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QUASI-CONCAVITY PROPERTY OF
MULTIVARIATE DISTRIBUTION
FUNCTIONS

Luisa Tibiletti"

SUNTO - Si individuano condizioni sufficienti per garantire le proprieta di
quasi-concavita per le funzioni di ripartizione multidimensionali. Si prova
che la maggior parte delle distribuzioni ellittiche hanno funzione di
ripartizione quasi-concava. Attraverso la caratterizzazione della copula altre
famiglie di distribuzioni sono individoate. Alcune disuguaglianze
probabilistiche sono infine messe in luce.

ABSTRACT - Conditions under which multivariate distribution functions
are quasi-concave, are explored. We prove that many elliptically contoured
distributions have quasi-concave distribution functions. By some
characterisations of the copula, further classes are provided. A few
probability inequalities are also suggested.

KEYWORDS - Elliptically contoured distributions, Archimedean copula,
quasi-concavity conditions.

1. INTRODUCTION""

Many studies have been devoted to search for concavity properties of »-
dimensional (»22) distribution functions (see TONG [17], IYENGAR-
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TONG [7], MARSHALL-OLKIN [10], TIBILETTI [14]).

In this note we restrict our attention to the quasi-concavity property. It is
known that not all the n-dimensional (n = 2) distribution functions are quasi-
concave (see TIBILETTI [14]). The aim of the present paper is to point out
families of distributions which satisfy this property and to extend TIBILETT!
[14]'s resuits.

The plan of this paper is as follows. In section 1 we prove that the
distribution functions of a number of elliptical random vectors are quasi-
concave. In Section 2 we consider distribution functions with elliptical and
Archimedean copulas. Under some assumptions on one-dimensional
marginals, their quasi-concavity is showed. In Section 3 a few probability
inequalities for differentiable distribution functions are provided.

2. NOTATION AND PRELIMINARIES

Given the random vector X = { X;,..., X, }, we denote by

Flx)= pr[_ﬁ (x, <x, )]

i=1
the joint distribution function of X and by
F(x;)=Pr(X; < x;)

the one-dimensional marginal associated to the random variable X;.
QOur purpose is to investigate whether F is quasi-concave, ie.,

Flox+(1-a)y) z Min[ F(x); F(5)] (1)

holds for all x,y e R” and 0<a <1,
Condition (1) is equivalent to requiring that upper-level sets of 7

U, ={x e‘ﬁ":F(x)Zq}

q

are convex for all real ¢.
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3. QUASI-CONCAVITY FOR ELLIPTICAL
DISTRIBUTION FUNCTIONS

Let us recall the definition of elliptically contoured distribution,

Definition 1: Let £ denote a nxn positive definite matrix A random vector X
is said to have an elliptically contoured distribution if its density function is
of the form (with respect to Lebesgue measure)

Fx) =122 (x5 1x), x e w” @)
where g satisfies
Jr"_lg(r2 )dr <w
0

g is also called a density generator.

Multivariate normal distributions are the best-known ellipticals. For these,
g{s) = exp(-s/2). Many other types are also possible. For example, the
multivariate student ¢ distribution with v of freedom is characterised by

gls)ec{v+s
It is worth pointing out that any linear combination of elliptical variates is
still elliptical (more details are given in FANG et ol [3]), and in virtue of this
property the use of these distributions is very common in the Portfolio
Theory (see, for example, INGERSOLL [8]).

Below we will confine our attention to the class of elliptical distributions
such that

a. the support of the density fis unbounded;

b. the density generator g is a continuous function on R ;

¢. the correlation matrix exists {(consequently, it is proportional to ).

{ Yo
)—ln+v;.r.:

We need of the following proposition to prove Theorem 1.

Proposition1. et T = (r,}) be the correlation matrix of X. If ty = max
correlation between (X ¢ j) Joralli, j=1,..n, then F is quasi-concave.

