PERIODIC SOLUTIONS OF A SECOND ORDER EVOLUTIVE VARIATIONAL INEQUALITY*

M. Biancardi, A. Gallo**

ABSTRACT - Hereafter we shall analyse the existence and regularity properties of the solution of the periodic problem related to a second order evolutive variational inequality.

SUNTO - Si analizzano le questioni di esistenza e regolarità della soluzione per il problema periodico connesso ad una disequazione variazionale di evoluzione del secondo ordine.

INTRODUCTION

Let Ω_1 and Ω_2 be two open sets of R^N with $\Omega = \Omega_1 \cap \Omega_2 \neq \emptyset$, $V_I(I=1,2)$ a real separable Hilbert space with dense and continuous embedding in $L^2(\Omega_I)$.

Let us denote by:

the inner product and the norm in $L^2(\Omega)$, $(\cdot, \cdot)_I$, $|\cdot|_I$ the inner product and the norm in $L^2(\Omega_I)$, the norm in V_I , $\langle \cdot, \cdot \rangle$ the pairing between I_I and its dual V_I

^{*} Research performed under the financial support of M.U.R.S.T.

^{**} Authors' Address: Dipartimento di Matematica e Applicazioni. Facoltà di Ingegneria, via Claudio, 21 - 80125 Napoli, Italy.

Furthermore, let K be the convex closed part of $V_1 \times V_2$:

$$\{(z_1, z_2) \in V_1 \times V_2 : z_1 \le z_2 \mid a.e. \text{ on } \Omega\}.$$

Given $f_l \in L^2(0,T;V_l)$ $(0 < T < +\infty)$ and operators $A_l, B_l \in \mathcal{L}(V_l, V_l)$ such that:

$$\begin{split} \left\langle A_{l}y,z\right\rangle _{l}&=\left\langle A_{l}z,y\right\rangle _{l},\quad \left\langle B_{l}y,z\right\rangle _{l}=\left\langle B_{l}z,y\right\rangle _{l}\quad \forall y,\,z\in V_{l}\;\;,\\ \left\langle A_{l}z,z\right\rangle _{l}&\geq a_{l}\parallel z\parallel _{l}^{2},\quad \left\langle B_{l}z,z\right\rangle _{l}\geq b_{l}\parallel z\parallel _{l}^{2}\quad \forall z,\,\in V_{l}\quad \left(a_{l},b_{l}=\text{const.}>0\right)\;,\\ \text{we consider the following} \end{split}$$

PROBLEM (P). Find $(u_1, u_2) \in \prod_{l=1}^{2} H^1(0, T; V_l)$ so that:

$$u_{l}^{"} \in L^{2}\left(0, T; V_{l}^{'}\right),$$

$$u_{l}(0) = u_{l}(T), \ u_{l}^{'}(0) = u_{l}^{'}(T),$$

$$\left(u_{l}^{'}(t), u_{2}^{'}(t)\right) \in K \quad \text{a.e. on }]0, T[,$$

$$\sum_{l=1}^{T} \int_{0}^{T} \left\langle u_{l}^{"}(t) + A_{l}u_{l}(t) + B_{l}u_{l}^{'}(t) - f_{l}(t), \ v_{l}^{'}(t) - u_{l}^{'}(t)\right\rangle_{l} dt \ge 0$$

$$\forall (u, v_{l}) \in \prod_{l=1}^{T} H^{1}(0, T; V_{l}) \text{ with } v_{l}(0) = v_{l}(T) \text{ and } \left(v_{l}^{'}(t), v_{l}^{'}(t)\right) \in K \text{ a.e. on }]0, T[$$

 $\forall (v_1, v_2) \in \prod_{l=1}^{2} H^1(0, T; V_l) \text{ with } v_l(0) = v_l(T) \text{ and } \left(v_1(t), v_2(t)\right) \in K \text{ a.e.on }]0, T[.$

Of course our problem (P) will not have a unique solution. As a matter of fact:

if (u_1, u_2) is one solution of problem (P), then any other solution will only be of the type $(u_1 + z_1, u_2 + z_2)$, where z_1 is an arbitrary element of V_1 .

Obviously $(u_1 + z_1, u_2 + z_2)$ satisfies our problem (P). On the other hand, assuming that (\bar{u}_1, \bar{u}_2) is an other solution, we immediately find that:

$$\left\| \overline{u}_{l}' - u_{l}' \right\|_{L^{2}(0,T;V_{l})} = 0$$
,

and therefore $\overline{u}_l = u_l + z_l$ with $z_l \in V_l$.

We shall now develop two existence theorems for our problem, theorems 4 and 5 (n. 3), with two different hypothesis on f_i : in the first we assume $f_l \in L^2(0,T;L^2(\Omega_l))$, in the second $f_l \in H^1(0,T;V_l)$, $f_l(0) = f_l(T)$.

