Ratio Mathematica 9
(1993), 113-130

PERIODIC SOLUTIONS
OF A SECOND ORDER EVOLUTIVE
VARIATIONAL INEQUALITY*

M. Biancardi, A. Gallo*’

ABSTRACT - Hereafter we shall analyse the existence and regularity
properties of the solution of the periodic problem related to a second order
evolutive variational inequality.

SUNTO - Si analizzano le questioni di esistenza e regolarita della soluzione
per il problema periodico connesso ad una disequazione variazionale di
evoluzione del secondo ordine.

INTRODUCTION

Let Q; and €, be two open sets of RY with 0= 4N,
=@ ,¥(/=1,2) a real separable Hilbert space with dense and continuous
embedding in L°(£,).

Let us denote by:

(,9.] the inner product and the norm in 22(€2),

(-, .)! E |_, the inmer product and the norm in Lz(Q_,),

H - “ the norm in ¥,

{-,-) the pairing between ; and its dual V;
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Furthermore, let K be the convex closed part of ¥ x¥;:
{(zl,zz)eVl xVy . 7y <zy ae on Q}.

Given f; € Lz(O, TV;) {0 < T < +w} and operators A).Be L (V[,V;)
such that:
(4y.z),=(42.y), (By.z),=(Bz.y), Yy zel,
(Afz,z')f Za!:” z||‘? (B;z,z)l z b || 2”12 vz, eV} (a;.bﬁ const, > 0) .
we consider the following
2 1
PROBLEM (P). Find (4,1 ) €[] H (0,7;;) so that:
I=1
u; ELE(O, T V;),
4 (0} = (7). %(0)=%(7),
(u;(t]z@(t]j ek a.e.on ]0, T[ ,

2 T i r r '
zzj (:;,, (1} + A (e)+ Ba(0) - £,(2), v,,(:)_u,(:))j dt >0
|

0

V{v],vz]elg[ HI(O, TV;] with v.,((}) = v;(TJ and (VI (I).vlz (!)) e K a.c.on]O,T[.
i=!

Of ¢ourse our problem (P) will not have a unique solution. As a matter of
fact;

if (ul,uz) is one solution of problem (P}, then any other solution will enly be
of the type (“1 +2y,1 + zz}, where z; is an arbiirary element of ¥;.
Obviously (“1 + 2y, + zz] satisfies our problem (P). On the other hand,

assuming that (El,ﬁz) is an other solution, we immediately find that:

v [

Uy =y =0,

£lory)
and therefore u;, =u; +2z; with z; V).

We shall now develop two existence theorems for our problem, theorems
4 and 5 (n. 3), with two different hypothesis on f;: in the first we assume

i EL?'(O, T; LZ(Q;))’ in the second f EHl(U, T V!’)' 7{0) = £,(7).

For the proof we shall essentially adopt a penalty method [1], [3], {4]
based on an existence theorem concerning periodic solutions of an abstract
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non linear second order differential equation. Moreover, in proving this
theorem [th. 1, n. 1] we follow a technique inspired to the “elliptic
regularization” [3], [5]. The results given by theorems 2 and 3 [n. 2] for the
penalized problem will then be used to prove the above mentioned existence
theorems for our problem (P).

A regularity theorem “with respect to x” is also given in n. 3, theorem 6,

when V=V, = Hé(Q) and operators A, B,, within constant factors, are
identical to a uniformly elliptic second order linear differential operator. The
uniform ellipticity of this last operator allows us to obtain upper limitations

by introducing a “special base” of Hé(Q).

1. Let ¥ and H be real Hilbert spaces: ¥ < H, with dense and continuous

embedding.
We identify H with its dual and denote with
(-,), | . i the inner product and the norm in A,
I the norm in V,
(.9 the pairing between ¥ and its dual ¥ .

Let alse f € L2(0, T:¥") and 4, B the operators from ¥ into V': A linear

and continuous, B strictly monotone and hemicontinuous. Let us suppose
that:

(Ay,z)={Az,y) Yy, zeV,
(Az.2)za)z|? VzeV, (a=const.>0)
(Bz,z) = b|| z||2 vz eV, {b=const. > 0)
for each veLz(O, T:V) Bv(:) e LZ(O, VY, .
operator v I2(0, ;¥ )— Bv() is bounded.