Proof. Since 1 = max correlation (X X j) forall i, j=1,..meach of
X1,..., X, is almost surely a strictly increasing function of any of the others.
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A property of distribution functions leads to
F(x) = Min[ A (x1),..., Fy(x,))],

{for n =2 the result is due to FRECHET [4], for #> 2 see SCHWEIZER-
SKLAR [12]). Thus, it follows that

Uq ={x EER":II = -Fi_](q)s---sxn ZFH_I(Q)}’

where Ff‘l »§ =1,..,n are the quantile functions. Since U, is convex for all g,
F turns out to be quasi-concave and this completes the proof.

Theorem 1. Let X have an elliptically contoured distribution with
assumptions a.b.c. Then F is quasi-concave.

Proof. Define the matrix

Sy =(1-9)R+9T, 8 €[0,1]

where R = (r}-j) is the positive definite correlation matrix of ¥ and T = ("u)

is a matrix with entries ty = max correlation (Xj,Xj) forall i, j=1,..n

Construct the distribution function Fg having the same density generator of
F and correlation matrix Sg. Let

A =1{8 [0,1]: Fy is not quasi-concave}.
Suppose ad absurdum that A be not empty. Denote
8" = sup A.

By Proposition 1., it results 8° < . Since Fy+is not quasi concave, there

exist x, € R”, o (0,1) (depending on 8 *),such that

Min[Fys (x); Fye (4)] = 4. (3)
and

Fge (cx.x+(l-(1)y) <q.
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Note that for all 9 > 9‘, we have

L] L] ..
Sy <8 and s < 5 holds for some i,/ 4

where Sy =(s,)-) and SS' =(s;) In virtue of the assumption a and

inequalities {(4), we can apply a generalisation of Slepian's inequality due to
DAS GUPTA, et a/ [2] (as reported in TONG [16]), which gets!

Fy > FS- forall 3 > S',
50 we have
M:'n[FS- (x): Fye (y}] >q,forall §>9".
Since Fy is quasi-concave, it results
FQ(ax+(1—u]y)>q,forall9>9~‘ (5)

Combining (3) and (5), it follows that #(8)= Fg{ax+(1-a)y) is nor a

continuous function in § . Nevertheless, assumption b guarantees the
continuity of #($) on [0,1], which contradicts the above statement.

4. FURTHER CLASSES OF QUASI-CONCAVE
DISTRIBUTION FUNCTIONS

In this section we propose a way to characterise other quasi-concave
distnibutions. These results are related to the property of the copula (the
notion was introduced by SKLAR [13], for a historical overview , the reader
can refer to SCHWEIZER [11]). Copulas are functions that link multivariate
distributions to their one-dimensional marginals F;,i=1,..,n, then there
exists a continuous copula C such that

F(x)=c(F(x)),-... F,(x,)), for all x e R",

I Strictly inequality is guaranteed by assumption a. (see, for example, Tong
[16], Th. 4.3.6, page 74).

31



L. Tibiletti Ratio Math. Num. 9-1995

where C is a distribution function concentrated on the unmit n-cube 77,
1 ={0,1] with uniform marginals.

Our investigation will be carried out in two steps: (1) we point out classes of
quasi-concave copulas, (2) we specify additional conditions on one-
dimensional marginals to guarantee the quasi-concavity of F.

4.1 ELLIPTICAL AND ARCHIMEDEAN COPULAS
The result reached from Theorem 1 suggests a definition of a new class of
copulas denoted by ‘P,

Definition 2. Let C be a copula. If there exist one-dimensional marginals
F ..., Fy, such that

F(x)=C(F(x)),..., F,(x,)), for all x eR"
is an ellipticai distribution function which satisfies a.-b.-c. then C €'¥.
We have the following :
Proposition 2. If C €'Y, then C is a gquasi-concave function,
The proof is omitted , because is quite similar to that of Theorem 1 (see also

TIBILETTI [15].

We consider now the Archimedean copulas, We recall their definition.
Definition 3.  Let C be continuous copula such that

c() = 0™ [wlan )+ +o(,)]

for some real function ¢ . Then C is called an Archimedean copula.

Note that in order that C be a copula, Lp'l has to be completely monotone,
ie,
(_l)k dk(p_l(t)
d*t
(see SCHWEIZER -SKLAR [12], Theorem 6.3.6).

z0,forall k> , (6)

Proposition 3.  If C is an Archimedean copula, then it is quasi-concave.

