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ABSTRACT - In this paper a special case of canonical polysymmetrical
hyperrings, the M-Polysymmetrical hyperrings, are studied and investigated
in detail. Certain methods of their construction from rings are presented and a
new class of hyperstructures, the M-Polysymmetrical superrings, is intro-
duced.
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1. INTRODUCTION

Mittas, the first one of the co-authors, in his paper [6] (in the French Acad-
emy of Sciences) has introduced two new classes of hypercompositional
structures along with some of their fundamental properties. These classes are
special cases of canonical polysymmetrical hypergroups and hyperrings
(MITTAS [9], [10]). Yatras, the second co-author of this paper, has studied
the first of the above classes. He has named the hypercompositional structures
that appear in it, M- Polysymmetrical hypergroups and he has
already presented the first results in [11]. Going on with his study, he has also
presented results on the subhypergroups of the M-polysymmetrical hyper-
group (YATRAS [12]) and on the homomorphisms of the M-polysymmetrical
hypergroup (YATRAS [13]). Here we give the initial results that we have
reached during our study of the hypercompositional structures of the second
of the above classes. Likewise the M-Polysymmetrical hypergroups, we have
given them the name M-Polysymmetrical hyperrings.

We give the relevant definitions:

Definition 1.1
A set H is called a M-polysymmetrical hypergroup (M-P-H) if it is endowed
with a hyperoperation x+y that satisfies the following axioms:

1. (xty)ytz = xHy+z) for every x.v.zeH

2. Xty = y+x for every x.,yeH

3. (30eH) (VxeH) [xe0+x]

4. (VxeH) (3x'eH) [x+x' = 0]

(x' is an opposite or symmetrical of x, with regard to the considered 0,

and the set of the opposites S(x)= {x' eH : x+x’ =0} is the symmetrical

set of x).

5. For every x,y,zeH, x'eS(x), y'eS(y). Z€5(z) we have: zexty =

Z'ex'+y".

We remind that in such a hypergroup., when x runs in H the sets

C(x) = 0+x form a partition of H, which is notified by mod(0), or simply (0)
and for which we have x=y (0) & 0+x = 0+y < C(x) = Cy). Also, for
every xeH, x'eS(x) we have S(x) = C(x) and the set of classes,
H/(0) = G(H) is an abelian group (MITTAS [6], YATRAS [1 1.

Definition 1.2

A set A, endowed with a hyperoperation x+y (addition) and an operation xy
(multiplication), is called M-polysymmetrical hyperring (M-P HR) (and with
abuse of definition, hyperring, since it is not such in the sense of the papers
KRASNER [2], MASSOYROS [3], MITTAS §5]. [7]) i it satisfies the axi-
oms:
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I The hyperstructure (A,t) is a M-P.H.
II.  The structure (A,") is a semigroup.
Il The muitiplication is bilaterally distributive over addition i.e.
(x+y)z = xztyz, z(x+y) = zx+zy for every X,y,zeA.
As an example of those structures we give the one that appears in
MITTAS [6], which is also the one that motivated their definition.

Example 1.1
Let (K,+,") be a commutative algebraically closed field with charac-
teristic p. Also let n#1 be a comprime to p number and &, be the multipli-
cative group of the n-th roots of the unity of K. We define the following hy-
peroperation in K:
x+y=1zeK:x" +y" zz“}
The x+y is aclass modulo &, in K and it holds that:
xiy = k&) + &Y
It can easily be proved that K, endowed with the above hyperoperation is a
M-P.H. This M-P.H combined with the multiplication in K gives the hyper-
structure (K, + ,-) which is a M-P.HR and especially a M-polysymmetrical
hyperfield as it will appear in the following.
We proceed now to a general study of the M-P.HR.

2. GENERALITIES

We can easily notice that the neutral element 0 of the additive hypergroup, is
abilaterally absorbing element of the multiplicative semigroup,
that is:

a0'=0a=0 for every aeA

Remarks 2.1

a) Obviously we have A=JJ.

b) Every ring is a M-P.HR. A M-P.HR, which is not a ring, is called
proper.

c¢) If there exists a scalar element seA, then M-P.H (A,+) is an abelian
group (YATRAS [11]) and thus A is a ring,