For the proof we shall essentially adopt a penalty method [1], [3], [4] based on an existence theorem concerning periodic solutions of an abstract non linear second order differential equation. Moreover, in proving this theorem [th. 1, n. 1] we follow a technique inspired to the "elliptic regularization" [3], [5]. The results given by theorems 2 and 3 [n. 2] for the penalized problem will then be used to prove the above mentioned existence theorems for our problem (P).

A regularity theorem "with respect to x" is also given in n. 3, theorem 6, when $V_1 = V_2 = H_0^1(\Omega)$ and operators A_l, B_l , within constant factors, are identical to a uniformly elliptic second order linear differential operator. The uniform ellipticity of this last operator allows us to obtain upper limitations by introducing a "special base" of $H_0^1(\Omega)$.

1. Let V and H be real Hilbert spaces: $V \subseteq H$, with dense and continuous embedding.

We identify H with its dual and denote with

 (\cdot,\cdot) , $|\cdot|$ the inner product and the norm in H,

 $\|\cdot\|$ the norm in V,

 $\langle \cdot, \cdot \rangle$ the pairing between V and its dual V'.

Let also $f \in L^2(0,T;V')$ and A, B the operators from V into V': A linear and continuous, B strictly monotone and hemicontinuous. Let us suppose that:

$$\langle Ay, z \rangle = \langle Az, y \rangle \quad \forall y, z \in V,$$

 $\langle Az, z \rangle \ge a \|z\|^2 \quad \forall z \in V, \quad (a = \text{const.} > 0)$
 $\langle Bz, z \rangle \ge b \|z\|^2 \quad \forall z \in V, \quad (b = \text{const.} > 0)$

for each $v \in L^2(0,T;V)$ $Bv(\cdot) \in L^2(0,T;V')$, operator $v \in L^2(0,T;V) \to Bv(\cdot)$ is bounded.

THEOREM 1. In the above stated assumptions, there exists only one solution $u \in H^1(0,T;V)$ of the following problem:

- (1) $u'' \in L^2(0,T;V')$,
- (2) $\langle u''(t), z \rangle + \langle Au(t), z \rangle + \langle Bu'(t), z \rangle = \langle f(t), z \rangle$ a.e. on $]0, T[\forall z \in V,$
- (3) u(0) = u(T), u'(0) = u'(T).

PROOF. Firstly, if $u_1, u_2 \in H^1(0, T; V)$ are solutions of the problem (1), (2), (3), then

$$\int_{0}^{T} \left\langle B u_{1}'(t) - B u_{2}'(t), \ u_{1}'(t) - u_{2}'(t) \right\rangle dt = 0$$

must hold and therefore

$$u_1'(t) = u_2'(t)$$
 a.e. on]0, T[

owing to the strict monotonicity of B. Thus there exists a $z_0 \in V$ such that

$$u_1(t) = u_2(t) + z_0 \quad \forall t \in [0, T].$$

This condition in turn is fulfilled iff

$$\langle Az_0, z \rangle = 0 \quad \forall z \in V$$
,

namely $z_0 = 0$. In order to prove the existence of the solution, we introduce the Hilbert space:

$$W = \left\{ v \in H^{1}(0, T; V) : v'' \in L^{2}(0, T; H), \ v(0) = v(T), \ v'(0) = v'(T) \right\}$$

equipped with norm

$$\|v\|_{W} = \left(\int_{0}^{T} \|v(t)\|^{2} dt + \int_{0}^{T} \|v'(t)\|^{2} dt + \int_{0}^{T} |v''(t)|^{2} dt\right)^{\frac{1}{2}} \forall v \in W$$

and then denote with $<<\cdot,\cdot>>$ the pairing between W and its dual W'. Given $\varepsilon>0$, we set, for any $u,v\in W$

$$<< C^{\varepsilon}u, v>> = \varepsilon \begin{bmatrix} T & T & T \\ \int_{0}^{T} \left(u''(t), v''(t)\right) dt + \int_{0}^{T} \left\langle Au(t), v(t)\right\rangle dt \end{bmatrix} + \\ + \int_{0}^{T} & T & T \\ + \int_{0}^{T} \left(u''(t), v'(t)\right) dt + \int_{0}^{T} \left\langle Au(t), v'(t)\right\rangle dt + \\ \int_{0}^{T} & T & T \\ + \int_{0}^{T} \left\langle Bu'(t), v'(t)\right\rangle dt - \int_{0}^{T} \left\langle f(t), v'(t)\right\rangle dt.$$

 $C^{\varepsilon}: W \to W'$ is obviously a bounded, strictly monotone, hemicontinuous and coercive operator. Therefore ([3], theorem 2.1, pg. 171) there exists a unique $u_{\varepsilon} \in W$ solution of equation

$$(4) \qquad \qquad << C^{\varepsilon} u_{\varepsilon}, v>>= 0 \quad \forall v \in W.$$

Eq. (4), written with $v = u_{\varepsilon}$, gives the upper limitations

(5)
$$\varepsilon \left[\int_{0}^{T} \left| u_{\varepsilon}^{"}(t) \right|^{2} dt + \int_{0}^{T} \left\| u_{\varepsilon}(t) \right\|^{2} dt \right] \leq c,$$