THEOREM 1. In the above stated assumptions, there exists only one
solution ue H'(0, T;¥) of the following problem:

M wel(0Tv),
(2) u”(t),z)+(Au(t),z)+(Bu'(r),z> = (f(r),z) a.e.on ]0, T[ VzelV,
3)  u(0)=u(T), w(0)=w(T) .

PROOF. Firstly, if #,2, cH'(0, T; V) are solutions of the problem (1), (2),
(3), then
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}(Bu;(r)—Bu'z(t), u;(f)—u;(t)> di=0

0
must hold and therefore

u;(r) = uz(r) a.e.on0,T]
owing to the strict monotonicity of B. Thus there exists a zg € ¥ such that
wlt)=wu,(t)+zy v ef0,T].
This condition in tumn is fulfilled iff
(Azo,z)=0 YzeV,

namely zy = 0. In order to prove the existence of the solution, we introduce
the Hilbert space:

W= {v e’ (0,7.7) : v el(0,T; H), v(0) =v(T), v/(0) = v'(;")}

equipped with norm

4 2, 2, ¥ 2, {2
“v”w= ”’ v(z) ” dt+” v'(r)” a't+”v”(r)‘ dt vaW
0 0 o

and then denote with << -,->> the pairing between W and its dual W',
Given > 0, we set, forany u,v e W

T T
<< Cuv >>=¢ j(u”(:), v”(t))dt+f(Au(t), v(t))dr +
0 0
(u”(t),v’(t))dt+}F(Au(!),v'(r))dt+

0
T

(Bu' (e} v (1))t ~ J{F() v (e))ate.

0

)

-+

+

S D
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CE.Wow s obviously a bounded, sirictly monotone, hemicontinuous
and coercive operator. Therefore ([3], theorem 2.1, pg. 171) there exists a
unique #, € W solution of equation

4 <¢C£ua,v>>=0 YveW.

Eq. (4), written with v = 3, . gives the upper limitations

T T
w2 2
() & jus(t)’ dr+j ua(t)” dt |<c,
0 0
: 2
6) j ue(r)” dt sc, (c =const. > 0 indep. from &)
0
as well as
i 2
) Nz () ar <e

where #, (¢)= us(!)—uE(O}. Inequalities (5), (6), (7) imply the existence of
7 eH (0,T;¥), with #(0)=a(T) =0, of gel2(0.7;¥") and of a positive

numerical infinitesimal sequence { an} such that for n & +o
%, — 7 weaklyin L(0,T;7),

' — N YO

. —> ' weakly in [ (0, T, V),

=

"

Bu-‘e ()_) g weakly in Lz(o', T;V,) ’

(%)

(0 T~V)J =0

|~

"
"
Eﬂ

2(0.7:H)

Starting from (4) and using (8), we come to relation

T
) }r(ﬁ'(t),v”(:))dr = [(AE(:)+g(r)—f(t),v’(:)) dt VYveW.

0 0
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T
Let now gy Cq (10,7} with [oy(r)dr =1, o eCy’(]0,7]) and z eV . From

0
(9), setting
vt} = [j [(p(s) - (po(s)ijr(p(t)a’r]ds Jz vie[0,T)
0 0
we get:
T
[J ﬁ'(r)qa'(r)afr,z}=
0
T
<J Aa(r) + gle} - (n)]olr)ar, Z>+
0
+H u'( dr] Jcp(r)dr,z]+
T
<[I Au(e)+g(r) f(f))tpg(f)df} jolr)ar, z>
0

(¢)= —-[A:T(t)a-g(r)—f(t)}—e ae.on J0,7 inthe V"’ sense
being 0 the element of V'’

—_—

T
7(¢)og () de - [(4w(e)+ g(e)- (€)oo (t) at.

H

o

Let u, be the element of ¥ for which Auy =9, and given u =1 +u4, it is
obvious that # satisfies (1), the first of (3} and that:

(10)
<u”(t),z>+<Au(r),z) +(g(r),z> =<f(!),z) a.e. on ]0, T[ VYzel.
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We may also note that the second of (3) holds too. Indeed, chosen
weCz([O, T]) with w(0) = w(7) and w'(0) = w’/(T) =1, recalling (9) and
(10),weget VzeV:

(w(1)-w(0).2) = (w(Thy (1) - (0w (0).2 <T[u’(rw(r]drz>

¢

l__h..!