d) IfW = {xeA:0+x = x}, then W is a multiplicatively permissible sub-

set (DUBREIL-JACOTIN [1]) of A. Since xeW = 0+x = x for every

aeA we have:
a(0+x) = a0+ax = O+ax = ax

thus axe W, i.e. AWCW. In the same way WACW.
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In the following, we will accept that all the terms which have been defined in
the theory of the rings and which are dependent only on the multiplicative
structure e.g. divisors, (units in the sense that every element which has a re-
verse with regard to the multiplicative uriity element). divisors of zero, asso-
ciate elements, unitary rings, commutative rings, integral rings etc. will have
the same meaning for the M-P.HR, as it is for the hyperrings MITTAS [5],
[7]. The only exception is the term «domain» (integral). that will be substi-
tuted with the term «hyperdomain». As a result in the case under considera-
tion it will be named M-polysymmetrical hyperdomain (M-P.HD), that is,
an integral (i.e. a commutative for which the cancellation law for multiplica-
tion holds) and unitary M-P.HR. Another special form of M-P.HR is the
M-polysymmetrical hyperfield (M-P.HF), that is, a M-P.HR whose set
A* = A-{0} is a group with regard to the multiplication. We also denote that,
obviously, all the properties of the rings which are dependent only on the
multiplication and which are being proved without the intervention of the

addition, also hold in the theory of M-P.HR (as well as in the theory of the
hyperrings MASSOUROS - MITTAS [4], MITTAS [7]).

Remark 2.2

In the ring or (canonical) hyperring theory, satisfying the cancellation law, is
equivalent to not having divisors of zero. However, the same does not hold
for the M-P.HR, where obviously satisfying the cancellation law does not
imply that there exist divisors of zero (x#0 and xy = 0 = xy = x0 =y =0,
thus x is a non-divisor of zero element), while for the converse we generally
have that if xeA* a non-divisor of zero (e.g. from the lefi) then xy = Xz =
Xy+xz' = xztxz' = x(y+z) = x(z+z) = 0 = Oey-7 = y+Z = 0 =
y+z+z' = 0+z = Oty = 0+z = z=y mod(0).

And so the proposition:

Propesition 2.1
If A is a M-P.HR and xeA* is a non-divisor of zero (from one side for in-
stance) then

Xy = xz = z=y mod(0)

Examples 2.1

1. The set resulting from the set C of the complex numbers after the subtrac-
tion of the non zero real numbers and the pure imaginary numbers ie.
A = C-(R*UiR¥), endowed with the hyperaddition

{ze A:Rez=Rex+ReyJImzeR*}.  if Rex+Rey#0

x+y={
0 . if Rex+Rey=0
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and with multiplication

xoy = Rex-Rey+i-Imx-Imy
is a M-P_HR. This can be proved with the verification of the axioms. We re-
mark that, if zeC, Rez = a, acR* then the class C(z) mod(0) is

C(z) = X, = {atiy, yeR*}
(i.e. it is a line parallel to the imaginary axis), while for the symmetrical of z it
is S(z) = {-atiy, yeR*}. Obviously for ax,yeA, a#0, acx = acy =
X =y, i.e. the cancellation law is valid and as a result the M-P.HR (A,+,.)
has no divisors of zero. The number e = 1+i is the unitary element. Also,

assuming that the commutative law of the multiplication is valid, then the M-
P.HR (A,+,) is a M-P.HD and moreover a commutative one. Obviously, for

every z = xtiyeA* the w= l +L is the multiplicative inverse of z
Xy

(zZow = 1+i).

2. It is obvious that, if we consider the Im instead of Re and RezeR* instead

of ImzeR* in the above definition of the hyperoperation, then the deriving

hyperstructure is also a commutative M-P.HF.

3. We easily conclude that the previous examples can give more M-P.HRs

which become M-P.HDs if instead of C, we consider its subset E of the Gaus-

sian integers and instead of R, the set Z of integers. In other words, we con-

sider the set B = E-(Z*Ui Z*), enriched with similar hyperoperations and

operation to the ones that we have previously used in A.

4. If we equipe the set G of an abelian group (G,+) with the multiplication

xy=0 for evefy X,y€G@, then it becomes aring, thezer o ring. Likewise,

in the case of the hyperstructures if we equipe a M-P.H (H,+) with the zero

multiplication as above, then it becomes a M-P.HR, the z e r ¢ M-P.HR. Ob-

viously in this M-P.HR every xeH* is a zero divisor [see proposition 2.14].

In the following we will see others M-P.HRs which are neither M-P.HDs, and
thus nor M-P.HFs. Based on the above information regarding the M-P.HF we
have the following propositions which are presented without proof, since their
proof depends only on the multiplication.

Proposition 2.2
Every commutative M-P.HF is a M-P.HD.

Proposition 2.3
Every integral M-P.HR having a finite number of elements is a M-P.HF.
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Corollary 2.1
Every M-P.HD having a finite number of elements is a M-P.HF.

Regarding the M-P.HR we initially give the following lemma and theorem
from MITTAS [6].

Lemma 2.1

Ifx,yeA, then:
i) xC(y) = Cx)y = C(xy) = Clx;y1)
i) C(x)C(y) = C(xy) = Clxwy1)

Jor every x,€C(x), y,€C(y).