(6)
$$\int_{0}^{T} \left\| u_{\varepsilon}'(t) \right\|^{2} dt \le c, \qquad (c = \text{const.} > 0 \text{ indep. from } \varepsilon)$$

as well as

(7)
$$\int_{0}^{T} \left\| \overline{u}_{\varepsilon}(t) \right\|^{2} dt \le c$$

where $\overline{u}_{\varepsilon}(t) = u_{\varepsilon}(t) - u_{\varepsilon}(0)$. Inequalities (5), (6), (7) imply the existence of $\overline{u} \in H^1(0,T;V)$, with $\overline{u}(0) = \overline{u}(T) = 0$, of $g \in L^2(0,T;V')$ and of a positive numerical infinitesimal sequence $\{\varepsilon_n\}$ such that for $n \to +\infty$

(8)
$$\overline{u}_{\varepsilon_{n}} \to \overline{u} \text{ weakly in } L^{2}(0,T;V), \\
u'_{\varepsilon_{n}} \to \overline{u}' \text{ weakly in } L^{2}(0,T;V), \\
Bu'_{\varepsilon_{n}}(\cdot) \to g \text{ weakly in } L^{2}(0,T;V'), \\
\varepsilon_{n} \left[\left\| u''_{\varepsilon_{n}} \right\|_{L^{2}(0,T;H)} + \left\| u_{\varepsilon_{n}} \right\|_{L^{2}(0,T;V)} \right] \to 0.$$

Starting from (4) and using (8), we come to relation

(9)
$$\int_{0}^{T} \left(\overline{u}'(t), v''(t)\right) dt = \int_{0}^{T} \left\langle A\overline{u}(t) + g(t) - f(t), v'(t)\right\rangle dt \quad \forall v \in W.$$

M. Biancardi, A. Gallo

Ratio Math.

Num. 9 - 1995

Let now $\varphi_0 \in C_0^{\infty}(]0,T[)$ with $\int_0^T \varphi_0(t)dt = 1$, $\varphi \in C_0^{\infty}(]0,T[)$ and $z \in V$. From (9), setting

$$v(t) = \left(\int_{0}^{t} \left[\varphi(s) - \varphi_{0}(s) \int_{0}^{T} \varphi(t) dt \right] ds \right) z \quad \forall t \in [0, T]$$

we get:

$$\begin{pmatrix}
T \\
\int \overline{u}'(t)\varphi'(t)dt,z
\end{pmatrix} =
\begin{pmatrix}
T \\
\int [A\overline{u}(t)+g(t)-f(t)]\varphi(t)dt,z
\end{pmatrix} +
+
\begin{pmatrix}
T \\
\int \overline{u}'(t)\varphi'_0(t)dt
\end{bmatrix}
\int \varphi(t)dt,z
\end{pmatrix} +
-
\begin{pmatrix}
T \\
\int \overline{u}'(t)\varphi'_0(t)dt
\end{bmatrix}
\int \varphi(t)dt,z
\end{pmatrix}
-
\begin{pmatrix}
T \\
\int (A\overline{u}(t)+g(t)-f(t))\varphi_0(t)dt
\end{bmatrix}
\int \varphi(t)dt,z
\end{pmatrix}$$

or

 $\overline{u}''(t) = -[A\overline{u}(t) + g(t) - f(t)] - \theta$ a.e. on]0, T[in the V' sense being θ the element of V'

$$\int_{0}^{T} \overline{u}'(t)\varphi_{0}'(t) dt - \int_{0}^{T} (A\overline{u}(t) + g(t) - f(t))\varphi_{0}(t) dt.$$

Let u_0 be the element of V for which $Au_0 = \theta$, and given $u = \overline{u} + u_0$, it is obvious that u satisfies (1), the first of (3) and that:

(10)
$$\langle u''(t), z \rangle + \langle Au(t), z \rangle + \langle g(t), z \rangle = \langle f(t), z \rangle \quad \text{a.e. on }]0, T[\forall z \in V.$$

We may also note that the second of (3) holds too. Indeed, chosen $\psi \in C^2([0,T])$ with $\psi(0) = \psi(T)$ and $\psi'(0) = \psi'(T) = 1$, recalling (9) and (10), we get $\forall z \in V$:

$$(u'(T)-u'(0),z) = (u'(T)\psi'(T)-u'(0)\psi'(0),z) = \left\langle \int_{0}^{T} [u'(t)\psi'(t)]'dt,z \right\rangle =$$

$$= \int_{0}^{T} (u''(t),\psi'(t)z)dt + \int_{0}^{T} (u'(t),\psi''(t)z)dt =$$

$$= \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} dt dt + \int_{0}^{T} (Au(t)+g(t)-f(t),\psi'(t)z)dt =$$

$$= \int_{0}^{T} (u''(t),\psi'(t)z)dt + \int_{0}^{T} (Au(t)+g(t)-f(t),\psi'(t)z)dt =$$

