $[0,1] \subseteq \mathbb{R}$ and I^A is the set of all fuzzy subsets of A. If $\mu \in I^A$, then by $supp(\mu)$ we mean the set $\{x \in A | \mu(x) \neq 0\}$. Let $\mu, \eta \in I^A$. Then $\mu \leq \eta$ iff $\mu(x) \leq \eta(x)$, For all $x \in A$.

Definition 1.1. Let μ, η and $\mu_{\alpha} \in I^A$ where α is in the index set Λ . We define the fuzzy subsets $\mu \cap \eta, \mu \cup \eta, \bigcap_{\alpha \in \Lambda} \mu_{\alpha}$ and $\bigcup_{\alpha \in \Lambda} \mu_{\alpha}$ as follows:

- (i) $(\mu \cap \eta)(x) = \min\{\mu(x), \eta(x)\},$
- (ii) $(\mu \cup \eta)(x) = \max\{\mu(x), \eta(x)\},$

(iii)
$$(\bigcap_{\alpha \in \Lambda} \mu_{\alpha})(x) = \inf_{\alpha \in \Lambda} \mu_{\alpha}(x),$$

(iii)
$$(\bigcap_{\alpha \in \Lambda} \mu_{\alpha})(x) = \inf_{\alpha \in \Lambda} \mu_{\alpha}(x),$$

(iv) $(\bigcup_{\alpha \in \Lambda} \mu_{\alpha})(x) = \sup_{\alpha \in \Lambda} \mu_{\alpha}(x),$ for all $x \in A$.

Definition 1.2. Let $a \in A, t \in I$. They by a fuzzy point a_t of A we mean the fuzzy subset of A given as:

$$a_t(x) = \begin{cases} t & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$$

Definition 1.3 [5] Let $A \neq \emptyset$ and $I_{\bullet}^A = I^A \setminus \{o\}$, where o is the function which is identically 0. Then

(i) by an F-hyperoperation * on A we mean a function from $A \times A$ to I_*^A ; in other words for any $a, b \in A, a * b$ is a non-empty fuzzy = subset of A.

(ii) if
$$\mu, \eta \in I_*^A$$
, then $\mu * \eta \in I_*^A$ is defined by: $\mu * \eta = \bigcup_{x \in supp(\mu), y \in supp(\eta)} x * y$.

Notation 1.4. Let $\mu \in I_*^A$, $B\&C \in P^*(A)$ and $\mathfrak{a} \in A$. Then

(i) $a*\mu$ and $\mu*a$ denote $\chi_{\{a\}}*\mu$ and $\mu*\chi_{\{a\}}$ respectively,

(ii) $a*B, B*a, \mu*B, B*\mu$ and B*C denote $\chi_{\{a\}}*\chi_{B}, \chi_{B}*$ $\chi_{\{a\}}, \mu * \chi_B, \chi_B * \mu \text{ and } \chi_B * \chi_C \text{ respectively.}$

Definition 1.5 [5]. Let \mathcal{F} be a non-empty set and "*" an F-hyperoperation on \mathcal{F} . Then $(\mathcal{F},*)$ is called an F-polygroup iff

- (i) $(x * y) * z = x * (y * z), \forall x, y, z \in \mathcal{F},$
- (ii) there exists an element $e_F \in \mathcal{F}$ such that $x \in supp(x * e_F \cap e_F * x)$, $\forall x \in \mathcal{F}$ (In this case we say e_F is an F-identity element of \mathcal{F} .),
- (iii) for each $x \in \mathcal{F}$, there exists a unique element $x' \in \mathcal{F}$ such that $e_F \in supp(x * x' \cap x' * x)$, $(x' \text{ is called the F-inverse of } x \text{ and is denoted by } x_F^{-1}.)$,
- (iv) $z \in supp(x * y) \Rightarrow x \in supp(z * y^{-1}) \Rightarrow y \in supp(x^{-1} * z)$, $\forall x, y, z \in \mathcal{F}$. (This property is called the *F*-reversibility of \mathcal{F} with respect to *.)

When there is no ambiguity, for simplicity of notation we use e and x^{-1} instead of e_F and x_F^{-1} respectively.