Theorem 2.1

The set A/(0)={C(x), xcA} of equivalent classes mod(0). is a ring with re-
spect to the addition C(x)+C(y) (=x+y) and the multiplication C(x)C(y)
(=C(xy)}, which is called ring of reduction or simply ring of M-P.HR (A+),
symbolized R(A).

This theorem, combined with the study that has been presented in MITTAS
[6], YATRAS [11] concerning the relation of the M-P.H to the abelian
groups, shows that, generally, the M-P.HRs are closely related to the rings.

Obviously, from the relation C(x)C(y) = C(x.y1), for every x.yeA, x,eC(x),
y1€C(y) derives that the equivalence mod(0) in A is compatible to the multi-
plication and consequently a norm al equivalence relation in M-P.HR
(A,+,). According to the relevant theory (MITTAS [7]) the quotient set
R(A) = A/(0) is a hyperring, which, as it is mentioned in the above theorem,
is a ring in the case of the M-P.HR.

More specifically, we have the relevant to the above theorem proposition:

Proposition 2.4

If the M-P.HR (A,+,) is M-P.HF, then the set A/(0) of the equivalent
classes mod(0) is a field called field of reduction or simply field of M-P.HF
(A,+,") symbolized F(A).

Taking into consideration the previous theorem the proof becomes easy. Ob-
viously the unity element of F(A) is the class C(1). Every class C(x) has its
reverse C(x”') (1 symbolizes the multiplication unity of A where there is no
danger of confusion).
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Next we present the following propositions showing the relation of the vari-
ous M-P.HRs (A, +,-) to the corresponding resulting rings of reduction A/{0)
without their proofs for reasons of simplicity and keeping this text short,

Proposition 2.5
If A is a commutative M-P.HR, then A/(0) is also a commutative ring.

Conversely, we have the proposition:

Proposition 2.6

If the ring of reduction A/(0) of M-P.HR (A,+,") is commutative then:
xy=yx mod(0) forevery x,ycA

and conversely.

Proposition 2.7
If the cancellation law for multiplication holds in A then it holds in A/(0) as
well.

Proposition 2.8
If A is a unitary M-P.HR, then A/(0) is a unitary ring.

Proposition 2.9

If the M-P.HR A has zero divisors, then the ring A/(0) has also zero divi-
sors and reversely. Thus if one of them has no zero divisors, neither has the
other.

Therefore we have the following proposition based on the above ones:
Proposition 2.10

If A an integral M-P.HR, then A(0) is an integral ring, and thus, if A is a
M-P.HD, then A/(0) is an integral domain.

Based on lemma 2.1 we are led to the following proposition which is signifi-

cant, especially for the construction of the M-P.HRs from the rings. Such
constructions are presented in the following,

Proposition 2.11

If A is a M-P.HR for which the cancellation law for multiplication holds
(especially, if A is an integral, or a M-P.HD or even a M-P.HF) then the
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classes mod(0) have the same cardinality ie. |C(x)|=|C(yN for every
x,yeA¥*

Proof

Obviously xy=0. According to lemma 2.1 we have

C(x)y=xC(y)
From the above relation derives that for every x;€C(x) there is y,;€C(y). So
X1y=Xy,, and because of the cancellation law, there exists only one y; like
this. So, for every choice of x,y from their classes. a mapping is defined:

Qxy - C(X) e C{})

which is bijective as it can easily be concluded. And so the proposition.

Thus the classes mod(0) in example 1.1 have the same finite cardinality n,
while in the 1st and 2nd of examples 2.1, they have the cardinality of the
continium. Also in the 3rd of examples 2.1 those classes have the cardinality
of the countable. Moreover in the 4th (of examples 2.1), where the condition
of the above proposition does not hold, there exist zero M-P.HRs with classes
having the same cardinality and also others with a different one.

Remark 2.3

Generally if A is an arbitrary M-P.HR and if for two elements x,yeA* (for
every X;,x;€C(x), y,,¥2€C(y)) we have:
Xy = Xy; = ¥ = 2and xjy = Xy = X; = X,

then [CG} =[G

Next we give the following properties of M-P.HRs omitting the proofs:

Properties 2.1

First we introduce the definition of a multiplication of an integer n with an
element xeH (where H is a M-PH) as follows:

X+X+..+X n times for n>0.n#1
n-x=¢0 forn=0
X' +x+..+x n times for n < 0,0 = -1

for n=1 we define 1-x=0+x
for n=-1 we define (-1)-x=0+x', x'e S(x) arbitrary, (YATRAS [11]).
So we have
I". i) Foreveryxy,zteA
(x+y)(ztt) = xztyz+xt+yt
ii) ForeverymneZ and xeA
(mx)(n-x) = (mn)x*
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And continuing we have:
2" x'yeS(xy), xy'e S(xy) for every x,yeA and thus  x'y=xy’ mod(0).
3". For every x,ye A we have: .