$$= 0.$$

Because of (10), (2) is acquired as soon as we are able to prove that

$$(11) Bu'(\cdot) = g.$$

From (4), with $v = u_{\varepsilon_n}$, we obtain:

$$\int_{0}^{T} \left\langle Bu_{\varepsilon_{n}}^{'}(t), u_{\varepsilon_{n}}^{'}(t) \right\rangle dt \leq \int_{0}^{T} \left\langle f(t), u_{\varepsilon_{n}}^{'}(t) \right\rangle dt$$

from which, because of the second of (8),

(12)
$$\lim_{t \to 0} \int_{0}^{T} \left\langle B u_{E_{n}}'(t), u_{E_{n}}'(t) \right\rangle dt \leq \int_{0}^{T} \left\langle f(t), \overline{u}'(t) \right\rangle dt.$$

Assuming z = u'(t), (10) produces the following equality:

(13)
$$\int_{0}^{T} \left\langle g(t), u'(t) \right\rangle dt = \int_{0}^{T} \left\langle f(t), u'(t) \right\rangle dt.$$

The second and third of (8), together with (12) and (13), imply (11), since operator

$$v \in L^2(0,T;V) \to Bv(\cdot)$$

is bounded, monotone and hemicontinuous ([3], proposition 2.5, pg. 179).

REMARK. Proof of the existence is essentially the same when assuming "B monotone" instead of "B strictly monotone".

2. Let us suppose

$$V = V_1 \times V_2$$
, $H = L^2(\Omega_1) \times L^2(\Omega_2)$

and write for each $z = (z_1, z_2), y = (y_1, y_2) \in V$

$$\begin{split} \left\langle Az, y \right\rangle &= \left\langle A_1 z_1, y_1 \right\rangle_1 + \left\langle A_2 z_2, y_2 \right\rangle_2, \\ \left\langle Lz, y \right\rangle &= \frac{1}{\varepsilon} \left(\left[z_1 - z_2 \right]^+, y_1 - y_2 \right) \text{ with } \varepsilon > 0, \\ \left\langle Bz, y \right\rangle &= \left\langle B_1 z_1, y_1 \right\rangle_1 + \left\langle B_2 z_2, y_2 \right\rangle_2 + \left\langle Lz, y \right\rangle. \end{split}$$

Of course Hilbertian spaces V, H and operators A, B, from V into V', meet the assumptions stated at the beginning of n. 1. Therefore, from theorem 1, there exists a unique $(u_{1\varepsilon}, u_{2\varepsilon}) \in \prod_{l=1}^{2} H^{l}(0, T; V_{l})$ solution of the problem

(14)
$$u_{l\epsilon}^{"} \in L^{2}(0,T;V_{l}^{'}),$$

$$\sum_{l=1}^{2} l \left\langle u_{l\epsilon}^{"}(t) + A_{l}u_{l\epsilon}(t) + B_{l}u_{l\epsilon}^{'}(t) - f_{l}(t), z_{l} \right\rangle_{l} +$$

$$\frac{1}{\varepsilon} \left(\left[u_{l\epsilon}^{'}(t) - u_{2\epsilon}^{'}(t) \right]^{+}, z_{l} - z_{2} \right) = 0$$
a.e. on $]0, T[\forall (z_{1}, z_{2}) \in V_{1} \times V_{2},$

$$(16) \qquad u_{l\epsilon}(0) = u_{l\epsilon}(T), \quad u_{l\epsilon}^{'}(0) = u_{l\epsilon}^{'}(T).$$

THEOREM 2. If for l = 1, 2 $f_l \in L^2(0, T; L^2(\Omega_l))$ we then have:

(17)
$$u_{l\varepsilon}^{"} \in L^{2}\left(0, T; L^{2}\left(\Omega_{l}\right)\right),$$

$$\left\|u_{l\varepsilon}^{"}\right\|_{L^{2}\left(0, T; L^{2}\left(\Omega_{l}\right)\right)} \leq c.$$

$$\left(c = \text{const.} > 0 \text{ indep. from } \varepsilon\right)$$

PROOF. Let $\{z_{lj}\}$ be a base of V_l and, for each $n \in N$, V_{ln} be the space spanned by $\{z_{l1}, \ldots, z_{ln}\}$. Theorem I and the finite dimensions of V_{ln} assure the existence of a unique $(w_{ln}, w_{2n}) \in \prod_{l=1}^{2} H^2(0, T; V_{ln})$ such that

(18)
$$\sum_{l}^{2} l \left\{ \left(w_{ln}^{"}(t), z_{l} \right)_{l} + \left\langle A_{l} w_{ln}(t) + B_{l} w_{ln}^{'}(t), z_{l} \right\rangle_{l} - \left(f_{l}(t), z_{l} \right)_{l} \right\} +$$

$$\frac{1}{\varepsilon} \left[\left[w_{ln}^{'}(t) - w_{2n}^{'}(t) \right]^{+}, z_{1} - z_{2} \right] = 0$$
a.e. on $] 0, T[\forall (z_{1}, z_{2}) \in V_{ln} \times V_{2n},$

$$w_{ln}(0) = w_{ln}(T), \quad w_{ln}^{'}(0) = w_{ln}^{'}(T).$$

Immediate consequence of (18) are the upper limitations:

(19)
$$\left\| w_{ln}^{'} \right\|_{L^{2}\left(0,T;V_{l}\right)} \leq c,$$

$$\left\| w_{ln}^{''} \right\|_{L^{2}\left(0,T;L^{2}\left(\Omega_{l}\right)\right)} \leq c,$$

and also

$$\left\| \overline{w}_{ln} \right\|_{L^2\left(0,T;V_l\right)} \le c,$$

where $\overline{w}_{ln}(t) = w_{ln}(t) - w_{ln}(0)$ Therefore $\overline{w}_l \in H^1(0, T, V_l)$, with

$$(20) \quad \overline{w}_l^{"} \in L^2\left(0,T;L^2\left(\Omega_l\right)\right), \quad \overline{w}_l(0) = \overline{w}_l(T) = 0, \quad \overline{w}_l^{'}(0) = \overline{w}_l^{'}(T) ,$$

and $h \in L^2(0,T;L^2(\Omega))$ exist so that, to within a subsequence, for $n \to +\infty$:

(21)
$$\overline{w}_{ln} \to \overline{w}_{l} \qquad \text{weakly in } L^{2}(0,T;V_{l}), \\
w'_{ln} \to w'_{l} \qquad \text{weakly in } L^{2}(0,T;V_{l}), \\
w''_{ln} \to w'' \qquad \text{weakly in } L^{2}(0,T;L^{2}(\Omega_{l})), \\
\left[w'_{ln} - w'_{2n}\right]^{+} \to h \quad \text{weakly in } L^{2}(0,T;L^{2}(\Omega))$$

M. Biancardi, A. Gallo

Ratio Math.

Num. 9 - 1995

Using (21) and equality

$$\overline{\bigcup_{n \in N} V_{ln}} = V_l,$$

we easily derive from the first of (18) this relation:

$$\sum_{l=0}^{2} I \int_{0}^{T} \left\{ \left(\overline{w}_{l}^{"}(t), \varphi'(t) z_{l} \right)_{l} + \left\langle A_{l} \overline{w}_{l}(t) + B_{l} \overline{w}_{l}^{'}(t), \varphi'(t) z_{l} \right\rangle_{l} - \left(f_{l}(t), \varphi'(t) z_{l} \right)_{l} \right\} dt + \frac{1}{\varepsilon} \int_{0}^{T} \left(h(t), \varphi'(t) (z_{1} - z_{2}) \right) dt = 0 \quad \forall \varphi \in C_{0}^{\infty} \left(\left[0, T \right] \right) \text{ and } \forall \left(z_{1}, z_{2} \right) \in V_{1} \times V_{2},$$

the latter being equivalent, a.e. on]0,T[, to:

$$\frac{d}{dt}\left[\overline{w}_{1}''(t) + A_{1}\overline{w}_{1}(t) + B_{1}\overline{w}_{1}'(t) + \frac{1}{\varepsilon}h(t) - f_{1}(t)\right] = 0 \quad \text{in the sense of } V_{1}',$$

$$\frac{d}{dt}\left[\overline{w}''(t) + A_{2}\overline{w}_{2}(t) + B_{2}\overline{w}_{2}'(t) - \frac{1}{\varepsilon}h(t) - f_{2}(t)\right] = 0 \quad \text{in the sense of } V_{2}',$$

which in turn lead to existence of $F_l \in V_l$ such that, a.e. on]0,T[:]

(22)
$$\overline{w}_{1}^{"}(t) + A_{1}\overline{w}_{1}(t) + B_{1}\overline{w}_{1}^{'}(t) + \frac{1}{\epsilon}h(t) - f_{1}(t) = F_{1},$$

$$\overline{w}_{2}^{"}(t) + A_{2}\overline{w}_{2}(t) + B_{2}\overline{w}_{2}^{'}(t) - \frac{1}{\epsilon}h(t) - f_{2}(t) = F_{2}.$$

Given $w_{l0} = A_l^{-1} F_l$ and $w_l = \overline{w}_l - w_{l0} \in H^1(0, T; V_l)$, from (20), (22) we get respectively:

(23)
$$w_l^{"} \in L^2(0,T;L^2(\Omega_l)), \quad w_l(0) = w_l(T), \quad w_l^{'}(0) = w_l^{'}(T)$$

(24)
$$\sum_{l=1}^{2} l \left\{ \left(w_{l}^{"}(t), z_{l} \right)_{l} + \left\langle A_{l} w_{l}(t) + B_{l} w_{l}^{'}(t), z_{l} \right\rangle_{l} - \left(f_{l}(t), z_{l} \right)_{l} \right\} + \frac{1}{\varepsilon} \left(h(t), z_{1} - z_{2} \right) = 0 \quad \text{a.e. on }] 0, T \left[\forall \left(z_{1}, z_{2} \right) \in V_{1} \times V_{2}. \right]$$