If \mathcal{F} is an F-polygroup and x * y = y * x, $\forall x, y \in \mathcal{F}$, then \mathcal{F} is said to be Abelian.

Henceforth \mathcal{F} will denote an F-polygroup with hyperoperation "*" and e will denote the F-identity of \mathcal{F} .

Definition 1.6 [5]. Let $\emptyset \neq H \subseteq \mathcal{F}$. Then H is called an F-subpolygroup iff

- (i) if $x \in H$, then $x^{-1} \in H$;
- (ii) $supp(x*y) \subseteq H, \forall x, y \in H.$

In this case we write: $H <_{F-P} \mathcal{F}$.

Note that condition (ii) of the above Definition is equivalent to $x*y \leq \chi_H$, $\forall x,y \in H$.

Lemma 1.7 [5]. Let $\emptyset \neq H \subseteq \mathcal{F}$. Then $H <_{F-P} \mathcal{F}$ if and only if $supp(x * y^{-1}) \subseteq H$, $\forall x, y \in H$.

Definition 1.8 [5]. Let $H <_{F-P} \mathcal{F}$. Then

- (i) H is said to be weak normal in $\mathcal{F}(H \triangleleft_{F-P}^w \mathcal{F})$ iff $x*H*x^{-1} \leq \chi_H$, $\forall x \in \mathcal{F}$,
- (ii) H is said to be normal in $\mathcal{F}(H \triangleleft_{F-P} \mathcal{F})$ iff $x * H * x^{-1} = \chi_H$, $\forall x \in \mathcal{F}$.

Notation: Let $H \triangleleft_{F-P} \mathcal{F}$. Then $\mathcal{F}/H = \{x * H : x \in \mathcal{F}\}$.

Theorem 1.9 [6]. Let $H \triangleleft_{F-P} \mathcal{F}$. Define the F-hyperoperation " \square "

on \mathcal{F}/H as follows:

$$\Box: \mathcal{F}/H \times \mathcal{F}/H \longrightarrow I_{\star}^{\mathcal{F}/H}$$
$$(x * H, y * H) \longmapsto x * H \Box y * H$$

where

$$(x*H\square y*H)(z*H)=(x*y*H)(z), \quad \forall z*H\in \mathcal{F}/H.$$

Then $(\mathcal{F}/H, \square)$ is an F-polygroup called the quotient F-polygroup.

Definition 1.10. A fuzzy binary relation R on a set X (i.e. $R \in I^{X \times X}$) is said to be a fuzzy similarity relation if it satisfies for all $x, y, z \in X$:

- (S1) reflexivity: R(x, x) = 1;
- (S2) symmetry: R(x, y) = R(y, x);
- (S3) transitivity: $\min\{R(x,y),R(y,z)\} \leq R(x,z)$.

2. MAIN RESULTS

Definition 2.1. Let $\mu \in I^{\mathcal{F}}$. Then μ is a fuzzy sub-F-polygroup of \mathcal{F} iff

- (i) $\mu(z) \geq min\{\mu(x), \mu(y)\}, \forall z \in supp(x * y), \forall x, y \in \mathcal{F}.$
- (ii) $\mu(x^{-1}) \ge \mu(x), \forall x \in \mathcal{F}$.

Note that this definition is a generalization of D-finition 4.1 of [4]. Clearly (ii) implies that $\mu(x^{-1}) = \mu(x), \forall x \in \mathcal{F}$ and (i) implies that $\mu(e) \geq \mu(x), \forall x \in \mathcal{F}$.

Definition 2.2. Let ξ be a binary fuzzy relation between two F-polygroups $\mathcal{F}, \mathcal{F}'$ (i.e. $\xi \in I^{\mathcal{F} \times \mathcal{F}'}$). Then ξ is called an FP-relation iff:

(i) $(e, e') \in supp(\xi)$, where e and e' are the identity elements of \mathcal{F} and \mathcal{F}' respectively;

(ii) $\xi(a,b) \le \xi(a^{-1},b^{-1}) \ \forall a,b \in \mathcal{F},$

(iii) $\min\{\xi(a,b),\xi(c,d)\} \leq \xi(x,y), \forall x \in supp(a*c), y \in supp(b*d), \text{ for all } (a,b),(c,d) \in \mathcal{F} \times \mathcal{F}'.$

Clearly (ii) implies that $\xi(a,b) = \xi(a^{-1},b^{-1}), \forall a,b \in \mathcal{F}$.