S(xy) =xS8(y) =S(x)y

4" For every xeA and neN* we have:

co (x) ifn even
C"'&)SC)  ifnodd
5®. For every xeA and neN* is valid that:

C(x)=C(x") -
6™ For every x,y,ze A we have:

s“(x)={

C)(y+z) = CRICHIH+C(x)C(2)
and (y+2) - C(x) = C(CEX)+C(2)C(x)
7" For every x,y,z€ A we have:
xC(y+z) = xC(y)+xC(2)
and Cly+z)x = C(y)x+C(z)x

Remarks 2.4

a) Ifthe M-PHR (A,+,) is unitary and 1 is its unitary element, then 1 is
unique (and obviously 10 for A={0}).

b) Ifthe M-P.HR (A,+,) is unitary, then the set U of itsu n it s (i.e. of its
elements which are inverse with regard to 1), is obviously a group and
U cA¥*, as in the case of rings.

¢) If the M-P.HR (A,+,) is commutative, then the binomial formula for
(x+y)" holds, i.e.:

n
(x+y)"=x" +nx“"y+...+[k]x“"‘yk +..+y" forevery x,yeA

The binomial formula generally holds for every M-P.HR for x,y commutative
elements. In addition since zex+y = x+y = 0+z, we have:
(x+y)"=(0+z)"=0+2"
which also is obviously valid in the case of the non commutative M-P.HR.
d) If(A,+,) M-P.HF then:
i)  XA* = A*x = A* for every xe A*
ii) A*=U and conversely (if A unitary M-P.HR and A*=U , then A
M-P.HF).
iii) for a#0 each one of the equations ax=b, xa=b has one and only one
solution in A and conversely (that is, if A a unitary M-P.HR,
A#{0} and the equations ax=b, xa=b have one and only one solu-
tion in A each, then A is M-P.HF).
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e} If A unitary M-P.HR and 1eW, then A is a ring. (Indeed, since AWCW,
WACW [remark 2.1,d] and 1€ W, then A=W and since 0+x=x for every
xe W, the structure (A,+) is a group and thus (A,+,:) is a ring).

Let R(A) = A/(0) be the ring of reduction of A and let (a,é)be a group of

choice of the additive hypergroup (A,+) of M-P.HR (A,+,") (YATRAS [11]).

We define in G the following operation starting from the group of reduction

G of (A,+) and through the already known bijective mapping (YATRAS [11])
f:G——> G with f(C) =xce(§

(where as it is known the X, is arbitrarily chosen in every class mod(0) of

(A1) element),
xey = f[C(x)C(y)] =f[C(xy)]

for every x,ye A and thus for the mapping f we also have
tlce)cE)l e[ c)]

for every x,yeA.

This operation, in combination with the addition

x+y=flcE)+C)]

in G , endows G with the structure of a ring.
_lpdeed:

a)  (oy)oz=fCE)CHN-rCEY=[FCey)-1CE)-
f(Cly)C@)= FChyz)=fCK)C(2)=
=fCE)- [fCe2)]=CE)-FCH) C@)l=x-(y-2)

for every x,y,2€ G .

b)  xoly+2)=f(Ck))ef(CEH)+CR)=F(CE)-F(Cl+2))=
f(CE)Cl +z))= F(CE)ICH)+CE)CE))-
=f(Clxy)+Clz))= f(Clxy))+f(Clxz))=x0y+xoz
for every x,y,ze G and from the property 2.1, 6".
In the same way we have (y+2z)ox=yox +zox for every x,y,z€ G

So, as a result we have for the M-P.HR the following proposition which is
analogous to the proposition of the M-P.H.
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Proposition 2.12

In every M-P.HR (A, +,) there exists a subset R of A which has the struc-
ture of a ring, isomorphic to the ring of reduction A/(0).

We call the ring ( R ,+,0), ring of choice of (A,+,:).

Example 2.2
In the M-P.HF (C,+,-) of example 1.1 (where C is the set of complex num-
bers) the set F(C) = C/(0) with elements C(x) = 04x = xE,.,, xeC,
equipped with the operations
C()+C(N=(xEN+(y EL)

C(x)C(y)=(x EL)(y Eg)=xy E,
for every x,yeC and C(x),C(y)eC/(0) is obviously its field of reduction. Also
if:
i) we consider as a group of choice R of the additive hypergroup (C,+) the
one which derives as follows: we take as a distinct element of every class
C(x), the element xcexé.,. which has a principal value of argument the

minimum of the principal values of the arguments of the numbers zex 6,,
ii) Through the bijective mapping
f:xE&,=C(x) — x,
we define the operation
| xoy =f[C()CE)]= [ Cly)]
for every x,yeC.
iii) we consider the addition of the group R

x+y=f[ce)+C(y)]
for every x,yeC.