Since from (18) and the second of (21)

$$\lim_{n} \frac{1}{\varepsilon} \int_{0}^{T} \left(\left[w'_{ln}(t) - w'_{2n}(t) \right]^{+}, \ w'_{ln}(t) - w'_{2n}(t) \right) dt \le$$

$$\leq \sum_{l} \int_{0}^{T} \left(f_{l}(t), \ w'_{l}(t) \right)_{l} dt - \sum_{l} \int_{0}^{T} \left\langle B_{l} w'_{l}(t), \ w'_{l}(t) \right\rangle_{l} dt$$

and from (23), (24)

$$\frac{1}{\varepsilon} \int_{0}^{T} \left(h(t), w'_{1}(t) - w'_{2}(t) \right) dt = \sum_{l=1}^{2} l \int_{0}^{T} \left(f_{l}(t), w'_{l}(t) \right)_{l} dt + \frac{1}{\varepsilon} \int_{0}^{T} \left\langle B_{l}w'_{l}(t), w'_{l}(t) \right\rangle_{l} dt,$$

we may write

(25)
$$h(t) = \left[w_1'(t) - w_2'(t) \right]^+ \quad \forall t \in [0, T]$$

since

$$v \in L^2(0,T;V) \to Lv(\cdot)$$

is a bounded, monotone and hemicontinuous operator. From (23), (24) and (25) we see that $w_l = u_l \varepsilon$. Consequently (17) hold: the first of (17) is true because of the first of (20), the second because of (19) and the third of (21).

THEOREM 3. If for l = 1, 2 $f_l \in H^1(0, T; V_l)$ and $f_l(0) = f_l(T)$, then we have:

$$\begin{aligned} u_{l\varepsilon}^{''} &\in L^2(0,T;V_l), \\ & \left(c = \text{const.} > 0 \text{ indep. from } \varepsilon\right) \\ & \left\|u_{l\varepsilon}^{''}\right\|_{L^2(0,T;V_l)} \leq c. \end{aligned}$$

PROOF. Proceeding as with the beginning of the proof of theorem 2 and considering the present hypothesis on f_I , we see that there exists a unique

$$(w_{1n}, w_{2n}) \in \prod_{l=1}^{2} H^3(0, T; V_{ln})$$
 which fulfills the following conditions:

(26)

$$\sum_{l=1}^{2} I \left\{ \left(w_{ln}^{"}(t), z_{l} \right)_{l} + \left\langle A_{l} w_{ln}(t) + B_{l} w_{ln}^{"}(t) - f_{l}(t), z_{l} \right\rangle_{l} \right\} + \frac{1}{\varepsilon} \left[\left[w_{ln}^{"}(t) - w_{2n}^{"}(t) \right]^{+}, z_{1} - z_{2} \right] = 0 \ \forall t \in [0, T], \text{ and } \forall (z_{1}, z_{2}) \in V_{1} \times V_{2},$$

(27)
$$w_{ln}(0) = w_{ln}(T), \quad w_{ln}(0) = w_{ln}(T), \quad w_{ln}''(0) = w_{ln}''(T).$$

By differentiating the left member of (26), accounting for both the second and third of (27) and inequality:

$$\left(\frac{d}{dt}\left[w_{1n}'(t)-w_{2n}'(t)\right]^{+}, \quad w_{1n}''(t)-w_{2n}''(t)\right) \geq 0 \quad \forall t \in [0,T],$$

we obtain

$$\left\| w_{ln}^{"} \right\|_{L^{2}\left(0,T;V_{l}\right)} \le c.$$
 $\left(c = \text{const.} > 0 \text{ indep. from } \epsilon \text{ and } n\right)$

This proof is completed by proceeding similarly to what reasoned with theorem 2.

3. Results obtained in n. 2 will now allow us to produce some existence theorems for problem (P).

THEOREM 4. If for l=1,2 $f_l \in L^2\Big(0,T;L^2\big(\Omega_l\big)\Big)$ then there exists a $\Big(u_l,u_2\Big) \in \prod_{l=1}^2 H^1\Big(0,T;V_l\Big)$, with $u_l^{''} \in L^2\Big(0,T;L^2\big(\Omega_l\big)\Big)$, which is solution of problem (P).