Theorem. 2.3. If ξ is an FP-relation between $\mathcal{F}, \mathcal{F}'$ and if $K <_{F-P} \mathcal{F}'$, then the subset H of \mathcal{F} which is defined as follows:

$$H = \{x \in \mathcal{F} : (x, y) \in supp(\xi), \text{ for some } y \in K\}$$

is an F-subpolygroup of \mathcal{F} .

Proof. Since $(e,e') \in supp(\xi)$, so $e \in H$. Now let $x \in H$. Then there is $y \in K$ such that $\xi(x,y) > 0$. Since $\xi(x,y) \le \xi(x^{-1},y^{-1})$ and $y^{-1} \in K$, we get $x^{-1} \in H$. At present let $x_1,x_2 \in H$ and $t \in supp(x_1*x_2)$. Thus $(x_1,y_1)\&(x_2,y_2) \in supp(\xi)$, for some $y_1,y_2 \in K$. Thus

$$0 < \min\{\xi(x_1, y_1), \xi(x_2, y_2)\} \le \xi(t, w)$$

where $w \in supp(y_1 * y_2) \subseteq K$. Hence $t \in H$.

Theorem 2.4. If ξ is a reflexive FP-relation on an F-polygroup \mathcal{F} , then ξ is a fuzzy similarity relation on \mathcal{F} .

Proof. First we prove the condition S_2 of Definition 1.10. Let $(a,b) \in \mathcal{F} \times \mathcal{F}$. Then

 $\xi(a,b)$

= $\min\{\xi(a,b),\xi(b^{-1},b^{-1})\}$, by reflexivity of ξ

 $\leq \xi(t,e), \forall t \in supp(a*b^{-1}), \text{ since } e \in supp(b*b^{-1})$

 $\leq \xi(t^{-1},e), \forall t \in supp(a*b^{-1})$

= $\min\{\xi(t^{-1},e), \xi(a,a)\}$, by reflexivity of ξ

 $\leq \xi(b,a)$, since $b \in supp(t^{-1} * a)$.

Similarly $\xi(b,a) \leq \xi(a,b)$. Hence ξ is symmetric. Now we prove the condition S_3 of Definition 1.10. For any $a,b,d \in \mathcal{F}$ we

have:

$$\begin{aligned} \min\{\xi(a,b),\xi(b,d)\} & \leq & \xi(b,d) \\ & = & \min\{\xi(b,d),\xi(b^{-1},b^{-1})\} \\ & \leq & \xi(e,w) \;, \; \forall w \in supp(d*b^{-1}) \cdot \end{aligned}$$

Since, $\min\{\xi(a,b),\xi(b,d)\} \leq \xi(a,b)$. Therefore

$$\min\{\xi(a,b),\xi(b,d)\} \leq \min\{\xi(e,w),\xi(a,b)\}$$

$$\leq \xi(a,d), \text{since } d \in supp(w*b).$$

Thus ξ is transitive.

Definition 2.5. An FP-relation on an F-polygroup \mathcal{F} which is also a fuzzy similarity relation is called a fuzzy congruence relation on \mathcal{F} .

Definition 2.6. Let ξ be a fuzzy congruence relation on \mathcal{F} , then the fuzzy subset $\xi < e >$ of \mathcal{F} is defined by $\xi < \epsilon > (x) = \xi(e,x)$, for all $x \in \mathcal{F}$.

Theorem 2.7. If ξ is a fuzzy congruence relation on an F-polygroup \mathcal{F} , then the fuzzy subset $\xi < \epsilon >$ is a fuzzy sub-F-polygroup of \mathcal{F} .