Then (R ,+,) becomes a field (field of choice) which is isomorphic to the
field of reduction F(C).

Remarks 2.5

a) Obviously we will have more rings of choice, for more choices of ele-
ments from classes mod(0) of A as distinct. All of these are isomorphic
to each other since they are also isomorphic to the ring of choice.

b) Every ring of choice R is obviously a proper subset of A when A is a
proper M-P.HR.
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c) More rings with the same operations as the ones mentioned can result

from one M-P.HR if we consider the mapping g : R(A) —> A bi-

jective in A, instead of the mapping f, without necessarily having
g(C)eC for CeR(A).

Now we will deal with the construction of the M-P.HRs from one ring. As it
has been indicated in MITTAS [6] this is a more complex problem than the
corresponding one of the construction of the M-P.Hs with a given abelian
group as a group of reduction, as it derives from proposition 2.3 of YATRAS
{11], and from the consequence 3 of theorem 1 of §1 of MITTAS [6]. Indeed,
we start from a set E with the structure of a multiplicative semigroup which
has an absorbing element and which alsohas as a subset a ring (A,+,’), such
that:
i) Its multiplication being the restriction of the corresponding of the

semigroup (E,:) in A.
ii) The zero (0) of A being the absorbing element of the semigroup (E,-).
Apart from these conditions we assume that;
iii) There is a partition R of E with the property:

xCr(y) = Cr(x)y = Cr(xy) forevery x,y€ E

iv) There is also a bijective mapping f of the quotient set E/R on A such

that:

f(x) = Cp(x) for every xeA.

[where Cg(x) is the class of E mod (R) that contains the element x].
v)  Cr(0) = {0}
We also consider the hyperoperation:

x®y = £ [f(Crx)+ (Cr(y)] for every x,yeE
defined in E through the additive group (A,+) of the ring A, and the opera-
tion:
xoy=xy foreveryx,yeE

As it is already known (YATRAS [11]) the hyperoperation x®y makes E a
M-P_H whose group of reduction E/(0) cpincides with E/R. Also the opera-
tion X oy is associative in E since (E,) isa semigroup. Furthermore for every

x.y,2z€E we have: .

xo(y@z)=x(y$z)= x(yl Ele)z xf_l(yl +zl)= xCR(yl +z1)=
=XCR(W1):CR(XW1)= CR(X)WI =CR(X1)W1 = CR(’HWI):
= (XIW1)= f—][xl(yl +Zl)]= £ 6y, +x121)= CR(KIYI +X121)=
=Xy, ©x;2; = Cy (xl}‘l)eck(xizl):'"ICR(}’l)EBxlCR(Zl)=

~ x,Cr ()@ x,Cq €)= Ci (1)) y @ Cr 1) 2= Cr )y @ Cr &) 2=
=CR(xy)EBCR(xz)= Xxy@yz=xo0y®yoz

and in the same manner (yGBz}:x:yax@zox i
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In other words the multiplication is bilaterally distributive over the hyperop-
eration.

Consequently the hyperstructure (E,®, ¢ ) is a M-P.HR.

Thus we have the proposition:

Proposition 2.13
Let E be a set with the structure of a multiplicative semigroup that has an
absorbing element, having as a subset, a ring (A,+,), whose multiplication
is the restriction of the corresponding one of the semigroup (E,") in A and
the zero (0) of A is the absorbing element of the semigroup (E,.). Then if
1)  there is a partition R of E having the property

XCr(y) = Cr(x)y = Cg(xy) forevery x,yeE
ii) there is a bijective mapping of the quotient set E/R on A such that for
every xeA

f(x) = Cr(x)

[where Cg(x) is the class of E mod(R) that contains the element x]
and

iif) Cr(0)={0}

the hyperoperation x ®y =f"[f(Cx G)}+ £(Cx (7)) defined on E through
the group (A,+) of the ring and the operation x oYy = Xy (that is the opera-

tion of the semigroup and the ring) make E a M-P.HR whose ring of reduc-
tion E/(0) coincides with E/R.

More specifically if E is an arbitrary set and A its subset with the structure of
a zero ring (i.e. a ring every element of which is its zero divisor, that is for
every x,yeA and x=0, y#0 xy=0 is valid) and R is a partition of E and fis a
bijective mapping of the quotient set E/R on A such that for every xeA,
f'(x) = Cr(x) and Cx(0) = {0}, then the previous hyperoperation x®y, and
the operation xoy=f(Cp &) f(Cr{y)=x,y; for every xyeE with
X1,y1€A make E a M-P.HR.

Indeed

xo(y®2z)=xof " (y; +2,)=xof ' (w;)=x0Cr (7, )=
=xw; =X, (7 +2)= Xy, + X2, :0=CR(0)ZCR(XIYI +x2, )=
=f"(x,y1+xlzl)=x]y,®x,zl =xXoy®xoz

and in the same way (yEB z)onyoxEBzox for every x,yzeE.