Proof. From condition (6), it follows that ¢ is convex. Thus,
H(u) = @{zg)+...+¢{x, ) is convex, too. Sincep™ is nonincreasing, the
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composite function C'(u)=cp'](H(u)) tums out to be quasi-concave
(MANGASARIAN [9]).

Distributions with Archimedean copulas have been thoroughly investigated
in the literature and many families have been defined. For instance, we recall
those of Gumel, Cook-Johnson, Frank, Plankett and Mardia (for details see
GENEST [5), GENEST-MacKAY [6]).

4.2 ADDITIONAL CONDITIONS ON ONE-DIMENSIONAL
MARGINALS

Quasi-concavity of the copula does #or guarantee the quasi-concavity of the
distribution function (for a counter-example see TIBILETTI [14]).
Additional conditions on marginals have to be added. We list two of them.

Proposition 4. (Tibiletti [14]) Let F be a distribution function with a
guasi-concave copula. If its one-dimensional marginal F; is concave on the

interval [a;,b; ,i =1,...n, then F is quasi-concave on [a) by ]x...x[a, b, ].

Preposition 5.  Let F be a distribution function with copula C and
continuous marginals F;, i =1,...n. If there exist real functions ®;,i=1,..,n
such that H=C(®,,...®,}is an elliptical distribution function, and

CDI._'(F,-) is concave? on [a,—,b,-],:'=1,..',n then F is quasi-concave ohn

[ar, B ]%...x[ap, b, ]
Proof. Note that

From Theorem 1, H=C(®,,..,®,) is quasi-concave. Since

(I);l(ﬁ],i =1,..,n are concave, it follows that F is quasi-concave (see, for
example, AVRIEL et al [1]).

5. A FEW PROBABILITY INEQUALITIES

Consider now differentiable distributions’ . Quasi-concavity of F yields some
inequalities involving its marginals and conditional distributions. Denote by

2 We denote by (D;I a quasi-inverse of @,.
3 Obviously, if the density is continuous , then its distribution function is
once-differentiable.
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/i the marginal density of X;, by f(.|xf) and F(.|x,—) the conditional density
and distribution function of X =(X,...,X,) given X, =x; (i=1,..,n). It is
straightforward to prove the following:

Proposition 6. Let F be once-differentiable on the open convex set

AcC R, Then F is guasi-concave iff for every x,y € A
F(x)z Fly) implies that (y—x)VF(x)=0 (7
where VF is the gradient of F and

OF '
= ARt g Fpa i) ®)

i

Proof. Condition (7) is obvious, see, for example, AVRIEL ez al. [1].
And (8) comes out by straightforward calculations.

Condition (7) is not trivial to verify. Therefore, its use for checking whether
or not F is quasi-concave could not be easy. Alternatively, it could be
profitable to use (7) in the reversed way. In fact, if we know that F is quasi-
concave then (7) may produces some not trivial inequalities.

For sake of simplicity, let » =2, The right-hand side of (7} becomes

(31 = =) il ) (g )+ (02 — 32 ) 2 (2 ) F iy ixz) 20 (9

For example, 1If F is elliptical {9) can be rewritten in an explicit form (see,
for example, TONG [17] for elliptical marginal and conditional probability
for n =2). An inequality which stems from (9) is stated below.

Proposition 7.  Let F be elliptical and satisfy a.-b.-c. If X; has median y;

and variance c:.z, i=i2, then

Flu)z F(x) implies ﬁl—xl+-lil7'—x2 =0 (10)
(03] Ca

where = {1y, 1y ) and x ={x,%;).
Proof.  Straightforward calculations show that

Filu) = g(0)o; and F{ulu;) = Fluifu;)

where g is the density generator of F. By Theorem 1, F'Is quasi-concave,
therefore (9) holds. Imposing y = u, our claim comes out.
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Remark. Condition (10) is trivial whenever py 2 x; and py > x5. On the
contrary, if uy =z x; and fy £ x,, it gives a condition on the "distance"
between the vector i of the medians and the vector x (see TIBILETTI [15]).
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