=[{w"(e), y'(t)z)dt + j(u’(t "(¢)z)dt =

0 0

= }.(u”(t),up'(r)z)dr + }F( At} +g(e)- f(0)w(e)z)dt =
0 0

=0

Because of (10), (2) is acquired as soon as we are able to prove that

e Bu'(.)=g.
From (4), with v = u, ,We obtain:
J]:<BH;,, (e}, u;n(t)>dts j:(f(:), u;”(.r)>d;
0 0

from which, because of the second of (8),

T

(12) Tim"” (Bu , )dt f(
0

0

=I
"-.____,f‘

Assuming z = u'(¢), (10) produces the following equality:

(13) J:'( u{t))dt J:( u(;>

The second and third of (8), together with (12) and (13), imply (11), since
operator

ve I2(0,7:7) - Bv( )
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is bounded, monotone and hemicontinuous ([3], proposition 2.5, pg. 179).

REMARK. Proof of the existence is essentially the same when assuming
“B monotone” instead of “B strictly monotone”,

2. Letus suppose
V=¥x¥,, H=I{Q)x2(e,)

and write for each z = (zl,zz], y= (yl,yz) eV

<AZ,y) = (AIZI,}’] )1 +<A222,y2>2,

<Lz,y) = l([z] —22]+,y1 —yz) with £ >0,
£

{Bz,y) =(B]zl,yl)l+(Bzz;,_,y2)2+(Lz,y>_

Of course Hilbertian spaces V, H and operators A, B, from ¥ into V', meet
the assumptions stated at the beginning of n. 1. Therefore, from theorem I,

2
there exists a unique (“15'“28} e[l HI(O, T, V!) solution of the problem
=]

(14) uy, € LZ(O, T: V,'),

2 " :

z f(“la(t) + Al{u‘rs(f] + B!H!:e(t) - f}'(t),Z!)z +
(15) | X

—([uls(t)—uza(t)] .2y —22) =0

€

a.e. on ] O,T[ ‘v’(zl,zz)e Vi x Vs,

(16) e (0) = 1, (T), 0, (0) = u (T).

THEOREM 2. Iffor /=12 f e LZ(O, T: £2(e)) we then have:

uj, ef(o, T LZ(QI)),
(7 |

"

Uy, (¢ = const. >0 indep. from )

2(or:.2(0,)) =6
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PROOF. Let {z&,} be a base of ¥; and, for each # € N, ¥;_ be the space

spanned by {va . .,zm}. Theorem 1 and the finite dimensions of V;, assure

2
the existence of a unique (Wlu, v%) e]l H2(0, T; V,,,) such that
=1

%f{(w;,, (f‘),Z:)[ +<A1W:ﬂ(f) + Bfw;n(t)'zl)l -(#(0), zf):} *
as !

1“@4n—@AoIla~a)=o

£
ae.on J0,7[ ¥(z.z)en,x,,

Wy, (0) = w!n(T), w;n({}] = w;n(T).

Immediate consequence of (18) are the upper limitations:

” Wi,

(19) (¢ =const. >0 indep. from € and »)

<c,
Zlory)

2orcg)

” Wi

and also

W, e,
” in Lz(O.T.‘P})

where Wy, (1) = w,,(¢)-w;,(0) Therefore w, e H'(0, T;¥), with

(20) W;'eﬁ(o,r;ﬁ(g,)), #(0)=w(1T)=0, w(0)=w(7),

and he (0, T, 2 (Q)) exist so that, to within a subsequence, for # — +

W, — W, weakly in 12 (0, T:¥)),
Wiy = W, weakly in L*(0,7,7,),
21 " "
( ) w, 3> w weakly in L2 (01 T; LZ(QI))’

L} r +
[Wln““bn] —h  weakly in L?'(O,T;LZ(Q))

121



M. Biancardi, A. Gallo Ratio Math, Num. 9 - 1995

Using (21) and equality

UV,=V,
nel

we easily derive from the first of (18) this relation:

%; {[WI (.r),(p’(t]z,-)i + (A;W;(I) + B;W;(‘),(P'(f)z,')!, - (ff(f),w’(f)zl):}dt *

SRt

+— [(K(e).0' ()= —z,)}dr =0 VoeCy (]0.7[) and V(z.2)) e¥ =¥,

o

1
£
the latter being equivalent, a.e. on |0,T] , to:

i{ﬁf(r%Alﬁl(r]+B]W{(t)+lh(r)—-f](t)} =0 inthesenseofVl’,
dt €
i[ﬁn(!)+Azﬁz(r)+Bzﬁé(r)—lh(t)—fz(t):] =0 inthesenseofV?i,
dt €

which in turn lead to existence of F; € V,' such that, a.e. on ]0, T[ :
B L 1
iy (0)+ 4w () + B () +—#lt)- £(6) = R,
(22) 81
Wy (1) + 4w, (1) + Bywy (t) ——h(t) - /() = F;.