Additionally for every x,y,x*,y*€E we have:
XQy=x EBCR(y)= CR(X)EB y=Cp (x)(BCR(y)

xey =0 Ca )=y 6)x = Ca €)oCx )
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X®y=x*®y* xoy=x*oy* withx=x*mod(R) and y=y* mod(R).
Consequently we have:

Proposition 2.14
Every zero ring can give a M-P.HR, whith is called zero M-P.HR.

Remark 2.6

From the above it derives that we can construct all the M-P.HRs (A,+,)
whose ring of reduction is isomorphic to a given ring (A,+.:). We consider
arbitrary semigroups (A, * ) with absorbing element O€A and surjective map-

pings ®:A ——— A such that, if we set
¢ (k))=Cx (x) foreveryx,yeA

such that
i) 0'(e(0) = Cp(0)={0} (singleton, symbolized again 0)

i)  ox*y) = o(xX)ply)
and
iii) x*Cgp(y) = Cr(x)*y = Crx*y)

Starting from every such mapping we consider the hyperoperation
x+y=¢"(e&)+o(y)) and the multiplication x+y. Under the above hy-
peroperation and multiplication the structure ( A+, * ) is a M-P.HR with ring

of reduction isomorphic to (A,+,-). As it is already known (MITTAS [6],
YATRAS [11]) the structure ( A,+) is a M-P.H and furthermore it holds:

x+{y +z)=x+0"' (o()+ 0@)=x0"" (o(v))=

x*Cp W)=Cr (x*w)= 0" (olcxw))=

= 07 (9) oW)= 0" [ 96) (0& )+ 0D} 07 (o) ol )+ o) 0e))=
=(p"]((p(xty)+:p(x*z))= XRY+X*Z.

Similarly for (y +z)*x .

Hence the structure (A, +,* ) is a M-P.HR with the ring (A,+,") as a ring of
reduction.

Examples 2.3

1. Having as a starting point the example 1 of YATRAS [11] we consider the
set of the rational numbers Q and the partition OUX where O={0} and X=Q*.
Then the set H = {0}UQ* = Q equipped with the hyperoperation x+y of the
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previously mentioned example, that is 0+0=0, O+x = x+0 = Q*,
Xty = y+x = 0 for every x,yeQ*, and multiplication the usual multiplica-
tion of the rational numbers is a M-P.HF.
The set F(Q) = {C(0),C(x)} = {O,X} is the field of reduction, with addi-
tion: :
0+0=0, 0+X=X+0=X, X+X=0
and multiplication
0X=X0=0, XX=X

F(Q) is obviously isomorphic to the field of integers mod 2. The set
R = {O,q} with q any arbitrary element of Q*, is the field of choice that is
defined through the mapping:

f:H—R with f(0) = 0 and f(x) = q, xeQ*
Generally we can consider X to be an arbitrary multiplicative group and as a
result we have the construction of all the M-P.HFs that arise from a multipli-

cative group whose field of reduction is isomorphic to the field of integers
mod 2.

2. Having as a starting point example 2 of YATRAS [11] we take again the
set of rational numbers Q and we define in it the partition OUXUY, where
0= {0}, X=Q, and Y=Q . Then the set H = {0}uQ,uUQ, =Q
equipped with the hyperoperation x+y of the above mentioned example and

operation the usual multiplication of the rational numbers becomes a M-P.HF.
The field of reduction is the set F(Q) = {C(0),C(x),C(y)} = {0, XY} with
addition

O+t0=0, X =X+H0 =X, X+tY = Y+X =0, X+X = Y, Y+Y = X

and multiplication
OX=X0=0,0Y=Y0=0,XX=X, YY=X, XY=YX=Y

which is obviously isomorphic to the field of integers mod 3.
The set R = {0,p,q}, with pe Q, and qe Q" arbitrarily chosen, is the field
of choice that is defined through the mapping.

f:H——R  with f{0)=0, f(x)=p, xeQ, and fy)=q, ye Q"
We reach an analogous M-P.HF if we consider the set R of the real numbers
and the partition {0}UR} UR’ . More generally we can consider an arbi-

trary multiplicative group and its partition XUY, In this way we have the con-
struction of all the M-P.HFs which derive from a multiplicative group and
whose field of reduction is isomorphic to the field of integers
mod 3.
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3. Based on the example of YATRAS [12] we consider the M-P.H (H,+)

with H = JX' which appears in it and which is defined through the parti-

ieZ
tion R of H into classes X',ieZ (the set of integers) with X" = {xg }:
and with hyperoperation