PROOF. For any $\varepsilon > 0$ let $(u_{1\varepsilon}, u_{2\varepsilon}) \in \prod_{l=1}^{2} H^{1}(0, T; V_{l})$ be a solution of problem (14), (15), (16). Because of theorem 2 $u_{l\varepsilon} \in L^{2}(0, T; L^{2}(\Omega_{l}))$ and we have:

(28)
$$\|u_{j_{\varepsilon}}^{"}\|_{L^{2}\left(0,T;L^{2}\left(\Omega_{j}\right)\right)} \leq c. \qquad \left(c = \text{const.} > 0 \text{ indep. from } \varepsilon\right)$$

Consequence of (15), (16) are the upper limitations:

(29)
$$\|u'_{l\varepsilon}\|_{L^{2}(0,T;V_{l})} \leq c,$$

$$(c = \text{const.} > 0 \text{ indep. from } \varepsilon)$$

(30)
$$\left\| \left[u_{1\varepsilon} - u_{2\varepsilon} \right]^{+} \right\|_{L^{2}\left(0,T;L^{2}(\Omega)\right)}^{2} \le c\varepsilon.$$

The existence of $(u_1, u_2) \in \prod_{l=1}^{2} H^1(0, T; V_l)$ with

$$u_l^{"} \in L^2(0,T;L^2(\Omega_l)), \quad u_l(0) = u_l(T), \quad u_l^{'}(0) = u_l^{'}(T),$$

and of a positive numerical infinitesimal sequence $\{\varepsilon_n\}$ such that for $n \to +\infty$:

(31)
$$u_{l\varepsilon_{n}} - u_{l\varepsilon_{n}}(0) \to u_{l} \quad \text{weakly in } L^{2}(0, T; V_{l}),$$

$$u_{l\varepsilon_{n}}' \to u_{l}' \quad \text{weakly in } L^{2}(0, T; V_{l}),$$

$$u_{l\varepsilon_{n}}'' \to u_{l}'' \quad \text{weakly in } L^{2}(0, T; L^{2}(\Omega_{l})).$$

is guaranteed by (28) and (29).

Thus, solution of problem (P) is (u_1, u_2) . Indeed, on one hand

$$\left(u_1'(t), u_2'(t)\right) \in K$$
 a.e. on $]0, T[$

since, holding (30) and the second of (31), we have:

$$\int_{0}^{T} \left[u_{1}'(t) - u_{2}'(t) \right]^{+} dt \leq \lim_{0} \int_{0}^{T} \left[u_{1\varepsilon_{n}}'(t) - u_{2\varepsilon_{n}}'(t) \right]^{+} dt = 0.$$

On the other hand, by virtue of inequality

$$\int_{0}^{T} \left(\left[u_{1\varepsilon_{n}}'(t) - u_{2\varepsilon_{n}}'(t) \right]^{+}, \left[v_{1}'(t) - u_{1\varepsilon_{n}}'(t) \right] - \left[v_{2}'(t) - u_{2\varepsilon_{n}}'(t) \right] \right) dt \le 0,$$

where (v_1, v_2) is an arbitrary element of $\prod_{l=1}^2 H^l(0, T; V_l)$, satisfying conditions:

$$(v_1'(t), v_2'(t)) \in K$$
 a.e. on $]0,T[, v_l(0) = v_1(T),$

from (15), (16) we get:

$$\sum_{1}^{2} I \int_{0}^{T} \left\{ \left(u_{le_{n}}^{"}(t), v_{l}^{'}(t) \right)_{l} + \left\langle A_{l} \left[u_{le_{n}}(t) - u_{le_{n}}(0) \right], v_{l}^{'}(t) \right\rangle_{l} + \left\langle B_{l} u_{le_{n}}^{'}(t), v_{l}^{'}(t) \right\rangle_{l} + \left\langle B_{$$

and from here, taking the limit as $n \to +\infty$, we obtain because of (31):

$$\sum_{1}^{2} l \int_{0}^{T} \left\{ \left(u_{l}''(t), v_{l}'(t) \right)_{l} + \left\langle A_{l} u_{l}(t), v_{l}'(t) \right\rangle_{l} + \left\langle B_{l} u_{l}'(t), v_{l}'(t) \right\rangle_{l}$$

Using theorem 3, with the above procedure we prove the following

THEOREM 5. If for l = 1, 2 $f_l \in H^1(0, T; V_l)$ and $f_l(0) = f_l(T)$ then there exists a $(u_1, u_2) \in H^2(0, T; V_l)$ solution of problem (P).

Let us complete the study of problem (P) by analysing a particular case. Let: $\Omega_1 = \Omega_2 = \Omega$ be a $C^{1,1}$ open, bounded, connected set of R^n and $V_1 = V_2 = H_0^1(\Omega)$.

We now consider the uniformly elliptic second order linear differential operator

$$A = -\sum_{i=1}^{n} ij \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial}{\partial x_{i}} \right) \quad \text{with } a_{ij} = a_{ji} \in C^{0,1}(\Omega),$$

and let

$$A_l = \alpha_l A, \qquad B_l = \beta_l A,$$

 α_1 and β_1 being positive constants.

THEOREM 6. If for l = 1, 2 $f_l \in L^2(0, T; L^2(\Omega))$, then there exists a $(u_1, u_2) \in \left[H^1(0, T; H_0^1(\Omega) \cap H^2(\Omega))\right]^2$ with $u_l'' \in L^2(0, T; L^2(\Omega))$, solution to problem (P).