€

Given wy = Af_l Fandwy =w,~-wp € HI(O,T;VI), from (20), (22) we

get respectively:

@) we l?(o. T Lz(Q,)), w{0) = w(T), w(0) = w(T)
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£1{( )+ Amlo)+ Bt 2) (7005, b+
@

+—(h(!‘),zl-—22)=0 a‘e.on] O,T[ V(ZI,ZZ) GVIXV2.
E

Since from (18} and the second of (21)

T
lim"i ([win(t)—wén(t)]+, w;,,(r)_w;,,(t)} s
2 TO P 2 7 f f
sz { (5 w!(t))ldt—zljl(}(B,wf(x) w;(r))ldt
and from (23), (24)
IT . 2 g .
L[ (o) -we))ar =zt [ (#0w(0)) @+
£ 1
4] 4
T
_%I {(Bfw;(t),w;(t)>ldt,
we may write
(25) h(r)=[w;(r)-1,v'2(:)]+ v1e0,7]

since
vel2(0,7:) > Lv()
is a bounded, monotone and hemicontinuous operator. From (23), (24) and

(25) we sce that w; = ze. Consequently (17) hold: the first of (17) is true
because of the first of (20), the second because of (19) and the third of (21).
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THEOREM 3. Iffor /=12 f, H‘(O,T;V,') and £,(0) = £,(T), then we

have:

u;; eLz(O, T;V,-),

(¢ = const. >0 indep. from )

Uy, e

2lory)

PROOF. Proceeding as with the beginning of the proof of theorem 2 and
considering the present hypothesis on f;, we see that there exists a unique

2
(Wi Wy ) € TLA(0.7;7,,) which fulfills the following conditions:
i=]

(26)
2 " .
5 !{[w;n(t),z‘,)! +{ Ay (6) + Bowyo (1) - f;(t),z;)g}+
1
+l[|:w;n(t) = uén(r)jr,zl = zzJ =0Vv¢ E[O, T], and V(zl,zz) el x¥;,
E

@7 wu0) = W (7). Wi (0) = w (7), vy, (0) = wy (7).

By differentiating the left member of (26), accounting for both the second
and third of (27) and inequality:

)=o), )=o) |20 vieo.7]
o

we obtain

s <e. (¢ = const. >0 indep. from £ and »)
Clor)

” Wiy

This proof is completed by proceeding similarly to what reasoned with
theorem 2.

3. Results obtained in n. 2 will now allow us to produce some existence
theorems for problem (P).
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THEOREM 4. If for /=12 f eL"(o, T;LZ(QI)) then there exists a

2 L

(“1»“2} e[l HI(O, TV;) with %, Lz(O; T, LZ(Q,)), which is solution of
i=1

problem (P).

2
PROOF. For any >0 let ("151“29)51_[ H'(O, T;V,) be a solution of

=1
problem (14), (15), (16). Because of theorem 2 1, € LZ(O, T; L"(n,)) and

we have:

(¢ = const. > 0 indep. from €)

(28) Uy,

<e.
Zlor2(0,)) ¢

Consequence of (15), (16) are the upper limitations:

(29) Uy, 2 [U,T;V,) L
(¢ = const. >0 indep. from ¢)
’ ! + 2
(30) I:uls - uh] <ce.
£lor:(o)
2
The existence of (ul,uz)eﬂ H(o, T;K,) with
i1

u < Lz({}, T: Lz(Q,)), w(0) = u{7), 1(0)=u(T),

and of a positive numerical infinitesimal sequence {an} such that for
n—r+w;

e~ (0) > weaklyin I*(0,7;¥

)l
G u;g” —w  weakly in 22{0,T,¥),

u, —>u weakly in LZ(O, T; L"(Q,)).