x, +xg =X

Next the set of classes H/R = H/(0) = {X',ieZ} becomes a semigroup iso-
morphic to Z based on the isomorphism Py X'eH/(0) with multiplica-
tion o
XX =X
Consequently the structure (H/(0),+,-) becomes a ring isomorphic to (Z,+,").
Now, in order to make the M-P.H (H, +)a M-P.HR we define an associate
multiplication xy in H taking into consideration that since the ring (H/(0),*.,)
is an integral domain, it does not have divisors of zero with regard to this
multiplication. If we further assume that it also verifies the cancellation law

according to proposition 2.11, we have that the classes X' (i=0) have the same
cardinality. Moreover applying lemma 2.1 in class X' = C(1) which contains

the unity element 1€Z, we have that xC(1) = C(1)-1 = C(1)C(1) = C(1),
that is xX'=X' for every xeX' and consequently we have that the class X' is a
group. _ -

Furthermore denoting the elements of H as x;, with x; €X' and a€l, where |
is a set of indexes, which as it easily results from the consideration of
x. €X', has the structure of a group we have for the multiplication of H the
following:

X, )‘{a = "Eb

It derives that 1=x] € X' is the unitary glement of H under this multiplica-
tion (because |- xi, = x| xL = x'). “The hypercompositional structure

(H,+ ,) defined in the above mentioned way, is an integral M-P.HR and
more precisely a M-P.HD. We can easily see that what is mentioned in re-
mark 2.6 is satisfied through the surgective mapping

¢:H ——> H/R with qm(xi)-—J'(I
As a partial case we can consider the classes X' with cardinality 2, that is
X' = {xl ,x2 }w1th the set of indexes a group isomorphic to the group {l 2}
of the classes (;t O)Of the integers mod 3.
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4. Obviously the above construction of M-P.HR can also be applied if instead
of Z we consider any integral ring. Thus we construct M-P.HRs that are also
M-P.HFs, if we consider as ring A the field of classes of integers mod(p) with

H = X'UX'UX'UX’UX* and eg X' ={xi,xb ¢ or more generally
X = {x;,...,xi:_l}where 1={ L..,q~1} isomorphic to the multiplicative

group of the classes of integers mod(q) with geN prime number.

5. Finally we give one more example in which the M-P.HR that results ac-
cording to the above way, does not have classes mod(0) with the same cardi-

nality. Indeed let the ring A= {5,T,§,§} of classes mod4 and
H = X"U...UX’. Here in the ring H/(0) which is isomorphic to A, we obvi-

2
a

xix% = 0. Trying to construct M-P.HRs with classes that have different

ously have X°X* =X’ and thus for every x’x2eX> we will have

cardinalities, we consider (due to simplicify): X'= x!,x} }= {La},
X2 ={x} }= (b}, X* = {xd.x3 }= {c.d} (while X° = §x0 }={0}) and
the set of indexes I = {1,2} for the multiplication to be a group isomorphic

to the group {T,?’Z'} mod 3. The equality of certain products of elements is
necessary for the validity of lemma 2.1, e.g. in order to be

xi X =X'x?
- 2 _ 1.2 _ 1.2 __2_ 2
itmustbe ., Xa X =X1X] = XX =X{ =X}
and X'x? = {;v(},x]2 }xf = {xfx%}
since it is also XX =x*

So we get the following table, after having checked all the cases of products
in H:

Al g |—io] -

(=F =g L= [} { e} Lo} o]
Ao |loe |—lo]|—
Lol =" = Ll F-C Fe  §)
TiIoio|og|o|o|o
Rl—oiono |ojo
—lw oo |||

and the corresponding one for the addition, with the use of the same symbol-
ism for the elements is:
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0 1 a b c d

0 | {1a} | {1a}| b | {cd} | {cd}
{1,a} b b {c,d} 0 0
(la} | b b | {cdl| O 0

b {c,d} | {c,d} 0 {la} | {l,a
fcdl | 0 0 | {1a| b b
{c,d} 0 0 {1,a} b b

Ao |ofe |—S]+

As it can be seen from the above tables the cancellation law for the
multiplication does not hold in this M-P.HR.

Remark 2.7

According to the above examples 4 and 5, we can generalize the method and
proceed to the construction of all the M-P.HRs with ring of reduction isomor-
phic to the ring of classes of integers mod(p), with the same cardinality when
p is not prime. However, in this case, since the ring of reduction does have
zero divisors, the M-P.HRs which have this one as ring of reduction do not
satisfy the cancellation law. This fact proves that the fundamental proposition
2.11 provides only a sufficient condition for the same cardinality of the
classes mod(0) of the M-P.HR.

Lastly, if we consider the multiplication as a hyperoperation in a M-P.HRs we
are led to a new polysymmetrical hyperstructure analogous to the superrings
(MITTAS [8]). So, based on the introductory example of the hyperpolynomi-
alg (i.e. polynomials with coefficients from a hyperring), which appears in
MITTAS [8] we can consider in an analogous way the M-hyperpolynomials,
which due to the polysymmetrical of their addition, give a polysymmetrical
M-hyperstructure.

