A LOCAL PROPERTY OF HAMILTONIAN MOON TOURNAMENTS (*)

Cosimo DI MITRI, Cosimo GUIDO

We prove that a hamiltonian tournament H_n , $n \ge 5$, is of Moon-type (i.e. its subtournaments are either hamiltonian or transitive) if and only if each hamiltonian 5-subtournament is too.

1. INTRODUCTION

Several properties of tournaments are known that are verified globally iff they are fulfilled by each subtournament of a given order.

It is well known, for example, that a tournament with at least 3 vertices is transitive iff each 3-subtournament T_2 is too.

Burzio and Demaria [3] proved that a hamiltonian tournament with at least 5 vertices is bineutral iff each hamiltonian k-subtournament is too, for some $5 \le k \le n$.

Other local properties of hamiltonian tournaments that are global properties too were studied by Demaria and Gianella [4], who proved the following:

- a hamiltonian tournament with at least 5 vertices has the minimum number, n-2, of 3-cycles iff every hamiltonian 5-subtournament has 3 3-cycles.
- a hamiltonian tournament with at least 6 vertices has only one spanning cycle iff every hamiltonian 6-subtournament has the same property.

Work performed under the auspices of the Gruppo Nazionale di Topologia (MURST) and of the GNSAGA (CNR).

Burzio and Demaria [2] proved that a tournament with at least 4 vertices is of Moon-type (see next section for definitions) iff all of its 4-subtournaments are of the same type.

In this paper we prove that a hamiltonian tournament T_n , $n \ge 5$, is of Moon-type iff each hamiltonian 5-subtournament is too. (We remark that every Moon tournament is either hamiltonian or transitive).

2.PRELIMINARIES

In this section we give some definitions and well known results. See [1] and [5] for the definitions that we shall not refer to.

We denote by T_{m} a tournament of order m and by H_{m} a hamiltonian tournament of order m.

We often denote by T_m the set of labeled vertices of the tournament T_m .

C usually denotes a cycle of r vertices in a tournament, as well as the subtournament with the same vertices.

If (u,v) is an arc from the vertex u (called predecessor) to the vertex v (called successor) in T_m , then we write $u \to v$.

 $A \rightarrow B$ means that each vertex of the subtournament A precedes all the vertices of the subtournament B in T_m .

We denote by Tr_{m} the transitive tournament of order m.

We say that a vertex v cones a subtournament R in T_m (or R is coned by v) iff either $v \to R$ or $R \to v$ in T_m . A subtournament R is non-coned if no vertex exists which cones R in T_m (see [2]).

We say that a subtournament S of T is an e-component of T, and its vertices are called equivalent, if S is coned by each vertex of T-S. Single vertices and T are trivial e-components.

Every tournament T can be partitioned (in a non-unique way) into disjoint e-components S^1, S^2, \ldots, S^m . In such a case the e-components S^1, S^2, \ldots, S^m can be considered as the vertices $(v_1, v_2, \ldots, v_m]$ respectively) of a tournament Q_m , so that T_n can be obtained as the composition $Q_m(S^1, S^2, \ldots, S^m)$ of the quotient Q_m with the e-components

 $S^1, S^2, ..., S^m$.

In other words $T_n = S^1 \cup S^2 \cup \cup S^m$ and $a \to b$ in T_n iff either $a \to b$ in some S^j or $a \in S^h$, $b \in S^k$ and $v_h \to v_k$ (i.e. $S^h \to S^k$).

T is simple if it has no non-trivial e-component:

A subtournament R is called *shrinkable* in T_n if it is included in a non-trivial e-component of T_n (see [2]).

The dual (or converse) T* of a tournament T has the same vertex-set as T, but every arc is reversed.

Moon [6] considered tournaments whose subtournaments are either hamiltonian or transitive; we call them *Moon tournaments* or tournaments of *Moon-type*.

Burzio and Demaria (see [2] theorem 8) proved the following.

Proposition 1. A tournament T_n , $n \ge 4$, is a Moon tournament iff each 4-subtournament in T_n is a Moon tournament, i.e. iff no 3-cycle is coned in T_n .

3. CHARACTERIZATION OF HAMILTONIAN MOON TOURNAMENTS

Proposition 1 allows us to determine easily the Moon tournaments in the set of the hamiltonian tournaments with 5 vertices, that are described, for example, in [5].

In fact the three hamiltonian tournaments $M_5^1 = C_3(v_1, v_2, Tr_3)$,

fig.1

 $M_5^2 = C_3(v_1, \{v_2, v_3\}, \{v_4, v_5\})$ and M_5^3 (i.e. the regular tournament of order 5) of fig.1 are of Moon-type.

On the other hand $N_5^1 = C_3(v_1, v_2, C_3)$, N_5^2 , N_5^3 described in fig.2 are the hamiltonian tournaments that are not of Moon-type, since each of them contains a coned 3-cycle.

fig.2

Let us denote by AH the class of hamiltonian tournaments with at least 5 vertices whose hamiltonian 5-subtournaments are of Moon-type.

On the other hand let us denote by MH the class of hamiltonian Moon tournaments with at least 5 vertices.

We shall prove that $\mathcal{AH} = \mathcal{MH}$ (see proposition 4).

Remark 1. If T_n is of Moon-type then its dual tournament T_n^* is of Moon-type.

If $H_n \in \mathcal{AH}$, then its dual tournament $H_n^* \in \mathcal{AH}$.