125



M., Biancardi, A. Gallo Ratio Math. Num, 9 - 1995

is guaranteed by (28) and (29).
Thus, solution of problem (P) is (ul,uz). Indeed, on one hand

(u;(:),u;(x)] €K aeon]0T|

since, holding (30) and the second of (31), we have:

T T
2

J’ a'télim([

0 ¢

On the other hand, by virtue of inequality

T
J’[[uisn (6) =y (t)T’ [vi(:)-uian(t)]—[v;(t)—u'zgn(t)]) dt <0,
0

2

[u()-10)]

=0.

(s, )=, ]

2
where (v],vz) is an arbitrary element of ]‘[HI(O,T;P}], satisfying
=1
conditions:

(v;(t),v'z(t)) eK aeon J0,T], v(0)=w(T)

from (15), (16) we get:
T

%1 J' {(u;;" .0 +{ 4 [, ()=, @) +{ B (i) +

!
0

T
(A0, ) Jar= 21 [ (B, (0, 0),
0

and from here, taking the limit as »— +, we obtain becaunse of (31}

126



Numn, 9 - 1995 Ratio Math, M. Biancardi, A. Gallo

I

""M“

S

{(u;'(:), v;(:))[ +(Am:(t),v;(t)>l +(Bragfe) o)) +

T
2
_(f}( ) v!(t)_u[ } z I Bfﬁf(f) uf .f)>
1
¢
Using theorem 3, with the above procedure we prove the following

THEOREM 5.  Iffor [=12 f eH‘(o, T,-V,'J and £,(0}= £,{(T} then

there exists a (ul,uz) € H2 (0, TVi) solution of problem (P).
Let us complete the study of problem (P) by analsysing a particular case.
Let: Q,=0Q,=0Q be a Cl'] open, bounded, connected set of R" and
. .
v, =¥, = Hy{Q).
We now consider the uniformly elliptic second order linear differential
operator

I J &

A=-3jj | ay— with ag=aj,-eco'l(9),
1 5‘x Ox;

and let

A =4, B =PBA,

o, and B, being positive constants.

THEOREM 6. If for /=12 ef(o, T; LZ(Q]), then there exists a
2 "

(u,,) € [Hl(o, T Hy(Q) N HZ(Q)II with e LZ(O, T; 1:2(9)),

solution to problem (P}.

PROOF. In the light of the proof given for theorem 4 and of statements
made in the introduction concerning solutions of problem (P}, it is evidently

enough to prove that for the solution (“15»“25) of the problem (14), (15),
(16) we have:
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u, € LZ[O, T HiQ)n HZ(Q)), u, Lz(O, T; Lz(Q)J,

(32) {c = const, > 0 indep. from &)

Assumptions made for 2 and operator A4 assure ([2], Remark 31, pg.
308; [7], theor. 2.1, pg. 201) the existence of a base {zj} of Hé(Q) of
functions of A, () such that

"

Uy, zcC.

Llora@ng @) ’

L
e

Por (o)

(33) Az; =)z,

where{l J.} is a positively diverging sequence of positive numbers, Let 7,

be the space spanned by {zl,...,zn}, from theorem 1 there is a unique

2
(w]n, Wzn) € [HZ(O T; Vn):’ solution of the problem:

(34)

2 " '
51 (wile) oty vy (£) By ()= 1), )+
1

1 ' . E 2
+—([Wln({)—w2n(t)] 7 yl_'sz:O a.e.Dn]O,T[ V(y],yz) EVH N
€

(35) Wi (0) = w(T), Wy, (0) = w, (7).

Recalling (33), (34), may also be written as:
2 ” ’
Zf [wfﬂ(t)-'hal'Awfn(t)-F B!AWIH(!) _ﬁ(t)'Ayt) +
1

[ a] - Al -]

aeon]0,T V(y,y,) el
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and this, together with (35) and the following inequality
L r + r ¥
[[wln(l) = u@n(t)] . A[wh,(t)— wzn(r)]) =0 V¥t e[O, T],
atlow us to acquire the upper limitation:
|4,

from which ([7], theor. 2,1, pg. 201):

<c¢ (c=const. >0 indep. from & and »)

Flor:2(0)

(36) II Wy,

Clor NN #7H0)) e

The further upper limitation

(37) ” Wy,

2lor-2(a) <c¢ (c=const. >0 indep. from & and »)

follows because of (34}, (35), (36).

Inequalities (36), (37) bring us to (32) with the same technique used for
theorem 2 considering that now Fe LZ(Q) and  that

Wi = 4 ' Fre Hy (QNHHQ) ([7), theor. 2.1, pg. 201).
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