So we have the definition:

Definition 2.2

We name M-polysymmetrical superring (M-P.SR) a set S equipped with

two hyperoperations x+y - addition - and xy - multiplication - which verify

the following conditions:

I. S is a M-P.H under the addition (called additive hypergroup of the
M-P.SR).

II. S is a semihypergroup under the multiplication (called multiplicative
semihypergroup of the M-P.SR) the 0 of which is a bilateral absorbing

element.
ie.: i) xycS
i) (xy)z = x(yz)
iii) xX0 =0x=0 for every x,y,zeS
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IIT. The multiplication is bilaterally distributive over addition i.e.
(xty)z = xztyz , z(xty) = zxtzy for every xy,zeS

Remark 2.8

As in the case of rings and of M-P.HRs we can define various kinds of
M-P.SRs such as commutative M-P.SRs, unitary M-P.SRs etc. Another spe-
cial type of M-P.SRs is the M-polysymmetrical superfield (M-P.SF), that is
a M-P.SR whose set S*=§-{0} is a multiplicative hypergroup.

It is obvious that by starting with the M-P.SRs we are led to various interest-
ing hyperstructures, as it happens for instance with the consideration of the
multiplicative semihypergroup S, as a M-P.H under the muitiplication.
Regarding the M-P.SRs we set the following proposition which is analogous
to 2.13 and the theorem that follows, while their special study will be the
subject of a different paper.

Proposition 2.15

Let E be a set and A its subset with the structure of a ring without divisors

of zero. Also, let 0 to be its neutral element and let for every xc A, -x to be

ifs opposite. Then if:

1)  there exists a partition R of E and a bijective mapping of the quotient
set E/R on A such that xe A, f'(x) = Cr(x) for every XA and

i)  Cr(0) = {0}

then the hyperoperations x®y=f"'[f(Cx&)+f(CrG)] and

xoy=f7[ f(Cg &))-£(Cg ()] defined in E through the ring A make E

a M-P.SR.

Proof
Firstly the hyperoperation x®y makes E a M-P.H (YATRAS [11]). Next we
notice that for every x,yeE the hyperproduct xey is a class mod(R) of E.
We also have that
Xey=XoZ&y= zmod(R)
Indeed, if we set £(Cy (x))=x, etc. we have
xoy=xoz&> £ ()= (xiz )@ X1y, =7y ®y =2 &
Cr(y)=Cr(2)e y=2modR)
Also, we obviously have:
Xoy=x%oy* forevery x*eCg(x), y*eCr(y)
Proceeding with the proof we see that the associative law for the multiplica-
tion is valid. Indeed if we set xoy = CR( w) we have:
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fl(xoy)oz]=f(Cr(w)oz)={f(w*oz). wreCr(wh=f(woz)=
f(CR(w))-f(CR(z))s wiz; = (x))2
[since f(xoy)=f(Cr@W)=w, =xyy; =f(Cr (x))-f(Cr(¥)].

Butin A (xy)zi=xi(yiz0). Thus f[(xey)oz]=f[xo(yoz)] and conse-

quently the associate law holds.
Also

x00 = £(Cp (x))-£(Cr(O)]=1"(x:-0)=£7(0)=Cr (0)=0
In the same way Qox=0.
Yet, if we set y®z=Cr(w) we have:
e ® 2)|= theoCy )] {1cow*). w €Cy W= 1o w)=
fCr (x))-f(CR(w)): xwy =X, () +2,)
[since fy ®2)=f(Cy W)=w =y +2 = fCr O)+Cr @)).
However, in the set A we have x,(yi+z;) = Xiy,+X;z; and so
xyy) +xz = fCr k) FCr G+ £(Cr ) F(Cr @)=
:f(xcy)+f(xoz)= f(xoyexoz) :
Thus
f[x o(y® z)]= f[x cy®xo z] and since fis a bijective mapping it holds
xo(y®z)=x0y®xoz
In the same way we have (y@z)ox=yax® ZoX.
Consequently (E,, o) isa M-P.SR.

Lag.tty, we can have the following theorem, which derives in an analogous
way'to the corresponding one 3.1 of YATRAS [11]:

Theorem 2.2
Let (A,+,-) be a ring without divisors of zero. If we correspond bijectively fo
A a family A of disjoint sets, from which the corresponding to the neutral

element of A is a singleton, and if we make this family, (through the prop-
erly defined operations X ®Y , X oY ) a ring isomorphic to A, then the set

S= UX with hyperoperations x+y=X®Y and xxy=XoY for every
XehA
xyeS, (xy)eXxY, X, Ye A is a M-P.SR.
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