Proof. Let $x, y \in \mathcal{F}$. Then $\min\{\xi < e > (x), \xi < e > (y)\} = \min\{\xi(e, x), \xi(e, y)\} \le \xi(e, z), \forall z \in supp(x * y).$

Also we have $\xi < e > (x) = \xi(e, x) \le \xi(e, x^{-1}) = \xi < e > (x^{-1})$. Therefore $\xi < e >$ is a fuzzy sub-F-polygroup of \mathcal{F} .

Definition 2.8. Let μ be a fuzzy sub-F-polygroup of \mathcal{F} . Then μ is said to be normal iff for all $x, y \in \mathcal{F}$

$$\mu(z) = \mu(z'), \forall z \in supp(x * y), \ \forall z' \in supp(y * z).$$

Note that the above definition generalizes Definition 2.3 of [4].

Remark 2.9. It is obvious that if μ is a normal fuzzy sub-F-polygroup of \mathcal{F} , then $\mu(z) = \mu(z'), \ \forall z, z' \in supp(x*y), \ \forall x, y \in \mathcal{F}$.

Theorem 2.10. Let μ be a fuzzy sub-F-polygroup of \mathcal{F} . Then the following condition are equivalent:

- (i) μ is normal.
- (ii) For all $x, y \in \mathcal{F}, \mu(z) = \mu(y), \forall z \in supp(x * y * x^{-1})$
- (iii) For all $x, y \in \mathcal{F}, \mu(z) \ge \mu(y), \ \forall z \in supp(x * y * x^{-1})$
- (iv) For all $x, y \in \mathcal{F}$, $\mu(z) = \mu(y)$, $\forall z \in supp(x^{-1} * y^{-1} * x * y)$. **Proof.** The proof is similar to the proof of Theorem 2.5 of [4].

Corollary 2.11. If ξ is a fuzzy congruence relation on \mathcal{F} , then $\xi < e > \in I^{\mathcal{F}}$ is a normal fuzzy sub-F-polygroup of \mathcal{F} .

Proof. By Theorem 2.7, $\xi < e >$ is a fuzzy sub-F-polygroup of \mathcal{F} . Now let $x, y \in \mathcal{F}$ and $z \in supp(x * y * x^{-1})$. Then $z \in supp(t * x^{-1})$, for some $t \in supp(x * y)$. Hence we have:

$$\xi < e > (z) = \xi(e, z)$$

$$\geq \min\{\xi(x, t), \xi(x^{-1}, x^{-1})\},$$

$$= \xi(x, t), \text{ since } \xi \text{ is reflexive}$$

$$\geq \min\{\xi(x, x), \xi(e, y)\}, \text{ since } t \in suup(x * y)$$

$$= \xi(e, y), \text{ since } \xi \text{ is reflexive}$$

$$= \xi < e > (y).$$

Therefore by Theorem 2.10 (iii), $\xi < e >$ is normal.

Corollary 2.12. $H \triangleleft_{F-P}^w \mathcal{F}$ if and only if χ_H is a normal fuzzy sub-F-polygroup of \mathcal{F} .

Proof. The proof follows from Definition 2.1, Theorem 2.10 (iii).

Corollary 2.13. Let $H \triangleleft_{F-P} \mathcal{F}$. Then $x * H * x^{-1}$ is a normal fuzzy sub-F-polygroup of \mathcal{F} , for all $x \in \mathcal{F}$.

Proof. It is obvious.

Remark 2.14. It is well-known that in the fuzzy group theory, every fuzzy subgroup of an Abelian group is normal. But the following example shows that this is not true in the case of F-polygroups. At first we have the following theorem:

Theorem 2.15 [6]. Let (A, o) be a polygroup [1]. Then (A, *) is an F-polygroup where $x * y = \chi_{xoy}, \ \forall x, y \in A$.