Proposition 2. If $H_n \in \mathcal{AH}$ and S is a non-trivial e-component of H_n , then S is a transitive subtournament of H_n .

Proof. Since H_n is hamiltonian there exists a successor s of S and a predecessor p of S such as $s \rightarrow p$.

Now if a 3-cycle C_3 were contained in S, then H_n would contain the hamiltonian subtournament $N_5^1 = C_3(s,p,C_3)$ which contradicts the assumption.

Definition 1. We say that a cycle C_{r} in a tournament T_{r} can be extended to a cycle C_{s} , s>r, in T_{r} if there exist cycles C_{r+1} , ..., C_{s-1} such that C_{i+1} can be obtained from C_{i} by inserting a new vertex between two consecutive vertices, for every $r \le i \le s-1$ (or equivalently C_{i} can be obtained from C_{i+1} by deleting a vertex, for every $r \le i \le s-1$).

Proposition 3. Let C_{m} be a cycle in T_{n} , m < n. C_{m} can be extended to a spanning cycle in T_{n} if and only if C_{m} is unshrinkable.

Proof. If S were a non-trivial e-component of T_n and $C_m \subseteq S$, then each vertex $v \in T_n$ -S would cone S hence no cycle contained in S could be extended outside S.

For the "if" part of the proof, the assumption allows us to consider a vertex $v_{m+1} \in T_n - C_m$ that does not cone C_m , so that C_m can be extended to a cycle C_{m+1} containing v_{m+1} and, of course, C_{m+1} cannot be contained in any non-trivial e-component of T.

Therefore we can extend by induction C to a spanning cycle C in T.

A trivial consequence of the preceding result is the following, that generalizes proposition 3 of [2].

Corollary 1. A tournament is hamiltonian iff it contains an unshrinkable cycle.

Proposition 4. $A\mathcal{H} = \mathcal{MH}$.

Proof. The inclusion MH⊆AH is immediate since every subtournament of a

Moon tournament is of Moon-type too.

Now let $H_n \in \mathcal{AH}$ and assume H_n is not of Moon-type.

If C_3 is any coned 3-cycle in H_n , then we deduce from proposition 2 that no non-trivial e-component of H_n can contain C_3 and consequently, by proposition 3, we can extend C_3 to some spanning cycle C_n in H_n .

If C_3 is coned by v in H_n we denote by $\mathscr{C}(C_3, v)$ the set of all minimal cycles in H_n that can be obtained by extending C_3 and contain v.

Let $\mathscr C$ denote the union of the family $\{\mathscr C(C_3,v): C_3\subseteq H_n, C_3 \text{ coned by } v, v\in H_n\}$.

Eventually let us consider a hamiltonian tournament $C_r \in \mathscr{C}$ having minimum length in \mathscr{C} , and let C_r be an extension of a 3-cycle C_3 coned by $v \in C_r$. Of course $r \ge 5$.

We may assume, by remark 1, that $v \rightarrow C_3$.

If $C_r = (...(C_3 \cup v_4) \cup ... \cup v_r)$, we must have $v_r = v$.

Otherwise, if $v_j = v$ then 3 < j < r, $C_j = (...(C_3 \cup v_4) \cup ... \cup v_j)$ would be a smaller cycle than C_r extending C_3 and containing v, so C_r could not belong to $\mathscr{C}(C_3, v)$.

Consequently C_r - v is a cycle which extends C_3 and, since its lenght is smaller than the minimum r, C_r - v cannot contain any vertex which cones C_3 .

Now let x be a predecessor of v in $< C_r >$.

If x precedes exactly two vertices (resp. one vertex) of C_3 , then $\langle x, v, C_3 \rangle$ is isomorphic to N_5^2 (resp. N_5^3).

In any case H_n cannot belong to AH, which is absurd.

A trivial consequence of proposition 4 is the following.

Corollary 2. Let H_n be a hamiltonian tournament. If every hamiltonian 5-subtournament of H_n is isomorphic to M_5^i for some i=1,2,3, then every non-hamiltonian subtournament of H_n is transitive.

Remark 2. We note that there exist tournaments with at least 6 vertices

that are not of Moon-type although their hamiltonian 5-subtournaments are of Moon-type.

Easy examples are provided by $T_6 = T_2(v, M_5^1)$.

REFERENCES

- [1] BEINEKE L.W. and REID K.B., Tournaments, Selected Topics in Graph Theory, edited by Beineke L.W. and Wilson R.J., Academic Press, New York (1979).
- [2] BURZIO M. and DEMARIA D.C., Characterization of tournaments by coned 3-cycles, Acta Univ.Carol.-Math.Phys., Vol.28 n.2 (1987), 25-30.
- [3] BURZIO M. and DEMARIA D.C., On a classification of hamiltonian tournaments, Acta Univ.Carol.-Math.Phys., Vol.29 n.2 (1988), 3-14.
- [4] DEMARIA D.C. and GIANELLA G.M., On local properties of hamiltonian tournaments, to appear.
- [5] MOON J.W., Topics on Tournaments, Holt, Rinehart and Winston, New York (1968).
- [6] MOON J.W., Tournaments whose subtournaments are irreducible or transitive, Canad.Math.Bull., Vol.21 n.1 (1979), 75-79.

Cosimo DE MITRI and Cosimo GUIDO

Department of Mathematics, University of Lecce, 73100 Lecce, Italy.