PROOF. In the light of the proof given for theorem 4 and of statements made in the introduction concerning solutions of problem (P), it is evidently enough to prove that for the solution $(u_{1\varepsilon}, u_{2\varepsilon})$ of the problem (14), (15), (16) we have:

$$u_{l\varepsilon} \in L^{2}\left(0, T; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \quad u_{l\varepsilon}^{"} \in L^{2}\left(0, T; L^{2}(\Omega)\right),$$

$$(c = \text{const.} > 0 \text{ indep. from } \varepsilon)$$

$$\left\|u_{l\varepsilon}^{'}\right\|_{L^{2}\left(0, T; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right)} + \left\|u_{l\varepsilon}^{"}\right\|_{L^{2}\left(0, T; L^{2}(\Omega)\right)} \leq c.$$

Assumptions made for Ω and operator A assure ([2], Remark 31, pg. 308; [7], theor. 2.1, pg. 201) the existence of a base $\left\{z_j\right\}$ of $H_0^1(\Omega)$ of functions of $H_2(\Omega)$ such that

$$Az_{i} = \lambda_{i}z_{i}$$

where $\{\lambda_j\}$ is a positively diverging sequence of positive numbers. Let V_n be the space spanned by $\{z_1, ..., z_n\}$, from theorem 1 there is a unique $(w_{1n}, w_{2n}) \in [H^2(0, T; V_n)]^2$ solution of the problem:

(34)

$$\begin{split} &\sum_{1}^{2} l\left(w_{ln}^{"}(t) + \alpha_{l} A w_{ln}(t) + \beta_{l} A w_{ln}^{'}(t) - f_{l}(t), y_{l}\right) + \\ &+ \frac{1}{\varepsilon} \left(\left[w_{ln}^{'}(t) - w_{2n}^{'}(t)\right]^{+}, y_{1} - y_{2}\right) = 0 \quad \text{a.e. on }]0, T[\quad \forall (y_{1}, y_{2}) \in V_{n}^{2}, \end{split}$$

(35)
$$w_{ln}(0) = w_{ln}(T), \quad w'_{ln}(0) = w'_{ln}(T).$$

Recalling (33), (34), may also be written as:

$$\sum_{l=1}^{2} l \left(w_{ln}''(t) + \alpha_{l} A w_{ln}(t) + \beta_{l} A w_{ln}'(t) - f_{l}(t), A y_{l} \right) + \frac{1}{\varepsilon} \left(\left[w_{ln}'(t) - w_{2n}'(t) \right]^{+}, A \left[y_{l} - y_{2} \right] \right) = 0$$
a.e. on] 0, T[$\forall (y_{1}, y_{2}) \in V_{n}^{2}$

and this, together with (35) and the following inequality

$$\left(\left[w_{1n}'(t)-w_{2n}'(t)\right]^{+}, A\left[w_{1n}'(t)-w_{2n}'(t)\right]\right) \geq 0 \quad \forall t \in [0,T],$$

allow us to acquire the upper limitation:

$$||Aw_{ln}||_{L^2(0,T;L^2(\Omega))} \le c \quad (c = \text{const.} > 0 \text{ indep. from } \epsilon \text{ and } n)$$

from which ([7], theor. 2.1, pg. 201):

(36)
$$\| w'_{ln} \|_{L^{2}(0,T;H_{0}^{1}(\Omega) \cap H^{2}(\Omega))} \leq c.$$

The further upper limitation

(37)
$$\|w_{ln}^{"}\|_{L^{2}(0,T;L^{2}(\Omega))} \le c \quad (c = \text{const.} > 0 \text{ indep. from } \epsilon \text{ and } n)$$

follows because of (34), (35), (36).

Inequalities (36), (37) bring us to (32) with the same technique used for theorem 2 considering that now $F_l \in L^2(\Omega)$ and that $w_{l0} = A_l^{-1} F_l \in H_0^1(\Omega) \cap H^2(\Omega)$ ([7], theor. 2.1, pg. 201).

REFERENCES

- 1. H. BRÉZIS, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168.
- 2. H. BRÉZIS, Analisi funzionale, Liguori ed., 1986.
- 3. J.L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, 1969.
- 4. J.L. LIONS, Sur quelques questions d'Analyse de Mécanique et de Contrôl Optimal, Conférence à Montreal, 1976.
- 5. J.L. LIONS, E. MAGENES, Problèmes aux limites non homogènes et applications, vol. I, Dunod, 1968.
- 6. J. NAUMANN, Periodic solutions to certain evolution inequalitities, Czech. Math. Journ. 27 (1977), 424-433.
- 7. J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, 1967.
- 8. G. PRODI, Soluzioni periodiche dell'equazione delle onde con termine dissipativo non lineare, Rend. Sem. Mat. Padova 35, 1965.
- 9. L. SCHWARTZ, Distribution à valeurs vectorielles, I, II, Annales Institut Fourier, 7 (1957), 1-141; 8 (1958), 1-209.