Example 2.16. If $(H = \{e, a, b, c\},.)$ is Klein's four-group, then (H, o) is a polygroup (see [2]) where the hyperoperation "o" is defined as follows:

$$xoy = \{x, y, x.y\}, \text{ if } x \neq y^{-1}, \quad x, y \neq \epsilon,$$

 $xox^{-1} = x^{-1}ox = H, \text{ if } x \neq \epsilon,$
 $xoe = eox = \{x\} \text{ for every } x \in H.$

Now let "*" be the F-hyperoperatoin induced by "o" (i.e. $x*y=\chi_{xoy}, \forall x,y\in H$). Then by Theorem 2.15 (H,*) is an F-polygroup. Let $\beta,\gamma\in[0,1]$ such that $\beta<\gamma$. Define a fuzzy subset μ of H as follows:

$$\mu(a) = \mu(b) = \mu(c) = \beta, \mu(\epsilon) = \gamma.$$

Then it is easy to see that μ is a fuzzy sub-F-polygroup of (H,*). But since $e \in supp(a*a)$, $a \in supp(a*a)$ and $\mu(e) \neq \mu(a)$, we get μ is not normal.

Theorem 2.17. Let \mathcal{F} be an Abelian F-polygroup and μ a normal fuzzy sub-F-polygroup of \mathcal{F} such that $\mu(\epsilon) = 1$. Define $\xi \in I^{\mathcal{F} \times \mathcal{F}}$ as follows:

$$\xi(x,y) = \mu(z)$$
, for some arbitrary element $z \in supp(x * y^{-1})$

Then ξ is a fuzzy congruence relation and $\mu = \xi < \epsilon >$.

Proof. By Remark 2.9, ξ is well-defined. Clearly $\xi(e, e) > 0$. Now for all $(x, y) \in \mathcal{F} \times \mathcal{F}$ we have:

$$\xi(x,y) = \mu(w), w \in supp(x * y^{-1})$$

=
$$\mu(w^{-1})$$
, $w^{-1} \in supp(y * x^{-1})$
= $supp(x^{-1} * y)$, by commutativity of *
= $\xi(x^{-1}, y^{-1})$.

Now we show that

$$\min\{\xi(a_1, b_1), \xi(a_2, b_2)\} \le \xi(x, y), \forall x \in supp(a_1 * a_2)$$

, $\forall y \in supp(b_1 * b_2)$.

Let $x \in supp(a_1 * a_2)$, $y \in supp(b_1 * b_2)$ and $t \in supp(x * y^{-1})$ be arbitrary. Then we have: $t \in supp(x * y^{-1}) \subseteq supp(a_1 * b_1^{-1} * a_2 * b_2^{-1})$. Thus $t \in supp(s * w)$, for some $s \in supp(a_1 * b_1^{-1})$ and $w \in supp(a_2 * b_2^{-1})$. Therefore we get

$$\xi(x,y) = \mu(t)$$
, by definition of ξ
 $\geq \min\{\mu(s), \mu(w)\}$, since μ is a fuzzy sub-F-polygroup
 $= \min\{\xi(a_1, b_1), \xi(a_2, b_2)\}$.

Consequently ξ is an FP-relation. Since $\xi(x,x) = \mu(e) = 1$, then ξ is reflexive. Hence by Theorem 2.4 and Definition 2.5, ξ is a fuzzy congruence relation.

Since
$$\mu(x) = \mu(x^{-1}), \forall x \in \mathcal{F}$$
, we get that $\mu = \xi < e >$.

Corollary 2.18. Let μ be a fuzzy subset of an Abelian F-polygroup, \mathcal{F} . Then μ is a normal fuzzy sub-F-polygroup of \mathcal{F} and $\mu(e)=1$ if and only if there exists a congruence relation ξ on \mathcal{F} such that $\mu=\xi< e>$.

Proof. The proof follows from Theorem 2.17, and Corollary 2.11.

References

- 1. P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, (1973).
- Ch.G. Massouros, Quasicanonical hypergroups, Fourth Int. Congress on AHA (World Scientific 1990) 129-136.

- L.A. Zadeh, Fuzzy sets, Inform. and control, 8(1965) 353-388.
- M.M. Zahedi, M.Bolurian and A.Hasankhani, On Polygroups and Fuzzy subpolygroups, J. Fuzzy Math. Vol. 3 No. 1 (1995) 1-15.
- 5. M.M. Zahedi, A. Hasankhani, F-polygroups (I), J. Fuzzy Math. (to appear).
- 6. M.M. Zahedi, A. Hasankhani, F-polygroups (II), Inform. Sci. (to appear).